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Bright sink-type localized states in exciton-polariton condensates
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The family of one-dimensional localized solutions to dissipative nonlinear equations includes a variety of
objects such as sources, sinks, shocks (kinks), and pulses. These states are in general accompanied by nontrivial
density currents, which are not necessarily related to the movement of the object itself. We investigate the
existence and physical properties of sink-type solutions in nonresonantly pumped exciton-polariton condensates
modeled by an open-dissipative Gross-Pitaevskii equation. While sinks possess density profiles similar to bright
solitons, they are qualitatively different objects as they exist in the case of repulsive interactions and represent a
heteroclinic solution. We show that sinks can be created in realistic systems with appropriately designed pumping
profiles. We also consider the possibility of creating sinks in a two-dimensional configuration with a ring-shaped
pumping profile.

DOI: 10.1103/PhysRevB.91.245310 PACS number(s): 71.36.+c, 03.75.Lm, 42.65.Tg, 78.67.−n

I. INTRODUCTION

Strong coupling of semiconductor excitons to microcavity
photons results in the appearance of spectral resonances
associated with mixed quantum quasiparticles called exciton
polaritons [1]. These particles exhibit extremely light effective
masses, few orders of magnitude smaller than the mass
of electron, which allows for the observation of physical
phenomena related to Bose-Einstein condensation already
at room temperatures [2–9]. At the same time, polaritons
exhibit strong exciton-mediated interparticle interactions and
picosecond lifetime due to their photonic component. They are
actively studied both from the point of view of fundamental
interest [6–8] and potential applications [10,11].

In recent years, great attention has been devoted to the study
of nonlinear self-localized states of superfluid polaritons, such
as dark and bright solitons [12–17]. Solitons are nonlinear
wave packets which preserve their shape thanks to the balance
between dispersion and nonlinearity [18]. They have been
applied to long-distance optical-fiber communication [19] as
well as to the description of numerous physical systems.
Polariton solitons have been demonstrated both in the cases of
resonant [12,13] and nonresonant pumping [14–17]. To date,
no bright states were shown to exist in the nonresonant case
with homogeneous pumping.

Polariton superfluids are inherently nonequilibrium sys-
tems in which the balance between pumping and loss is an
essential factor [2,9,20]. In many of the previous studies,
this aspect was treated as an unwanted complication of the
theory. Standard models, such as the conservative Gross-
Pitaevskii equation, were frequently used to describe solitons.
However, it is well known that self-localized solutions in
dissipative systems have qualitatively different properties
than their conservative counterparts. In the case of repulsive
interactions, only one type of one-dimensional solution exists
in the conservative theory—dark or bright solitons, depending
on the sign of the effective mass. In the dissipative case,
a family of qualitatively different localized states exists,
including sources, sinks, shocks, and pulses [21–25]. In
general, they exhibit nontrivial internal density currents and
may undergo complicated, sometimes even chaotic, dynamics
[15,26].

In this paper, we demonstrate the existence and stability of
bright self-localized solutions of the open-dissipative polariton
model. These solutions are classified as sinks (antidark
solitons) [22,25], the name reflecting that their structure
corresponds to terminating lines of incoming density currents,
with a local increase of loss. While sink-type solutions possess
density profiles similar to bright solitons, they are qualitatively
different objects. In contrast to bright solitons, they exist in
the case of repulsive interactions and represent a heteroclinic
solution connecting two counterpropagating plane waves. We
demonstrate the dynamics of sink formation and their stability
in a realistic model with appropriately chosen pumping profile.
We investigate systematically the properties of sinks and
provide an approximate analytical formula for their shape.
In the two-dimensional case, we show that sink creation is
hindered by the spontaneous proliferation of vortices, which
destroy the supercurrents necessary for the existence of a
symmetric sink solution.

II. MODEL

We consider a polariton condensate in the one-dimensional
(1D) setting, e.g., trapped in a microwire [27]. We model the
system with the generalized open-dissipative Gross-Pitaevskii
equation for the condensate wave function ψ(x,t) coupled
to the rate equation for the polariton reservoir density,
nR(x,t) [15,20,28],

i�
∂ψ

∂t
= −�

2D

2m∗
∂2ψ

∂x2
+ g1D

C |ψ |2ψ + g1D
R nRψ

+ i
�

2
(R1DnR − γC)ψ,

∂nR

∂t
= P (x) − (γR + R1D|ψ |2)nR, (1)

where P (x) is the exciton creation rate determined by the
pumping profile, m∗ is the effective mass of lower polaritons,
γC and γR are the polariton and exciton loss rates, and
(R1D,g1D

i ) = (R2D,g2D
i )/

√
2πd2 are the rates of stimulated

scattering into the condensate and the interaction coefficients,
rescaled in the one-dimensional case. Here, we assumed a
Gaussian transverse profile of |ψ |2 and nR of width d. In the
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case of a one-dimensional microwire [27], the profile width d

is of the order of the microwire thickness. We also introduced
D = 1 − iA, with A being a small constant accounting for the
energy relaxation in the condensate [27–30].

To obtain a system of dimensionless evolution equa-
tions, it is possible to rescale time, space, wave-function
amplitude, and material coefficients according to t = τ t̃ ,
x = ξ x̃, ψ = (ξβ)−1/2ψ̃ , nR = (ξβ)−1ñR , R1D = (ξβ/τ )R̃,
(g1D

C ,g1D
R ) = (�ξβ/τ )(̃gC,̃gR), (γC,γR) = τ−1(γ̃C,γ̃R), and

P (x) = (1/ξβτ )P̃ (x), where ξ = √
�τ/2m∗, while τ and β

are arbitrary scaling parameters. We rewrite the above equation
in the dimensionless form (we omit the tildes for convenience),

i
∂ψ

∂t
=

[
− D

∂2

∂x2
+ gC |ψ |2 + gRnR + i

2
(RnR − γC)

]
ψ,

(2)
∂nR

∂t
= P (x) − (γR + R|ψ |2)nR.

In the above transformations the norms of both fields Nψ =∫ |ψ |2dx and NR = ∫
nRdx are multiplied by the factor of β.

III. SINK-TYPE SOLUTIONS

A. Description of sink solutions

The structure of sink solutions can be understood most
easily as a result of the interaction of two counterpropagating
nonlinear waves. In the linear case, two waves emitted by
distant sources give rise to a standard interference pattern, as
shown in Fig. 1(a). In the case of a dissipative model with
nonlinear gain or loss coefficients, the interference pattern
can be replaced by a localized density peak, sometimes
exhibiting oscillating features, as depicted in Fig. 1(b). Sink is
a heteroclinic solution connecting two plane waves emitted
by the sources at each side. The two waves collide at
the sink position, where the incoming density currents are
dissipated [22].

The sink density pattern is a result of the ability of the
dissipative medium to smooth out density “dips” and “peaks,”
which are present in the standard interference pattern. When

FIG. 1. (Color online) Density patterns created with counter-
propagating waves. (a) Interference pattern in the linear regime.
(b) Stationary sink-type localized pattern in a model with nonlinear
dissipation.

one of the incoming waves reaches the area occupied by the
other, the resulting interference leads to decay of waves. Let
us consider one of the simplest dissipative nonlinear wave
equations, the complex Ginzburg-Landau equation [22,23]
(CGLE),

∂ψ

∂t
=

[
iD

∂2

∂x2
+ iC|ψ |2 − iB

]
ψ. (3)

This equation can be obtained from the system of equations (2)
in the limit of fast relaxation time of the reservoir, which
is “slaved” by the slower ψ dynamics, and in the linearized
approximation |ψ |2 ≈ n0 ≡ ImB/ImC = (P − Pth)/γC (n0 is
the dynamical equilibrium density when the loss and gain
are balanced). Here, we assumed a homogeneous pumping
P (x) = const > Pth and introduced the threshold power Pth =
γRγC/R. The CGLE parameters are B = iγC/2 − (gR +
iR/2)(1 + Rn0/γA)P/γA and C = (gR + iR/2)PR/γ 2

A − gC

with γA = Rn0 + γR . It is clear that the existence and stability
of the homogeneous steady state with n0 > 0 (which, in
general, can also be a plane-wave solution) requires Im B > 0
and Im C > 0. Under these conditions, perturbations of the
steady state with density n0 exponentially decay, which is
the reason for the above-mentioned smoothing. Any areas
of density higher than n0 correspond to net loss, and those
with density lower than n0 correspond to net gain in Eq. (3).
Nevertheless, nontrivial (non-plane-wave) stationary solutions
can still exist [15,22,23].

One can formulate another necessary condition for stability
of sinks based on the modulational (or Benjamin-Feir) stability
of the incoming plane waves [22]. In the case of CGLE with
real D > 0, this is assured by the condition Re C < 0, which
in terms of Eq. (2) translates into P/Pth > (γCgR/γRgC),
as shown recently in [17]. We note that this is a necessary
condition for stability, and an actual domain of stability of
plane waves may be smaller [28].

It may seem natural to treat sinks as dissipative analogues
of bright solitons. These states are, however, qualitatively
different from each other. Bright solitons exist in the con-
servative limit of the CGLE (3) with Im (C,B,D) = 0,
which is the celebrated nonlinear Schrödinger equation [31]
(or Gross-Pitaevskii equation in the context of degenerate
bosons [32]). Sinks require nonzero incoming currents for their
existence [22] and exist in the case of a stable background,
Re (CD) < 0, while bright solitons exist only in the self-
focusing (modulationally unstable) case with CD > 0.

B. Sinks in the exciton-polariton model

To create sink solutions in the model described by (2),
one has to provide sources of counterpropagating waves as
described above. We consider the following pumping profile
created by a pumping beam with spatially varying intensity:

P (x) = Pmaxe
−(x/wb)α − (Pmax − P0)e−(x/ws )β , (4)

as shown in Fig. 2 (dashed lines), where we used the
smoothness parameters α = 100 and β = 80. The profile
exhibits jumps of P (x) at x = ±wb and x = ±ws , typical
of the super-Gaussian terms in (4).

The sink is created in the central area with pumping
intensity P = P0. The side areas with P = Pmax are the
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FIG. 2. (Color online) Patterns created by polariton waves emit-
ted by high-intensity sources on the two sides with pumping profiles
as in (4) (dashed lines). (a) A stationary interference pattern obtained
by integration of (2) in time for parameters A = 0.1, R = 0.96,
gC = 0.63, gR = 1.91, γC = 0.9, and γR = 0.6 at low pumping
powers. (b) With a stronger pumping P0, a nonlinear sink-type
solution is created. Corresponding parameters in physical units are
time unit τ = γ −1

C = 3 ps, length unit ξ = 1.9 μm, g = 3.9 μeVμm2,
R = 9 × 10−3 μm2 ps−1 for d = 2 μm, m∗ = 5 × 10−5me, and β =
0.003.

sources of polariton waves. This flow is obtained thanks
to the repulsive polariton-polariton and reservoir-polariton
interactions gC , gR > 0, which create an effective potential
hill in the areas with high pumping density, P = Pmax. As a
result of the interaction of the two nonlinear waves propagating
towards the center, depending on the parameters of the system,
interference or localized sink patterns can appear, as shown in
Figs. 2(a) and 2(b), respectively. Note that at the interface
between the high- and low-pumping areas at x = ±ws in
Fig. 2(b), oscillating time-dependent states form, which do
not, however, preclude the formation of sinks. We also obtained
different, more complicated nonlinear patterns for other values
of parameters, especially in the case when the two sources were
relatively close to each other. These patterns did not have a
localized character such as the one shown in Fig. 2(b). A small
value of relaxation coefficient A = 0.1 was in some cases
necessary to attenuate high-momentum modes in simulations
and obtain physically relevant solutions.

FIG. 3. (Color online) (a) Evolution towards a stationary sink
state from a small initial noise. Parameters are as in Fig. 2(b). (b)
The case of asymmetric pumping profile, with momentum mismatch
between the waves from the two sources. The sink moves towards the
weaker source, where it is stopped but not destroyed.

Figure 3(a) shows the dynamics of the sink-creation
process. Initially, we assumed zero density of excitons and
a small white noise in the polariton field, but we checked that
the final stationary state is practically independent of the form
of the initial condition. First, in the area between the sources,
a condensate is created with approximately zero momentum.
The wave fronts generated by the sources gradually move
towards the center, where they collide creating the stable sink
structure. The waves are “stopped” by the sink due to the
nonlinear character of the gain and dissipation.

It is important to note that the sinks are, in general, not
completely stationary, as in Fig. 3(a), but may be put in motion
by the imbalance of momenta of the waves emitted by the two
sources; see Fig. 3(b). In this case, the sink moves with a
constant velocity proportional to the mismatch between the
two wave vectors [22]. This behavior is qualitatively different
from that of CGLE solitons pinned by localized gain [33].
If the balance is restored after some period of time, the sink
stops at the new position. The sink may also be stopped after
reaching the weaker source, as demonstrated in Fig. 3(b).

IV. DOMAIN OF EXISTENCE AND PROPERTIES OF SINKS

In this section, we describe a systematic investigation
of stationary sink solutions of the exciton-polariton model
with homogeneous pumping, P (x) = const. We substitute
ψ(x,t) = φ(x)e−iμt and nR(x,t) = nR(x) into Eqs. (2) to
obtain a single ordinary differential equation for the profile
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FIG. 4. Phase diagram depicting parameters for which a sink
solution was obtained with (5) (gray area). Parameters are R =
0.76,gC = 0.38,gR = 0.76,γC = 0.75,γR = 1.

of the stationary state,

d2φ

dx2
= −μφ + gC |φ|2φ + gR

P

γR + R|φ|2 φ

+ i

2

RP

γR + R|φ|2 φ − i

2
γCφ. (5)

We complement the above equation with boundary condi-
tions. At x = 0, which we chose to be the symmetry point
without loss of generality, the first derivative is equal to zero,
dφ/dx = 0. At x = +∞, the solution tends to the plane wave
with the norm equal to |φ|2 = n0 = (P − Pth)/γC (in practice,
we impose this condition on the last point of the computational
mesh).

We solve the boundary problem with the shooting method
using the Newton minimization algorithm. We keep dφ

dx
|x=0 =

0 and change the value of φ(0) while solving (5) with the
Runge-Kutta algorithm on a certain interval, 0 < x < xmax.
The Newton method is then used to find a solution that
satisfies boundary condition |φ|2 = n0 at x = xmax within a
given tolerance. We then extend the interval boundary xmax

slightly and repeat our procedure. This method proved to be
an effective way to obtain a localized state on a large-x domain.

Figure 4 presents a phase diagram showing the domain
of existence of sink-type solutions in the parameter space of
P and μ with values of other parameters fixed. The shaded
area, corresponding to parameters for which the algorithm
converged to a sink solution, is limited from below by the
natural minimum given by the chemical potential of the steady
state,

μmin = gCn2
0 + PgR

(γR + Rn2
0)

. (6)

The range of μ for which the sink solution exists turned out to
be the largest for moderate pumping intensities, P ≈ 1.5Pth.
Although the range of μ appears to be small, it corresponds
in fact to a broad range of wave numbers of incoming
waves, from approximately zero to around six, as shown in
Fig. 5(a) with a dash-dotted line. In this figure, the vertical
line corresponds to the minimal value of μ, given by Eq. (6).
The dependence between the chemical potential and the wave
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FIG. 5. The values of |ψmin(x)|2, |ψmax(x)|2, x1 and the wave
vector k (see Fig. 1 for descriptions). (a) We keep a constant value
of P = 1.45 but vary the chemical potential μ. The value of xmin

quickly decreases, indicating that at higher μ, the sink is more densely
undulating. The dependence of |ψmin(x)|2 and |ψmax(x)|2 shows that
the sink “height” is increased at higher μ. (b) We change the value
of P while μ is chosen slightly higher than the lower threshold
μmin for which a sink solution occurs. The dependence of |ψmin(x)|2,
|ψmax(x)|2 on P indicates that sink height is approximately constant
while the background density n0 grows with P .

number of incoming waves can be calculated by taking the
x → ±∞ limit away from the sink, for which Eq. (5) reduces
to μ = k2 + gCn2

0 + PgR/(γR + Rn2
0) under the condition of

balanced gain and loss. It is then clear that the necessary
condition for the existence of sinks is that the kinetic energy
is much smaller than the nonlinear energy of the wave.

The dashed and dotted lines in Fig. 5(a) depict the minimum
and maximum density of the sink profile; see Fig. 1. With
increasing μ, which corresponds to increasing k vectors of
incoming waves, the sinks become larger and more highly
modulated, while in the μ = μmin limit, they transform
smoothly to the flat homogeneous state φ(x,t) = n0e

−iμmint .
The position of the first minimum of the density xmin (solid
line) decreases with the increase of μ, which is related to the
increasingly dense interference pattern of the tails of the sink.
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Figure 5(b) shows the dependence of the same properties
of the sink as described above, but with increasing pumping
power P . Here, μ is kept at a slightly increased level with
respect to μmin. This corresponds to a constant small value of
k. In this case, the increase of P leads to the increase of average
sink density, but without almost any change of the difference
|φmax|2 − |φmin|2. On the other hand, the value of xmin shows
a strongly nonmonotonous character, decreasing for small P

and increasing again for large P . This shows that in the case
of small k, the position of first minimum is not simply related
to the incoming wave vector k.

V. ANALYTICAL SOLUTION

If the “height” of the sink is relatively small compared to the
steady-state density, ||ψ(x,t)| − n0| � n0, and the amplitude
|ψ(x,t)| is slowly varying in space, an approximate analytical
solution can be found [34]. We rewrite the steady-state
solution in a homogeneously pumped condensate applying
the Madelung transformation for ψ(x,t),

ψ(x,t) = a(x)ei(ϕ(x)−μt), nR(x,t) = nR(x), (7)

where a(x) is the amplitude, ϕ(x) is the phase, and μ is the
chemical potential of the condensate. Neglecting the spatial
derivatives of a(x), Eq. (2) can be rewritten as

iμ = i

{
ga2(x) + gRnR(x) +

[
d

dx
ϕ(x)

]2}

−
{

1

2
[RnR(x) − γC] − d2

dx2
ϕ(x)

}
. (8)

The real part of Eq. (8), which can be interpreted as the
continuity equation, gives

nR(x) = 2

R

[
d2

dx2
ϕ(x)

]
+ γC

R
. (9)

On the other hand, solving the equation for reservoir density (2)
in the steady state, we get

nR(x) = P

a2(x)R + γR

. (10)

We expand this formula into Taylor series of degree two around
a2(x) = n0 = (P/γC) − (γR/R),

nR(x) = −γC[a2(x)RγC − 2PR + γCγR]

PR2
. (11)

Comparing Eqs. (9) and (11), we obtain

a2(x) = −2PR
[

d2

dx2 ϕ(x)
] − PRγC + γCγR

Rγ 2
C

. (12)

From the imaginary part of Eq. (8), using (9) and (12) we get

μ = − g

Rγ 2
C

{
2PR

[
d2

dx2
ϕ(x)

]
− PRγC + γ 2

CγR

}

+ gR

{
2

R

[
d2

dx2
ϕ(x)

]
+ γC

R

}
+

[
d

dx
ϕ(x)

]2

. (13)
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FIG. 6. Comparison of the numerical sink solution from the
shooting method with the approximate analytical solution for two
sets of parameters. Parameters are (a) R = 0.76, g = 0.38, gR = 2g,
γC = 0.75, γR = 1, P = 2.0, μ = 1.2683 and (b) P = 1.85, μ =
1.2173.

With the definition ξ (x) = d
dx

ϕ(x), we obtain the first-order
differential equation

2

(
gR

R
− gP

γ 2
C

)
d

dx
ξ (x) + ξ 2(x)

+
[
g

(
P

γC

− γR

R

)
+ gRγC

R
− μ

]
= 0, (14)

with the solution

ξ (x) =
√

δ

RγC

tan

(
1

2

√
δ

α

)
, (15)

where δ = R(PRgγC − RμγC − gγ 2
CγR + gRγ 3

C) and α =
gPR − gRγ 2

C . Calculating the amplitude with (12), we finally
obtain

a2(x) = − 1

Rγ 2
C

{
δP

α

[
1 + tan2

(
1

2

γC

√
δ

α
x

)]

−PRγC + γ 2
CγR

}
. (16)

A comparison between the analytical and numerical solu-
tion obtained with the shooting method is shown in Fig. 6. In
general, very good agreement is obtained for small k, when
the sink profile is flat and broad, with no oscillating tails.
The tails obviously cannot be reproduced by the approximate
solution (16), which is visible in Fig. 6(b).

VI. TWO-DIMENSIONAL CASE

Additionally, we performed a series of simulations
to investigate whether sink creation is possible in the
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two-dimensional (2D) version of the exciton-polariton model,
described by the equations

i
∂ψ

∂t
=

[
− D

(
∂2

∂x2
+ ∂2

∂y2

)
+ gC |ψ |2 + gRnR

+ i

2
(RnR − γC)

]
ψ, (17)

∂nR

∂t
= P (x,y) − (γR + R|ψ |2)nR, (18)

where gR,C , γR,C , R, and P (x,y) are dimensionless parameters
obtained from physical ones in an analogous way as in the 1D
case.

One of the possible choices of the pumping profile corre-
sponds to a constant P = P0 pumping intensity on a circle
of radius r1, surrounded by a ring of P = Pmax with inner
and outer radius r1 and r2, respectively. In Fig. 7, we show a
typical state obtained with this kind of pumping profile and an
evolution from a small initial noise. In general, after a certain
time of evolution, a smaller or larger number of vortices is
spontaneously created, and often a stationary state could never
be reached even with a very long integration time. Vortices
may appear spontaneously during condensation in a process
analogous to the Kibble-Zurek mechanism [35–37], as well as
due to the emergence of supercurrents in an inhomogeneous
system [7,38]. Despite the use of various combinations of sys-
tem parameters, as well as asymmetric ring pumping profiles,
we were not able to obtain any stable structures that would
resemble one-dimensional sinks of the previous sections.

We note that similar pumping profiles were used in several
experiments [39,40] where multilobe or vortex patterns were
observed. However, the experimental patterns were in most
cases regular, which suggests that they correspond to the
linear regime as in Fig. 2(a). In the case of strong nonlinear
interactions, regular vortex chain patterns could be observed
with the resonant pumping scheme [39]. Depending on the
system parameters, these could be destroyed by spontaneously
nucleating vortices created through a hydrodynamic
instability, which is consistent with our simulations.

VII. CONCLUSIONS

We demonstrated the existence and stability of a family of
bright sink solutions of the open-dissipative polariton model.
In contrast to bright solitons of conservative models, sinks
exist in the case of repulsive interactions and are created
in a collision of counterpropagating waves. We studied the
dynamics of sink formation in a realistic one-dimensional

FIG. 7. (Color online) Snapshot of a two-dimensional solution
of (18) after a long time of evolution, t = 1600, generated by a
pumping profile in the shape of a ring. Quantum vortices are clearly
visible in the density (top) and phase (bottom) of ψ(x,y,t). Sink
solutions in 2D are absent due to proliferation of vortices. Parameters
are A = 0.1, R = 0.96, gC = 0.63, gR = 1.91, γC = 1, γR = 0.6
with P0 = 6, Pmax = 10, r1 = 155, r2 = 220.

polariton model with appropriately chosen pumping profile.
We studied the domain of existence of sinks in parameter
space and their physical properties. An approximate analytical
formula for the sink shape, valid in the case where sinks
do not possess oscillating tails, was determined. In the two-
dimensional ring-shaped configuration, sink solutions were
not found due to the spontaneous appearance of vortices.

Note added. We note that recently bright soliton-like struc-
tures were observed in two-dimensional resonantly pumped
polariton condensates [41], whose existence, however, could
not be explained using the model (1).
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