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Magnetic polarons in a nonequilibrium polariton condensate
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We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a
system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and
magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton
polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can
exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted
previously in the equilibrium case. Using the Bogoliubov–de Gennes approximation, we calculate the excitation
spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons,
mediated by the ion subsystem.
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I. INTRODUCTION

Exciton polaritons are versatile quantum quasiparticles that
exist in semiconductor systems, in which the exciton-photon
coupling overcomes the effects of decoherence [1]. This so-
called strong-coupling regime is characterized by the appear-
ance of new branches of excitations with mixed light-matter
characteristics. In semiconductor microcavities, polaritonic
modes possess an effective mass orders of magnitude smaller
than the electron mass, which allows for the observation of
bosonic condensation even at room temperature [2–4]. This led
to the observation of phenomena such as superfluidity [5,6],
Josephson oscillations [7,8], quantum vortices [9–11], and
solitons [12–14]. The applications of polaritonic condensates
that are considered currently include low threshold lasers
[15], all-optical logic [16–18], quantum simulators [19,20]
and few-photon sources [21].

Recently, exciton polaritons in semimagnetic (or diluted
magnetic) semiconductor materials attracted increasing in-
terest. In these materials, the response to magnetic field is
enhanced by orders of magnitude due to the coupling of exciton
spin to the spin of magnetic ions diluted in the semiconductor
medium [22–26]. Recent progress in sample fabrication led
to the observation of polariton lasing, or condensation, in a
high-quality semimagnetic microcavity [27]. Importantly, and
in contrast to standard semiconductor materials, the Zeeman
energy splitting between polarized polariton lines can be very
well resolved spectrally even at moderate magnetic fields
[26,28]. This allows us to observe a number of qualitatively
new physical phenomena. In particular, exciton polaritons
have been proposed as a promising platform for topological
quantum states in photonic lattices [29–34]. Unidirectional
transport in topological states can be realized by breaking time-
reversal symmetry. In the polariton context, this is possible
thanks to the exciton sensitivity to the magnetic field [34].

One of the most fundamental phenomena predicted in
condensates of semimagnetic polaritons is magnetic self-
trapping [35], or the formation of magnetic polarons [36]. It
was predicted that when the ion-exciton coupling is strong
enough, and at low enough temperature, self-trapping can
occur, which leads to condensation in real space and the
breakdown of superfluidity [35]. However, this theoretical
prediction was entirely based on the equilibrium model, in

which condensation in the ground state of a system without
dissipation was assumed. While an equilibrium condition in
polariton condensates has been realized very recently in state-
of-the-art GaAs microcavity samples [37], it is not satisfied in
the majority of microcavities, and in particular Cd1−xMnxTe
systems, which possess strong magnetic properties. It is there-
fore important to investigate the effect of the nonequilibrium
nature of polariton condensates on the existence and properties
of magnetic polarons.

In this paper, we investigate in detail magnetic self-trapping
in polariton condensates while fully taking into account the
nonequilibrium physics of the system. At the same time, we
assume that the magnetic ion subsystem is fully thermalized,
as evidenced in experiments [26]. We find that in the nonequi-
librium case, multiple magnetic polarons can be formed at the
same time, in contrast to previous findings [35]. We inves-
tigate both the case of homogeneous pumping with periodic
boundary conditions, and a more realistic case of Gaussian
pumping. Moreover, we find that the critical condition for
self-trapping differs from the one predicted in equilibrium,
as the polariton temperature cannot be defined. We obtain
diagrams of stability as a function of the ion-polariton
coupling, temperature, and magnetic field. Additionally, we
use the Bogoliubov–de Gennes approximation to examine the
stability of a uniform condensate against self-trapping. We
derive an analytic formula for the stability threshold, which,
surprisingly, does not depend on the spin relaxation time of
the magnetic ions. These results are confirmed numerically
and explained by the effective nonlinearity in the model. The
self-trapping is directly connected to the effective magnetic
attraction between polaritons, induced by the coupling to the
ion subsystem.

II. MODEL

We consider an exciton-polariton condensate in a two-
dimensional semimagnetic semiconductor microcavity. The
cavity contains quantum wells that are composed of a diluted
magnetic semiconductor (such as Cd1−xMnxTe) with incor-
porated magnetic ions, a setup that has been realized recently
[26,27]. We consider a specific case of a two-dimensional
cavity where polaritons are confined in a one-dimensional
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geometry by a microwire or line defect [38,39]. In this work,
we will assume that the condensate is fully spin-polarized.
This can be achieved experimentally by the combined effect
of a circularly polarized pump, and the influence of an external
magnetic field in the direction perpendicular to the quantum
well, which suppresses an exciton spin-flip. We also neglect the
effects of TE-TM splitting, which could lead to the precession
of polariton spins in an effective magnetic field [40].

In the case of tight transverse confinement, the evolution
of the condensate can be described by the complex Ginzburg-
Landau equation (CGLE) coupled to the equation describing
spin relaxation of magnetic ions [41],

ih̄
∂ψ

∂t
= − h̄2

2m∗
∂2ψ

∂x2
+ gC|ψ |2ψ − γNL|ψ |2ψ − λMψ

+ iP (x)ψ − i
1

2
γLψ, (1)

∂M(x,t)

∂t
= 〈M(x,t)〉 − M(x,t)

τM
, (2)

where gC is the polariton interaction constant, γL and γNL

are linear and nonlinear loss coefficients, respectively, λ is
the magnetic ion-polariton coupling constant, τM is the spin
relaxation time of magnetic ions, and P (x) is the space-
dependent external pumping rate. We note that the nonlin-
ear coefficients have been rescaled in the one-dimensional
(1D) case and are related to their 2D counterparts through
(g1D

C ,γ 1D
NL ) = (g2D

C ,γ 2D
NL )/

√
2πd2, where d is the length scale

of the transverse confinement. Here, we assumed a Gaussian
transverse profile of |ψ |2 of width d. In the case of a
one-dimensional microwire [38], the profile width d is of
the order of the microwire thickness. We emphasize that the
pumping and loss terms in Eq. (1) were absent in the previous
study of magnetic self-trapping [35].

The equilibrium ion magnetization in the dilute regime is
given by the Brillouin function [42]

〈M(x,t)〉 = nMgMμBJBJ

(
gMμBJBeff

kBT

)
, (3)

where nM and gM are the 1D concentration and g-factor
of magnetic ions with total spin J = 5/2, μB is the Bohr
magneton, T is the ion subsystem temperature, and Beff is an
effective magnetic field that consists of an external magnetic
field B0 and a contribution from the interaction with the
polarized condensate,

Beff = B0 + 1
2λ|ψ |2 = B0 + λSz, (4)

where Sz is the polariton 1/2-pseudospin density. Here,
because of the assumption of full condensate polarization, Sz

is simply equal to half of the polariton density n = |ψ |2/2.
The coupling constant λ can be estimated as [35]

λ = βexX
2

μBgMLz

, (5)

where βex is the ion-exciton exchange interaction constant, X

is the excitonic Hopfield coefficient, and Lz is the width of the
quantum well.

We consider two cases of space dependence of the pumping
profile P (x), i.e., homogeneous and Gaussian pumping. In the

FIG. 1. Evolution of the norm |ψ |2 of the condensate wave
function. Upper plots show the case of uniform pumping; bottom
plots show the case of Gaussian pumping. Left-hand plots show
stable cases when λ < λC ; right-hand plots show unstable cases
in which polarons are formed. Parameters: γL = 0 meV in (a),(b);
γL = 6.582 × 10−2 meV in (c),(d); λ = 7.125 × 10−12 T m in (a),(c);
λ = 8.125 × 10−12 T m in (b); λ = 9.5 × 10−12 T m in (d). Others
parameters are given in [43].

case of uniform pumping, the effective pumping is simply the
difference of pumping and linear loss terms, Peff = P − γL.
In the Gaussian pumping case, we assume

P (x) = P1 exp

(
− x2

2σ 2
p

)
, (6)

where σp corresponds to the spatial width of the pump beam.

III. NUMERICAL RESULTS

It was demonstrated [35] that when the coupling between
the polariton and magnetic subsystems is strong enough,
self-trapping can occur due to the magnetic polaron effect
[36,41]. The critical condition for self-trapping was given
under the assumption of thermal equilibrium in the system.
We note, however, that in the majority of current experiments,
thermal equilibrium is not achieved. In contrast, condensation
of exciton polaritons often takes place in far-from-equilibrium
conditions, where it is driven by the system kinetics without
a well-defined temperature of the polariton subsystem. It is
therefore important to investigate what the influence is of
the nonequilibrium character of polariton condensation on the
magnetic polaron effect.

Before analyzing the precise conditions for self-trapping,
we demonstrate examples of typical behavior of the system.
In Fig. 1, we show examples of dynamics obtained from
Eqs. (1) and (2) under both uniform and Gaussian pumping
and at B = 0. The numerical space window was set to be
x ∈ (−100 μm,100 μm) with periodic boundary conditions,
and the parameters correspond to a Cd1−xMnxTe sample with
a few percent concentration of Mn ions. In the case of Gaussian
pumping, absorbing boundary conditions were implemented
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at the edges of the numerical grid. In all cases, the initial
state was given by a homogeneous state (n = |ψ0|2) close to
the stationary state of model equations, perturbed by a small
white Gaussian noise.

Figures 1(a) and 1(b) correspond to the case of homoge-
neous pumping. At a lower value of the ion-exciton coupling
constant λ, the homogeneous state given by the stationary
condition n = P0/γNL is stable, as shown in Fig. 1(a).
However, when the coupling constant becomes higher than
a certain threshold λc, the formation of localized polarons can
be observed in Fig. 1(b). The polarons are almost stationary
and surrounded by areas of very low polariton density. Some
temporal oscillations of polaron widths can be seen. Polarons
are characterized by both high polariton density and ion
magnetization (not shown), which evidences the interaction
between these subsystems.

In the case of a Gaussian pumping profile, below the critical
threshold for self-trapping, a condensate is formed in the area
covered by the pumping beam. As shown Fig. 1(c), it may also
exhibit oscillations that are, however, not related to the polaron
effect. Crossing the threshold λc leads to a dramatic reduction
of the spatial size of the condensate, as shown in Fig. 1(d), in
agreement with results obtained in [35].

The above examples are generic and correspond to dynam-
ics occurring generally at various values of model parameters.
Therefore, we conclude that the polaron self-trapping effect
can be observed in a nonequilibrium condensate, although
in contrast to a previous study [35], we find that multiple
polarons can exist in the system at the same time, both in the
case of homogeneous and Gaussian pumping. We investigated
the parameter space of the model in a systematic way to
determine the conditions for self-trapping in a nonequilibrium
system. The phase diagram in the space of the coupling
constant and the relaxation time for homogeneous pumping
is shown in Fig. 2. Results of numerical simulations of model
equations are indicated by crosses (stable condensate) and
circles (self-trapping). Additionally, we show the results of
Bogoliubov–de Gennes analysis of stability of the uniform
state (see Sec. IV for details), which are given by the color
scale. Clearly there is a very good agreement between the
analytical predictions and the results of numerical simulations.
One can observe that the coupling constant λ is the most
important parameter that determines the stability, and τM

only has an influence on the instability rate of the steady
state, which corresponds to the time necessary for the
formation of polarons. Interestingly, there exist two regions
of stability for low and high values of λ. The upper region
corresponds to the saturation of the magnetic response due
to the shape of the Brillouin function. As will be shown
below, the effective nonlinearity depends on the first derivative
of BJ .

Figure 3 contains phase diagrams (according to the BdG
stability analysis) in the space of the ion temperature T and
ion-polariton coupling λ, at (a) zero magnetic field and (b) a
magnetic field of 1 T. Note that (a) suggests that in the case of a
low coupling constant, very low temperatures are necessary to
observe the polaron effect. However, this dependence becomes
less pronounced for higher values of λ. The main effect of the
magnetic field exists at small temperatures, where the uniform
condensate becomes stable for all values of λ.

FIG. 2. Diagram of stability shown in coordinates of the ion-
polariton coupling constant λ and the spin relaxation time of magnetic
ions τ . Stability limits were calculated analytically (see Sec. IV). The
color scale represents the instability rate according to the Bogoliubov–
de Gennes approximation; cyan shows that the system is stable (it
is symbolically expressed by “0” on the logarithmic scale); circles
correspond to unstable states as predicted by the simulation of Eqs. (1)
and (2); crosses correspond to stable states.

Finally, we note that the degree of circular polarization
of the condensate depends, among other parameters, on the
temperature and magnetic field, due to the existence of spin-flip
processes. For this reason, in particular in the B = 0 case, the
condensate can become polarized elliptically or linearly at low
temperatures, which will lead to the modification of the phase
diagram shown in Fig. 3(a).

IV. STABILITY ANALYSIS

In this section, we apply the Bogoliubov–de Gennes
approximation in the case of uniform pumping to find an ana-
lytical condition of stability of a stationary state. We postulate
that the emergence of magnetic polarons corresponds to the
instability threshold for the uniform state. Indeed, we find a
full analogy of the effective nonlinearity emerging from the
model Eqs. (1) and (2) in the fast relaxation rate regime to the
Gross-Pitaevskii equation with attractive nonlinearity. In terms
of this correspondence, polarons can be identified as bright
solitons emerging from an unstable uniform background [44].

For the sake of clarity of the derivation, we now in-
troduce a dimensionless form of the model. Equations (1)
and (2) can be transformed by rescaling time, space, wave-
function amplitude, and system parameters as t = αt̃ , x =
ξ x̃, ψ = (ξβ)−1/2ψ̃ , gC = h̄ξβα−1g̃C, Peff = h̄α−1P̃ , γNL =
h̄ξβα−1 ˜γNL, M = ζM̃ , and λ = h̄α−1λ̃ to obtain the dimen-
sionless form (hereafter we omit the tildes)

i
∂ψ

∂t
= −∂2ψ

∂x2
+ gC|ψ |2ψ + iPψ − iγNL|ψ |2ψ − ζλMψ

(7)

∂M

∂t
= α

τM
[JBJ (δλ|ψ |2) − M], (8)
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FIG. 3. Diagrams of stability shown in coordinates of the ion-
polariton coupling constant λ and temperature T . (a) The case without
magnetic field; (b) the case with a magnetic field of B = 1 T. Color
code and parameters are the same as in Fig. 2 and the spin relaxation
time is τ = 10−12 s.

where ξ = √
h̄α/2m∗, ζ = gMμBnM, δ = gMμBJ

2kBT
h̄

αβξ
, and α,β

are free parameters.
Fluctuation around the stationary homogeneous solution

ψ0(x,t) = n1/2e−iμt , M0(x,t) = JBJ (δλ|ψ0|2) can be written
in the plane-wave basis [45] (note that n = P/γNL)

ψ(x,t) = n1/2e−iμt

[
1 + ε

∑
k

{uk(t)eikx + vk(t)e−ikx}
]
,

(9)

M(x,t) = M0 + ε
∑

k

[wk(t)eikx + w∗
k (t)e−ikx], (10)

where ε is a small perturbation parameter.
The linearized solution is obtained by taking ε up to the first

order, expanding the Brillouin function about ψ0 up to the first

term, and comparing parts with eikx and e−ikx , respectively. It
can be rewritten as the following eigenvalue problem:

i
d

dt

⎛
⎝ u

v∗
w

⎞
⎠ = Q

⎛
⎝ u

v∗
w

⎞
⎠, (11)

where the matrix Q is given by

Q =
⎛
⎝ k2 − iEn + gCn −iEn + gCn −ζλn1/2

−iEn − gCn −k2 − iEn − gCn ζλn1/2

i α
τ
δλn1/2JB ′

J (δλn) i α
τ
δλn1/2JB ′

J (δλn) −i α
τ

⎞
⎠.

(12)

The numerical solution of the above eigenvalue problem in
parameter space is shown in Figs. 2 and 3 in a color scale, which
corresponds to the most unstable mode (highest imaginary
part of the eigenfrequency) of the system (11). Parameters
with stable evolution (all eigenvalues with a zero or negative
imaginary part) are depicted by a cyan color.

Additionally, it is possible to derive an exact analytical
condition for the stability of the system. The procedure is
analogous to the one described in [46] and consists of the
analysis of the zero-frequency crossing of the imaginary
part of the eigenfrequency as a function of momentum k.
The existence of the crossing indicates that momenta with
eigenfrequencies with both positive and negative imaginary
parts exist on two sides of the crossing. The eigenvalue
problem of Eq. (12) leads to the equation for ω(k),

ω3 + i(Y + 2R)ω2 − (
ω2

B + 2YR
)
ω = iY

(
ω2

B − 2Gk2
)
,

(13)

where ωB , Y , R, and G are defined by

ω2
B = k4 + 2k2gCn, (14)

Y = α

τ
, R = En, G = ζ δλ2JB ′

J (δλn)n. (15)

We can analyze the solutions in the limits k → ∞ and k → 0.
In the k → ∞ limit, there are three branches: ω ≈ −iY, ±
k2 − iR, and all have negative imaginary parts. In the k → 0
limit, there are two solutions with negative imaginary parts
and one equal to zero: ω1(0) = 0, ω2(0) = −iY , and ω3(0) =
−2iR. Only the ω1 branch can cross the zero-frequency
axis and have a positive imaginary part in some range of k.
The crossing points can be found by putting Im(ω) = 0 and
Re(ω) = � into Eq. (13), which have to be satisfied at the
same time,

�
[
�2 − (

ω2
B + 2YR

)] = 0, (16)

(Y + 2R)� − Yω2
B + 2YGk2 = 0. (17)

For physical parameters, Eqs.(16) and (17) are realized only if
� = 0. That leads to the equation for k,

k4 + 2k2gCn + 2Gk2 = 0, (18)
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and the analytical condition for stability, which expressed in
physical units reads

λ2B ′
J

(
gMμB

2kBT
λnJ

)
<

2gCkBT

nMg2
Mμ2

BJ 2
. (19)

With respect to λ, the inequality (19) is not satisfied in the
interval λc1 < λ < λc2, as can be seen in Fig. 2. Remarkably,
the critical values of λ do not depend on the spin relaxation
time τ . This conclusion is fully supported by the numerical
simulations as shown in Fig. 2. In this figure, the color scale
shows the calculated largest eigenvalue of the unstable branch,
κ = max(Im ω1(k)). Parameters for which Im ω1(k) is always
nonpositive are marked by a cyan color.

A. Adiabatic regime

As is shown in Fig. 2, if the ion spin relaxation time τ is
shorter than 10−14 s, the instability rate no longer depends on
the value of τ . In this adiabatic regime, the fast spin relaxation
approximation can be applied, which corresponds to setting
the time derivative on the left-hand side of Eq. (8) to zero.
In this limit, we have M(x,t) = 〈M(x,t)〉 = JBJ (δλ|ψ |2),
which gives

i
∂ψ

∂t
= −∂2ψ

∂x2
+ [gC|ψ |2 − ζλ〈M(x,t)〉]ψ

− i(γNL|ψ |2 − P )ψ. (20)

A simple and intuitive interpretation of the instability can be
obtained if the Brillouin function is expanded up to first order
around the stationary value of |ψ0|2,

M(x,t) = JBJ (δλ|ψ |2)

≈ JBJ (δλ|ψ0|2) + Jδλ(|ψ |2 − |ψ0|2)B ′
J (δλ|ψ0|2),

(21)

which leads to the standard form of the complex Ginzburg-
Landau equation (or dissipative Gross-Pitaevskii equation),

i
∂ψ

∂t
= −∂2ψ

∂x2
+ [(gC − ζλ2δB ′

J )|ψ |2 − ζλU0]ψ

− i(γNL|ψ |2 − P )ψ, (22)

where U0 = JBJ (δλ|ψ0|2) − Jδλ|ψ0|2B ′
J (δλ|ψ0|2) and

the notation B ′
J = B ′

J (δλ|ψ0|2) was used. The above form
corresponds to the complex Ginzburg-Landau equation with
effective nonlinearity,

geff = gC − Jζλ2δB ′
J , (23)

which becomes attractive exactly at the threshold given by
Eq. (19) when expressed in physical units. In other words,
the instability threshold that marks the formation of polarons
corresponds to the Benjamin-Feir-Newell criterion of stability
of the CGLE equation [47].

B. Quasiparticle spectrum

Figure 4 shows the imaginary part of the excitation
spectrum of the uniformly pumped condensate. Figure 4(a)
is an example of weak instability in the case of a long ion spin
relaxation rate, which corresponds to circles in the green area

FIG. 4. Imaginary parts of the frequencies of Bogoliubov quasi-
particles. The ion-polariton coupling constant λ is 10−11 T m. (a)
A typical excitation spectrum; spin relaxation time τ = 10−10 s.
The unstable branch exhibits a positive imaginary part. (b) Large
instability rate at τ = 2.5 × 10−14 s.

in Fig. 2. The spectrum contains three branches, of which one
(blue line) is unstable at a certain wave-vector range, which is
indicated by the positive imaginary part of the frequency. We
note that the spectrum in this regime is strikingly similar to the
one predicted in the case of a nonmagnetic condensate in the
presence of a reservoir [45,48]. The similarity indicates that
the magnetic ions play in some sense the role of a reservoir in
this system.

On the other hand, in the case of a short spin relaxation time,
the spectrum becomes qualitatively different, as indicated in
Fig. 4(b). These parameters correspond to circles in the orange
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area of Fig. 2. While one of the branches is also unstable, it
is strongly peaked at high momenta. Moreover, the instability
rate, defined as the maximum value of the imaginary part of
the frequency, is much higher than in the previous case. This
indicates clearly that the relaxation time determines the time
scale of the instability, as demonstrated in Fig. 2. The lower
branch (red line) has been pushed down to very low imaginary
frequencies, which is characteristic of a strongly damped
mode. This damped mode is the one that corresponds to the
excitation of magnetization, which is strongly suppressed in
the adiabatic regime.

V. CONCLUSIONS

In conclusion, we investigated a spin-polarized condensate
of exciton polaritons in a diluted magnetic semiconductor
microcavity. In contrast to previous works, we included
nonequilibrium effects of driving and decay in our model,
which led to several interesting effects. We found that multiple
polarons can exist at the same time, and we connected the insta-
bility of the homogeneous state in the Bogoliubov–de Gennes
approximation to the formation of polarons. We derived a
critical condition for self-trapping that is different from the
one predicted previously in the equilibrium case. The effect has

been explained by the effective attraction between polaritons
due to magnetic ion coupling.

Experimentally, it is important to distinguish magnetic
self-trapping from trapping on defects existing in the sample.
Such localization is routinely observed in experiments with
condensates in a strong disorder potential [2]. This effect could
prevent the observation of self-trapping if the disorder energy
scale is larger than the strength of nonlinearity. As the disorder
is typically significant in CdTe samples considered here, it is
important to make sure that the samples used are characterized
by a disorder that does not prevent the observation of self-
trapping. Recent advances in sample fabrication should allow
this regime to be reached [27]. Additionally, the nonlinear
self-trapping effect is predicted to become more significant
at large polariton densities, in contrast to trapping in defects,
which is typically the strongest at low pumping powers.
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J. L. Staehli et al., Nature (London) 443, 409 (2006).

[3] S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G.
Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R.
Butté, E. Feltin, J.-F. Carlin et al., Phys. Rev. Lett. 98, 126405
(2007).

[4] K. S. Daskalakis, S. A. Maier, and R. M. S. Kena-Cohen,
Nat. Mater. 13, 271 (2014).

[5] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto,
R. Houdré, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805
(2009).

[6] G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S.
Daskalakis, L. Dominici, M. De Giorgi, S. A. Maier, G.
Gigli, S. Kéna-Cohen, and D. Sanvitto, Nat. Phys. (2017), doi:
10.1038/nphys4147.

[7] K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B.
Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).

[8] M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac,
L. Ferrier, I. Sagnes, E. Galopin, A. Lemaître, G. Malpuech, and
J. Bloch, Nat. Phys. 9, 275 (2013).

[9] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.
Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran,
Nat. Phys. 4, 706 (2008).

[10] D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M.
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