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Spin-orbit coupling and the topology of gases of spin-degenerate cold excitons in photoexcited
GaAs-AlGaAs quantum wells
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We calculate the spatial structure of four-component spinor systems of mixed bright and dark exciton
condensates in coupled quantum wells. The spin-dependent bright-dark exciton conversion and Dresselhaus
spin-orbit coupling is found to generate a rich variety of topological elements. By propagating the Gross-Pitaevskii
equation in imaginary time, we observe the following: single and multiple polarized vortices; the phase separation
of bright and dark excitons; and exotic spatial structures in density and spin polarization.
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I. INTRODUCTION

Spin-orbit coupling (SOC) is at the origin of a number of
fundamental effects in solid-state physics. It is crucial for the
understanding of electric-dipole spin resonances, is of key
importance for spintronics and quantum computation,>* and
plays a central role in the physics of topological insulators,*
where it governs the symmetry of the ground state and induces
a gap in the energy spectrum. Here, we show that SOC is also
of key importance for the topology of condensates of bosons
with spinor (multicomponent) order parameter.

Bosonic condensates with a spinor order parameter at-
tracted great interest of the scientific community during the last
decade. This is due to several recent experimental observations
of complex spin-dependent topologies in exciton-polariton
condensates in microcavities®® and in the condensates of
indirect excitons in coupled semiconductor quantum wells.”®
Spin patterns were predicted also for the case of synthetic
spin-orbit coupling in atomic condensates.’!

Here, we focus on the excitonic system. The lowest-energy
exciton states in zinc-blende semiconductor quantum wells
are formed by a conduction-band electron with spin projection
+1/2 or —1/2 on the structure axis and a heavy hole, the
quasispin projections on the structure axis of which are +3/2
or —3/2. Consequently, the exciton spin projections are +2,
—2, 41, or —1. The +2 and —2 exciton states are decoupled
from light. These are so-called “dark excitons.” Contrarily, the
+1 and —1 excitons may be strongly coupled to light and they
form bright exciton-polariton states in semiconductor micro-
cavities. This is why condensates of exciton polaritons have
a two-component order parameter, describing the amplitudes
and phases of exciton polaritons with spin projections +1 and
—1. Here, we study theoretically the topological properties of
condensates of spatially indirect excitons in biased coupled
quantum wells GaAs/AlGaAs. In these systems, bright exci-
tons weakly interact with light due to the low overlap integral of
electrons and holes, which is why exciton condensates remain
nearly or fully fourfold degenerate.

We investigate the topological properties of such four-
component exciton condensates in the presence of SOC terms
linear in the wave vector. Two such terms can appear due to
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the lack of inversion symmetry in zinc-blende semiconductor
quantum wells in the presence of an electric field: the Dres-
selhaus term!!*!? and the Rashba term.!*!* The effects of both
terms are qualitatively similar, but we will be mainly interested
in the Dresselhaus terms for electrons and holes, which
are shown to play an important role in recent experiments
on cold exciton gases."> We also include the effect of the
trapping potential, which was recently used for establishing
full coherence of the condensate.® We show that competition
of spin-orbit coupling, trapping, and interactions can induce
the emergence of various spin structures, including vortices,
vortex arrays, or spin domains. We also demonstrate that the
competition of electron- and hole-induced couplings leads to a
peculiar hidden asymmetry in the Hamiltonian, which breaks
the symmetry of dark and bright exciton states.

II. GROSS-PITAEVSKII EQUATIONS

We describe a Bose-Einstein condensate in a quasi-two-
dimensional geometry, where the exciton gas is effectively
trapped in the (x,y) plane, with a four-component order
parameter W = (Y40, ¥41,%_1,%_2)T, where ¥, (r,,¢) with
o = %2 and =1 are the dark and the bright exciton compo-
nents, respectively. The mean-field Hamiltonian density of the
system is

H = \IJT . H(]) s + %V()nz —+ W(wizwi2¢+lw71 + C.C.),

(1)
wheren =) _ |V, |2 is the total density and
a h2ﬁ2
HY=|——+4U I+ Hyo, 2
M +U(ry) |1+ H @)
0 :36124- ,3}112_ 0
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The above Hamiltonian includes the Dresselhaus coupling
for electrons (8.) and holes (8y), the spin-independent dipole-
dipole repulsion of excitons described by the coefficient V),
spin-dependent bright-dark exciton scattering described by the
coefficient W, and the external harmonic potential U(r ) =
M a)21'2l /2. In principle, there are also weak spin-dependent
exciton-exciton interactions due to the spin dependence of the
exchange.'® For simplicity, we neglect them since they do not
lead to qualitative changes in the exciton condensate topology.
On the other hand, taking into account the mixing W term is
crucial since it describes the scattering of two bright excitons
into two dark ones (and the reverse process) and leads to a
coupling of phases of the different components.

The Gross-Pitaevskii equations generated by the Hamilto-
nian density, defined by Egs. (1)—(3), are

Ay Rk
h 5 = —I/fﬂ + Beksrar + Buks¥rs1 + U )Yao
+ Vonyan + Wy Yo, (4a)
e KK R R
h o = mlﬂil + BeksVrar + Buks U2 + U(r)vs
+ Vonyer + Wy Yiays. (4b)

III. WEAK POTENTIAL TRAP

We have performed the numerical minimization of the
energy of the system with the imaginary-time method. Results
for the case of a weak potential trap are shown in Fig. 1, for
different values of W.

At high exciton densities, the ground-state profile depends
on the sign of W. For negative W, the system tends to form
a plane wave in each component as shown in Fig. 1(a),
while for positive W, the phase-separated stripe state is
preferred, as in Fig. 1(b). These states are not a special
feature of the trapped system, but also appear in a planar
system. They can be understood by considering single-particle
ground states in a homogeneous system.'” The Hamilto-
nian in the absence of interactions is Hy = h*k?/2M + Hi,
and due to the presence of linear in k SOC terms, the
single-particle energy is minimized at the finite wave vector
lq| = M|Be + Bul/h>. This solution corresponds to the plane
wave

Vi 1

Vi — oiar n e'%a )
Vo1 4 feiva |’

(/) 1

where ¢4 = arg(g. +iq,). In the presence of interactions,
the system chooses to form either a single plane wave or
a superposition of two antiparallel plane waves, depending
on the sign of spin-dependent interactions W. The solu-
tion (5) minimizes the exciton mixing energy for negative
W, which leads to the condensate in a single plane-wave
state with all components mixed [Fig. 1(a)]. On the other
hand, for positive W, there is frustration of plane-wave
solutions (5) since to minimize the exciton mixing energy
one needs to change the sign of one of the components.
This frustration leads to phase separation of dark and bright
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FIG. 1. (Color online) Examples of ground states of the system
(only the ¥,; component is shown). The darker regions correspond
to higher exciton density, and the colors depict the phase of the wave
function. In the case of strong interactions and spin-orbit coupling,
(a) plane-wave solutions exist for W < 0 and (b) spin-domain (stripe)
solutions exist for W > 0. If interactions are weak compared to the
trapping energy scale, (c) single-vortex or (d) multiple-vortex solu-
tions are present in the cases of weak and strong spin-orbit coupling,
respectively. The parameters are n = 10" cm™2, B, = 10 meV A
except (c), B =2meV A in (c), By = Be/2, Vo =0.1 peV pum?
in (a), (b), Vo =107 peV um? in (c), (d), W = —0.2V} in (a),
W = 0.2Vp in (b).

components, which is realized by the standing wave solution
(see Fig. 2).

At low exciton densities, the interactions are weak, and the
SOC terms become dominant. The ground-state patterns in this
regime generally consist of one or many vortices, similar to
the case of atomic condensates.” The vortices are formed as a
result of interference of several plane-wave ground states. The
SOC and mixing of components imposes some restrictions on
the winding numbers of vortices that can be formed in exciton
condensates.

First, we note that minimization of the exciton mixing
energy [last term in (1)] results in locking between the phases
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FIG. 2. (Color online) Spin structure of the spin-domain (stripe)
solution from Fig. 1(b). The domains of dark and bright excitons
complement each other, keeping the total density close to the Thomas-
Fermi profile. The ¥_; and ¥_, components are identical to their
positive counterparts.
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FIG. 3. (Color online) The single vortex ground state from
Fig. 1(c). The vorticity in the spin components follows the rule (7)
imposed by the spin-orbit coupling.

of different components. If one writes ¥, = /1, exp{ifs},
then the phases should satisfy 6o +6_, — 641 —0_; =0
or 7 (mod 2r) for W <0 and W > 0, respectively. This
condition should hold far away from the vortex core, and
it bounds the winding numbers m, of different components
to obey

Mmyp+m_p=my+m_j. (6)

The second bound is due to SOC and it appears for the
cylindrically symmetric solutions of Egs. (4a) and (4b), i.e.,
for vortices with 6, = —ut + m,¢, where u is the chemical
potential and ¢ is the azimuthal angle in the quantum well
plane. It is easy to see that since k4 exp{im, ¢} transforms like
exp{i(m, = 1)¢}, one has

mp=my+l=m_—1=m_, @)

for these vortices. The conditions (6) and (7) are consistent
with each other, but while the bound (6) is strict, the bound (7)
applies only to the vortices with cylindrical symmetry. There
can be warped vortex solutions of Egs. (4a) and (4b) obeying
(6), but not satisfying (7), similar to the warped vortices in two-
component condensates with two branches of single-particle
energy.!”

The broken symmetry of dark and bright exciton states,
evident in Fig. 3, is a consequence of the bound rule (7),
but is not straightforwardly apparent in the Hamiltonian of
the system. The simplest vortex solution of this type has
opposite vorticities in |, while winding numbers are zero
in the ¥4, components, forming a generic (0, —1, 4+1,0) spin
vortex. This asymmetry is found in all solutions which contain
vortices, but is absent in solutions in which radial symme-
try is not present, such as the plane-wave or spin-domain
states.

We summarize the results of more systematic calculations
of ground states in a diagram in Fig. 4. Here, the strength of
the spin-orbit coupling and system size was kept constant,
while the spin-dependent and spin-independent interaction
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FIG. 4. (Color online) Showing the crossovers between different
ground states of the system with fixed spin-orbit coupling coefficients
B. =10 meV A and Bn=>5 meV A and varying interaction coeffi-
cients Vy and W. The size of the trap was adjusted to keep the size of
the condensate similar to that of Fig. 1-3. The number of vortices in
the phase on the left depends on the system size. Shaded region around
W = 0 indicates the domain where the mean-field approximation is
not reliable.

coefficients W and V, were varied. In the regime of small
interaction strength, the ground state is in general composed
of spin vortices described above, independently of the sign of
W. In the strong interaction regime, the sign of W determines
the ground state of the system, which is the “stripe” state for
positive W and “plane wave” for negative W.

It should be noted that the validity of mean-field approxi-
mation used in this study is limited by high enough values of
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FIG. 5. (Color online) Spatial structure of four-component con-
densates in a strong potential trap (mq,w/2 = 1 ueVu~2). The bright
(a) and dark (b) exciton intensity is shown for the case W = —0.2V,,.
The variation of the spin-polarization degree of bright excitons
is shown by the colors in (a). Dark excitons have approximately
zero circular polarization degree. The ratio of the dark to bright
exciton density is shown by the colors in (b). (c) and (d) show the
corresponding profiles for the case W = 0.2V,
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the mixing parameter W, and fluctuations play an important
role for |W| <« V). Moreover, the order is expected to be
destroyed for W = 0 as in the high-dimensional nonlinear
sigma model.'® This is why the detailed behavior of crossover
lines in Fig. 4 can not be established for small W (in the shaded
region).

IV. STRONG POTENTIAL TRAP

In the case of a strong potential trap, the broken ro-
tational symmetry caused by the Dresselhaus terms allows
strong spin polarizations in the spatial structure of the
ground states. Figures 5(a) and 5(b) show the density of
bright (n;) and dark (n;) exciton components for W =
—0.2Vy. The spin-polarization degree of bright excitons, p; =
(1]l — W=1D/(¥41] + [¥—1]), is illustrated by the colors in
Fig. 5(a). Comparing the maxima of the density profiles, we
observe that bright and dark components separate, similar
to the behavior observed in Figs. 1 and 2. We note that
indications of phase separation of dark and bright excitons
in strain-induced traps were reported in Ref. 19. The minima
of the density profiles correspond to the existence of vortices
in the corresponding fields (not shown), in analogy to the
half-vortices observed in two-component condensates with
spin-orbit coupling.>?° For the case W = +0.2V, the bright
and dark exciton densities form a set of co-centric distorted
rings. Again, a spin polarization of bright excitons can be
observed in addition to phase separation of the bright and dark
excitonic components in real space.
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V. CONCLUSIONS

We studied four-component exciton condensates in a
two-dimensional quantum well structure in the presence of
Dresselhaus spin-orbit coupling. The spin-sensitive interac-
tions introduced by the ability of pairs of bright excitons
to scatter into dark excitons (and vice versa) play a crucial
role in determining the spatial structure. In weak potential
traps, bright and dark exciton condensates may phase separate
depending on the sign of the bright-dark exciton interaction
W. Single- and multiple-vortex solutions can also appear
depending on the interaction strengths and the strength of
Dresselhaus spin-orbit coupling terms. In the presence of a
strong potential trap, the Dresselhaus terms allow separation
of different spin-polarized components and the formation of
nontrivial structures in both the excitonic densities and spin
polarization. The selection of structures that we have studied
demonstrate the intricate variety of patterns obtainable in
four-component spinor systems, which are expected to persist
under nonequilibrium experimental conditions.
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