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Patterns and excitations in antiferromagnetic spinor condensates
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We consider the phenomenon of spin-pattern formation reported in recent experiments in spin-2 rubidium
condensate [J. Kronjäger, C. Becker, P. Soltan-Panahi, K. Bongs, and K. Sengstock, Phys. Rev. Lett. 105, 090402
(2010)]. To understand the mechanism underlying the process and explain the parameters such as pattern period
and growth rate, we employ the Bogoliubov–de Gennes equations and an alternative method based on energy
conservation and the uncertainty principle. While the two methods agree in the spin-1 case, only the second
method can provide analytical results in the spin-2 case. Using these results, we explain the occurrence of two
regimes, the spin-dominated and the Zeeman-dominated, with the prevalence of spin-wave modes and quadrupole
modes, respectively. We obtain very good agreement between theory and experiment for the pattern period and
growth rate over several orders of magnitude of the magnetic field strength.
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I. INTRODUCTION

Spinor condensates have emerged as a promising quantum
model system for spontaneous structure formation and sym-
metry breaking [1–6]. As such they were proposed to offer
links to a broad range of fields, for example, the emergence
of density variations in the universe via the Kibble-Zurek
mechanism [7–9]. The instabilities associated with symmetry
breaking have been shown to amplify quantum noise [10–13]
and have recently been used to generate large numbers of
entangled atom pairs [14–16].

The emergence of structure in the ferromagnetic phase
of F = 1 87Rb Bose-Einstein condensates [1,7–11,17–23]
is intuitively linked to the formation of magnetic domains.
Perhaps surprisingly, recent experiments have shown that
pattern formation also occurs in antiferromagnetic systems
[3,4,24]. Although these patterns emerge as unstable modes of
the Gross-Pitaevskii equation, detailed numerical calculations
are required in each case, and a generic understanding of
the phenomenon is still lacking. In this article we present a
physical interpretation linking the observed patterns to natural
spinor order parameters and develop a simple general scheme
allowing generation of approximate analytical formulas for
key parameters such as pattern periodicity and growth rate. We
focus on the homogeneous one-dimensional case as described
in Ref. [4].

This article is organized as follows: After introducing
the spinor Hamiltonian we test a physical interpretation of
the observed patterns against a solution of the Bogoliubov
equations for the F = 1 case. Following this we propose a
general, spin-independent solution scheme based on energy
and uncertainty considerations and demonstrate that it delivers
the exact solution for the spin-1 case and a good approximation
for spin-2.

II. MODEL

The Hamiltonian of a spinor Bose-Einstein condensate
can be written as Ĥ = Ĥ0 + ĤA, where the symmetric

(spin-independent) part is

Ĥ0 =
∑

j=−F ···+F

∫
dr ψ̂

†
j

(
− h̄2

2m
∇2 + c0

2
n̂ + V (r)

)
ψ̂j , (1)

where the subscripts j = −F · · · + F denote sublevels with
magnetic quantum numbers along the z axis mf = j , m is the
atomic mass, n̂ = ∑

n̂j = ∑
ψ̂

†
j ψ̂j is the total atom density,

and ψ̂ = (ψ̂−F , . . . ,ψ̂F ). We will consider a Bose-Einstein
condensate in a cigar-shaped trap elongated in the z direction,
V (r) = 1

2mω2
⊥(x2 + z2) + 1

2mω2
zz

2. In the case of a spin-1
condensate, the asymmetric part of the Hamiltonian is [25]

ĤA =
∫

dr

⎛
⎝ ∑

j=−1,0,+1

Ej n̂j + c1

2
: F̂2 :

⎞
⎠ , (2)

whereas in the spin-2 case, the asymmetric part can be written
as [26]

ĤA =
∫

dr

( ∑
j=−2···+2

Ej n̂j + c1

2
: F̂2 : +c2

2
�̂†�̂

)
, (3)

where Ej are the Zeeman energy levels, the spin density is F̂ =
(ψ̂†Fxψ̂,ψ̂†Fyψ̂,ψ̂†Fzψ̂) where Fx,y,z are the spin matrices,
and the singlet pair operator is � = 2ψ2ψ−2 − 2ψ1ψ−1 + ψ2

0 .
In the above we assumed that the magnetic field is parallel to
the z axis.

The linear part of the Zeeman effect induces a homogeneous
rotation of the spin vector around the direction of the magnetic
field. Since the Hamiltonian is invariant with respect to spin
rotations around the z axis, we can remove this trivial effect
by introducing a rotating frame for the spin oscillating with
the Larmor frequency. We thus consider only the effect of
the quadratic Zeeman shift [25]. For a sufficiently weak
magnetic field we can approximate it by an energy shift of
the mf = ±1 (and mf = ±2) sublevels, �Ej = j 2δE, where
δE ≈ ±α2EHFS/16, EHFS is the hyperfine energy splitting at
zero magnetic field, α = (gI + gJ )μBB/EHFS, μB is the Bohr
magneton, gI and gJ are the gyromagnetic ratios of electron
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FIG. 1. (a) The initial state of the condensate is polarized
transversely to the magnetic field (TP) and corresponds to an energy
maximum. Two modes can destabilize the condensate in the presence
of magnetic field: (a) the spin-wave (SW) mode, which tilts the spin
vector and gives rise to the pattern with alternating spin directions,
and (b) the quadrupole mode (QM), which reduces the spin vector
and builds up the nematic order parameter depicted by a disk with
the axis determining the nematic direction.

and nucleus, and B is the magnetic field strength [25]. We
note that δE can be positive or negative depending on whether
we consider the lower or the upper hyperfine level, but in
both cases it is proportional to the square of the magnetic field
strength B. Splitting δE with arbitrary sign can be alternatively
induced using optical [27] or microwave [13,28] fields.

III. SPIN-1 CASE

In a recent experiment with an antiferromagnetic spin-2
rubidium condensate, a striking feature of regular pattern
formation was observed [4]. The condensate was initially
prepared in the transversely polarized (TP) state, depicted
schematically in Fig. 1(a). If the condensate was placed in
a sufficiently strong magnetic field, periodic spin patterns,
depicted in Fig. 2, developed after a certain time of evolution.
Remarkably, the patterns were clearly different in the two

FIG. 2. (Color online) Examples of density profiles of spin
components in spontaneous patterns of F = 2 87Rb: (a) spin-wave
pattern at B = 0.25 G, and (b) quadrupole wave pattern at B =
1.1 G. The figures in the top row show the results of numerical
simulations within the truncated Wigner approximation, while the
bottom row shows the experimental data. The trap frequencies are
ωx,y,z = 2π × (85,133,0.8) Hz and the atom density in the center of
the trap (magnified here) is n0 = 8.1 × 1013 per cm3.

regimes, corresponding to a weak and strong magnetic field.
Below, we will explain the emergence of the two regimes by
using a simple analytical model and provide a tool to calculate
some basic characteristics of the pattern formation, such as
pattern period and instability growth rate. For this purpose,
we will first consider a simpler spin-1 model and show that
a similar phenomenon can occur equally well here, provided
that the quadratic Zeeman shift δE is negative.

For an antiferromagnetic condensate in the absence of mag-
netic field, the initial TP state is a stable, although maximally
spin-excited state. This is because of spin conservation, which
ensures that the condensate remains maximally polarized in
the transverse direction [29]. The situation changes after
introducing the magnetic field, which breaks the transverse
spin conservation.

In the spin-1 model, there are generally three different
excitation modes, i.e., the density wave mode, spin-wave
mode (SW), and the quadrupole mode (QM) [30,31]. While
the density wave mode is always stable due to strong
repulsive atomic interactions, the spin-wave mode and the
quadrupole mode may become unstable in the presence of
a magnetic field. In contrast to the case of a F = 1/2 system,
where a coherent quantum state can be described using a single
spin vector on the Bloch sphere, the F = 1 system is only
fully described by a pair of one spin vector and one nematic
order parameter [32]. Using this language, Figs. 1(b) and 1(c)
schematically show the action of excitation modes on the
TP state (top), together with the final spin patterns (bottom).
By looking carefully at the experimental spin patterns [4],
one can see that the spin-wave pattern develops in a weak
magnetic field (interaction regime) [see Fig. 2(a)], while the
quadrupole pattern develops in the Zeeman-dominated regime
[see Fig. 2(b)].

It is possible to understand this behavior qualitatively by
considering the instability growth rates of the SW modes and
QMs as a function of the quadratic Zeeman splitting δE.
The SW modes are unstable for δE < 0, because only in
this case does tilting the spin vectors toward the magnetic
field axis while keeping the spin density |F| constant reduce
the quadratic Zeeman energy (2). We can thus expect that
the instability of SW modes will grow linearly with (−δE).
On the other hand, QMs are unstable for both positive and
negative δE, because the reduction of the spin density |F|
always reduces the energy for c1 > 0. At the same time, they
must be stable at B = 0. The growth rates of QMs can then
be only quadratic in δE. Consequently, we can expect that the
SW modes will be dominant unstable modes for small negative
δE, but QMs may become dominant at higher magnetic fields.
On the other hand, for positive δE, QMs are the only unstable
modes.

A. Bogoliubov mode analysis

We support this reasoning with analytical calculations
of linearized Bogoliubov modes of a homogeneous F = 1
condensate. The linear excitation modes are solutions of the
Bogoliubov–de Gennes equations [33] around a stationary
state, ψj (x,t) = √

nj exp(−iμj t) + δψj (r,t), where

δψj (r,t) = (uje
ik·r−iωt + v∗

j e
−ik·r+iω∗t )e−iμj t (4)
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is a small perturbation.
In general, the initial TP state is not an eigenstate of the

Hamiltonian. However, in weak magnetic fields, it can be well
approximated with the phase-matched (PM) stationary (inert)
state [25], which becomes equivalent to the TP state at B = 0.
On the other hand, in strong magnetic fields when the rotating
wave approximation can be applied [4], the TP state becomes
an exact eigenstate of the Hamiltonian. In this limit we can
calculate its excitation modes directly.

In the limit c1 � c0, the excitation of density modes
requires much more energy than spin excitations. Here, we
consider low-energy excitations only and can thus assume that
the density profile of the condensate is practically unchanged,
while the unstable spin modes can lead to the appearance of
spin patterns. The growth rate of these patterns is determined
by the most unstable mode, which grows exponentially at
a rate κmax = max �(ω). This rate and the corresponding
wave-vector length kmax, which corresponds to the pattern
lattice constant, can be calculated analytically in the respective
limits (here ξs = √

2πh̄/
√

mc1n is the spin healing length
and ξB = √

2πh̄/
√

m|δE| is the magnetic healing length).
For a phase-matched (PM) state in weak magnetic fields
(δE � c1n), SW modes have

κmax = |δE|
2h̄

, kmax =
√

2π

ξB
for δE < 0,

(5)
κmax = 0 (stable) for δE � 0,

while QMs have

κmax = δE2

4h̄c1n
, kmax = π

ξs

√
8 −

(
δE

c1n

)2

. (6)

In strong magnetic fields (δE 	 c1n), we consider excitations
of the TP state. It turns out that in this regime SW modes are
always stable, while QMs have

κmax = c1n

2h̄
, kmax =

√
2π

ξs
. (7)

Figure 3 shows the dependence of the maximum growth rate
κmax and the corresponding pattern wave vectors kmax of PM
and TP states in the appropriate regimes. Additionally, the
dashed-dotted line shows the overlap of the PM state and
the initial TP state, A = (1/N)

∑
j |ψ∗(PM)

j ψ
(TP)
j |. It gives

a measure of the applicability of the weak magnetic field
assumption. We also note that the PM state exists only up
to |δE|/c1n = (B/B0)2 = 2 [25].

While the spin-wave modes dominate the instability in weak
magnetic fields, and their maximal growth rate increases lin-
early with δE (quadratically with the magnetic field strength),
it becomes stable in the regime of strong magnetic field, where
the quadrupole mode is the only unstable mode. In between,
we expect a crossover region where the two modes compete,
which can result in the appearance of irregular patterns. The
wave-vector length of the pattern grows linearly with the
magnetic field at low B, but it saturates in strong magnetic
field, in agreement with the experimental data [4].
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FIG. 3. (Color online) (a) Analytical results for the dependence
of the maximum growth rate of SW modes and QMs in the function
of magnetic field. The figures correspond to a spin-1 Bose-Einstein
condensate with a negative quadratic Zeeman splitting δE < 0. The
“low B” lines correspond to the PM eigenstate [25], which is close
to the initial TP state in weak magnetic field, and “high B” lines
correspond to the exact initial TP state in the limit of strong magnetic
field. B0 denotes the magnitude of the magnetic field for which the
interaction and Zeeman energies are equal, |δE| = c1n. The dashed-
dotted line shows the overlap of the PM state and the initial TP state,
A = (1/N )

∑
j |ψ∗(PM)

j ψ
(TP)
j |. (b) The most unstable wave vector kmax

as a function of B/B0.

B. Energy conservation and the uncertainty principle

We now present an alternative method of calculating the
growth rate and the wave-vector length of the most unstable
mode. The method is based on the energy conservation law
and the uncertainty principle. In contrast to the Bogoliubov
method, it can be used to obtain approximate analytical
formulas also in the case of higher-F systems.

In the limit of a homogeneous condensate, the initial TP
state can be described by the spinor [30,31]:

ζTP = eiφe−i π
2 Fy

⎛
⎝ 1

0
0

⎞
⎠ = eiφ

⎛
⎝ 1/2√

1/2
1/2

⎞
⎠ . (8)

The kinetic, quadratic Zeeman, and interaction energies of this
state are (per atom)

ekin
TP = 0, eZ

TP = 1

2
δE, eint

TP = c1

2
n. (9)

We neglect the influence of the spin-independent interaction
energy, potential energy, and the linear Zeeman energy, which
we assume to be constant. Now we consider the patterns
created by the instability of the condensate. We are interested
in the spin structure at the instant when the pattern is fully
developed but is still a result of a growth of a single unstable
mode depicted in Fig. 1(b) or 1(c). In the case of the spin-wave
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mode, the spin vector, initially polarized along x, tilts in
different directions in the y-z plane. We approximate the
resulting spin pattern as a spin rotating in this plane as we
move along z:

ζSW = eiφe−i(kSWz+φs )Fx

⎛
⎝ 1

0
0

⎞
⎠ , (10)

where kSW is the wave vector of the spin pattern. The phases
φ and φs can vary in different realizations of the experiment.
The average energies per atom for this state are

ekin
SW = h̄2k2

SW

4m
, eZ

SW = 3

4
δE, eint

SW = c1

2
n. (11)

Since the total energy in the system has to be conserved, we
can determine kSW. We can also estimate the upper limit for
the growth rate of the unstable mode using the uncertainty
principle. Since the difference in energy of two levels �E can
only lead to a change of the state of the system after time
�t such that �E�t � h̄, the inverse time scale κSW can be
estimated from the energy gained by a single atom driven by
the instability as κSW � �e/h̄ = h̄k2

SW/2m. We obtain

kSW =
√

2π

ξB
, κSW � |δE|

2h̄
, (12)

which agrees perfectly with the analysis of the Bogoliubov
modes from the preceding section if we take κSW as the upper
limit.

In a similar manner, we can approximate the pattern of the
quadrupole wave with a rotated polar state [30,31]

ζQM = eiφe−i(kQMz+φs)Fx

⎛
⎝ 0

1
0

⎞
⎠ (13)

with the energies

ekin
QM = h̄2k2

QM

2m
, eZ

QM = 1

2
δE, eint

QM = 0. (14)

The resulting growth rate and wave-vector length of the pattern
are

kQM =
√

2π

ξs
, κQM � c1n

2h̄
, (15)

and thus we again recover the result of the Bogoliubov analysis.
We note that the density pattern given by Eq. (13) has in
fact a period equal to π/kQM, because the rotation by π only
changes the sign of the spinor. However, at the early stages
of the instability, the density maxima have the same phase,
and 2π/kQM is the visible period. Small density maxima with
opposite phase develop only later, but the system never truly
gets to the state (13), due to the growth of other unstable modes.

IV. SPIN-2 CASE

In the case of a spin-2 condensate, the Bogoliubov analysis
becomes problematic due to the difficulty in determining exact
eigenstates in the case of a finite magnetic field. Encouraged by
the results of the previous section, we apply the approximate
calculations exploiting the energy conservation. Guided by the

experimental and numerical data, we take the initial state and
the generated spin patterns as

ζTP = eiφe−i π
2 Fy (1,0,0,0,0)T ,

ζSW = eiφe−i(kSWz+φs )Fx (1,0,0,0,0)T , (16)

ζQM = eiφe−i(
kQM

2 z+φs )Fx (0,
√

1/2,0,
√

1/2,0)T ,

where we have taken into account that here the rotation of the
ζQM state by π around the x axis renders the state unchanged,
while the rotation by π/2 gives −ζQM [34].

The resulting parameters of the most unstable modes are

kSW =
√

6π

ξB
, κSW � 3|δE|

2h̄
,

(17)

kQM =
√

2π

ξs
, κQM � c1n

2h̄
.

By the same arguments as in the spin-1 case, 2π/kQM is the
period of the density pattern formed at early time.

In Fig. 4 we compare the above results with numerical
simulations of a spin-2 Rb condensate. We simulated the
evolution of a condensate in a periodic box in one dimension.
To model the above quantum system numerically in an
efficient way, we applied the truncated Wigner approximation
[11,23,35] to describe the evolution. The initial state was
perturbed by spectrally limited noise to account for quantum
fluctuations and density profile imperfections [20,29]. We
achieve a very good agreement between analytical, numerical,
and experimental [36] results for both the wave-vector length
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FIG. 4. (Color online) As in Fig. 3 but for a spin-2 condensate.
Here we present both theoretical and experimental results on a
bilogarithmic scale. The black dots depict the results of numerical
simulations within the truncated Wigner approximation, and the
crosses correspond to the experimental data. The lines are given
by Eqs. (17). In addition, the dotted line represents a numerical
Bogoliubov analysis [4].
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and the growth rate over several orders of magnitude of the
Zeeman to interaction energy ratio (B/B0)2. The agreement
between the density profiles of the spin components is also
very good (see examples in Fig. 2). We clearly observe the
crossover from the SW dependence in weak magnetic field to
the QM dependence in the Zeeman-dominated regime.

Finally, we comment on the possible sources of discrepancy
between the analytical and experimental results. The numerical
simulations (black dots in Fig. 4) agree very well with
the experiment (crosses), as we checked using both a one-
dimensional numerical code, including the harmonic trapping,
and a code with no longitudinal trapping and periodic boundary
conditions. On the other hand, the analytical curves deviate
from the numerical and experimental, especially in the strong
magnetic field limit (by about 10% for the pattern wavelength
and about 20% for the growth rate). We argue that this
discrepancy can be attributed to the imperfect overlap between
the initial TP state and the stationary state, which are not the
same in the spin-2 case. The overlap between the two is about
90%, and since the remaining part can be interpreted as an
addition of k = 0 Bogoliubov modes of the stationary state,
which are stable [4], we can expect that kmax and κmax will
be smaller than predicted using the assumption that the whole
condensate is unstable. To support this conclusion, we have
checked that in the spin-1 case, when the overlap between the
TP state and the stationary state is perfect, the discrepancy
between the analytical and numerical results is much smaller.
Additionally, we note that another source of discrepancy could
be the imperfect overlap between the true pattern and the
rotating wave guess [Eq. (16)]. We checked that the overlap

between the QM state (16) and the numerically obtained
patterns is on average only about 75%, even when making
an optimal choice of φs at each point in space. Taking this
into account, we conclude that the method gives surprisingly
accurate results in spite of the simplifications involved. We
note that this method is rather general and could be used to
describe phenomena other than the periodic pattern formation
considered here.

V. CONCLUSIONS AND OUTLOOK

Linking the observed pattern formation to excitations of
fundamental spinor order parameters and following the simple
scheme we developed in this article leads to an intuitive analyt-
ical understanding of the physics involved in antiferromagnetic
pattern formation in spinor condensates. The generality of the
presented scheme opens a new avenue of understanding pattern
formation in the currently emerging higher spin systems
[37–42], for which a more rigorous Bogoliubov treatment is
impractical. This offers new perspectives for investigations
of nonequilibrium phenomena and the transition between
quantum and classical spin systems.
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A. Griesmaier, S. Giovanazzi, and T. Pfau, Nature (London)
448, 672 (2007).

[40] S. Müller, J. Billy, E. A. L. Henn, H. Kadau, A. Griesmaier,
M. Jona-Lasinio, L. Santos, and T. Pfau, Phys. Rev. A 84, 053601
(2011).

[41] B. Pasquiou, E. Maréchal, G. Bismut, P. Pedri, L. Vernac,
O. Gorceix, and B. Laburthe-Tolra, Phys. Rev. Lett. 106, 255303
(2011).

[42] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm,
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