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Methods for modeling large driven-dissipative quantum systems are becoming increasingly urgent due
to recent experimental progress in a number of photonic platforms. We demonstrate the positive-P method
to be ideal for this purpose across a wide range of parameters, focusing on the archetypal driven-dissipative
Bose-Hubbard model. Notably, these parameters include intermediate regimes where interactions and
dissipation are comparable, and especially cases with low occupations for which common semiclassi-
cal approximations can break down. The presence of dissipation can alleviate instabilities in the method
that are known to occur for closed systems, allowing the simulation of dynamics up to and including the
steady state. Throughout the parameter space of the model, we determine the magnitude of dissipation that
is sufficient to make the method useful and stable, finding its region of applicability to be complementary
to that of the truncated Wigner method. We then demonstrate its use in a number of examples with non-
trivial quantum correlations, including a demonstration of solving the urgent open problem of large and
highly nonuniform systems with tens of thousands of sites.
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I. INTRODUCTION

Owing to the rise in experimental progress with numer-
ous photonic platforms, the dynamics and steady-state
behavior of driven-dissipative quantum systems [1] have
received a great amount of both theoretical and exper-
imental interest in recent times. A variety of physical
realizations, including cavity [2–4] and circuit QED sys-
tems [5–9], arrays of coupled optical cavities [10,11] or of
quantum dots [12], hybrid systems [13], polariton lattices
[14–30], and certain implementations of ultracold atoms
[31], can to varying degrees explore regimes in which
both strong quantum correlations and dissipation to the
environment are relevant effects.

Unbiased quantum methods, including corner-space
renormalization [32] and quantum trajectories [33,34], can
successfully treat small systems, but suffer from the usual
runaway complexity problems once larger numbers of
modes or sites are present. This issue is exacerbated even
further for open systems since density matrices are needed,
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where the number of variables scales as (eM )2 with the
configuration size M rather than “only” eM for pure states.
Matrix product states and related techniques [35,36] offer
one way around this for closed systems, but their extension
to include drive and dissipation is difficult [37].

In contrast, techniques known as phase-space methods,
in which quantum expectation values are calculated from
averages over stochastic trajectories in phase space, are
readily scalable to quantum problems with large num-
bers of sites or modes, and are naturally adapted to open
systems due to already being based on a density matrix
formalism. Their performance does not depend much on
dimensionality. Indeed, the use of the approximate trun-
cated Wigner method has become common for studying
semiclassical phenomena in ultra-cold atoms and micro-
cavity polaritons [38–52]. However, as lattice experiments
increasingly aim to delve further into the quantum regime
in these media, other techniques are needed to study quan-
tum effects beyond the reach of the truncated Wigner
approximation. The Gaussian quantum trajectories method
is a recent example [53,54].

An alternative phase-space method, the positive-P
approach [55], allows for the full quantum mechanics of
systems with up to two-body interactions to be simulated
in an unbiased way without approximations. It has already
found significant application in quantum optics [56], and
in ultracold atoms [57], where it has been successfully
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applied to cases with hundreds or even millions of sites
[58,59]. For closed systems, the trade-off has always been
that, while results for short evolution times are acces-
sible, a nonlinear amplification of the trajectory spread
eventually appears at sufficiently long times to obscure
predictions below a rising noise floor [60,61]. However,
it is already known that dissipation is beneficial to the sta-
bility of the method, and simulations can stabilize fully if
it is sufficiently large [62,63].

It is with this in mind, and with the increasing rel-
evance of the physics of open quantum systems to a
number of experimental platforms, that we propose the
positive-P approach as an ideal method for simulating
such systems in intermediate regimes, relevant to cur-
rent experiments, where driving, dissipation, and quan-
tum correlations are all relevant effects. To demonstrate
this, we focus on the archetypal driven-dissipative Bose-
Hubbard model, which is directly applicable to a number
of the different experimental realizations [1,64]. We firstly
endeavor to thoroughly characterize the regimes of appli-
cability of the positive-P method in the parameter space
of the driven-dissipative Bose-Hubbard model, before also

demonstrating a number of specific examples of nontriv-
ial effects accessible to the method, some of which may be
difficult to solve accurately by other means due to the very
large or highly nonuniform systems considered. The suc-
cess of the positive-P method demonstrated here for the
driven-dissipative Bose-Hubbard model also implies that
the stabilizing effect of dissipation on the method should
likely allow it to be useful for simulating a number of
related models of open quantum systems in future. We
also demonstrate that the regions of applicability of the
positive-P and truncated Wigner methods happen to be
complementary to each other, with the truncated Wigner
approximation being fairly accurate for large occupations
(i.e., strong drive) and the positive-P method being stable
for strong dissipation. Between them they provide a viable
phase-space method for almost all regimes where external
drive and/or dissipation are significant effects.

The paper is organized as follows. In Sec. II we describe
the driven-dissipative Bose-Hubbard model, and then in
Sec. III present its mapping to the positive-P representation
(5). In Sec. IV we study the single-site case and determine
the level of damping (Sec. IV A) needed for successful
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FIG. 1. Illustration of the application of the positive-P method to driven-dissipative Bose-Hubbard models. (a) Sketch of the local
processes involved in the model: external drive F , dissipation γ , and two-body interactions U. Only two-body processes, such as
the interactions U, generate the noise terms in the positive-P equations. (b) Hopping J couples connected sites in a lattice. (c) In
closed systems, noise amplification causes trajectories to escape to infinity in finite time. (d) Sufficient dissipation can stabilize the
trajectories, allowing the simulations to reach the steady state. (e) Rough sketch of the regions of applicability of the positive-P and
truncated Wigner methods in parameter space. The positive-P method works especially well for low occupations and/or strong dissi-
pation, while the truncated Wigner approximation is accurate for large occupations (see Fig. 6). (f) In the positive-P method, normally
ordered quantum observables are calculated by averaging the corresponding stochastic phase-space variables over realizations. This
correspondence is exact in the limit of large numbers of realizations.
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simulation, while benchmarking against known exact solu-
tions. We then investigate use cases in multimode models
(Sec. V), including Lieb lattices with dark sites and large
nonuniformly driven two-dimensional (2D) square lattices,
demonstrating scalability to huge systems (Fig. 11). An
extension to nonzero temperature is given in Sec. VI before
concluding in Sec. VII. An illustration indicating the key
messages of this paper is presented in Fig. 1.

II. MODEL

The Bose-Hubbard model is the standard go-to descrip-
tion for bosonic driven-dissipative lattice systems. In
dimensionless units the Hamiltonian can be written in the
tight-binding form

̂H =
∑

j

̂Hj −
∑

connections i,j

[Jij â†
j âi + J ∗

ij â†
i âj ]. (1)

Here, the local part of the Hamiltonian at site j is

̂Hj = −�j â†
j âj + Uj

2
â†

j â†
j âj âj + Fj â†

j + F∗
j âj , (2)

where âj is the bosonic annihilation operator at site j ,
Uj ≥ 0 is the local two-body interaction, Fj is the strength
of coherent driving (can be complex), and −�j is the
local energy bias. For example, for polaritons in micropil-
lars [18,19,21–27] with pumping frequency ωp and natural
mode frequency ωj , �j = ωp − ωj plays the role of an
effective chemical potential [34]. Returning to Eq. (1),
Jij = J ∗

ji is the tunneling amplitude for a transfer i → j
between connected sites. For definiteness, in this notation,
each connection occurs only once in the sum, so that, e.g.,
a system consisting of just two connected sites has the
tunneling terms −J12â†

2â1 − J ∗
12â†

1â2. Complicated connec-
tions and lattices can also be trivially incorporated into the
model via the general form in Eq. (1). While in this work
we consider examples with nearest-neighbor connections
in one or two dimensions, there is no reason in princi-
ple that these methods should be any less effective for
higher dimensions, all-to-all connections, or longer-range
tunneling that could be represented by arbitrary Jij .

The local single-particle dissipation rate is γj . The sys-
tem is then described via the density matrix ρ̂ and evolves
according to the master equation

∂ρ̂

∂t
= −i[̂H , ρ̂] +

∑

j

γj

2
[2̂aj ρ̂ â†

j − â†
j âj ρ̂ − ρ̂ â†

j âj ].

(3)

This assumes dissipation into empty modes. The case of
nonempty reservoir modes is described in Sec. VI.

For a single mode (site) with parameters F , �, U, γ , the
observables of most interest are the mode occupation N =

〈̂a†̂a〉, mean amplitude 〈̂a〉, and normalized two-body cor-
relation g2 = 〈̂a†̂a†̂âa〉/〈̂a†̂a〉2. Bunching is indicated by
g2 > 1 and antibunching by g2 < 1. Strongly antibunched
modes can in principle be good quantum sources of single
photons. The steady-state solution of the single mode has
been calculated analytically by Drummond and Walls [65].
Several regimes can be identified based on which process
is dominant on the observables N and g2.

(i) A strongly driven regime when |F| � U and |F| �
γ with coherent high occupation in the stationary
state N ≈ (|F|/U)2/3, g2 ∼ 1.

(ii) An interaction-dominated regime when U � |F|
and U � γ with low occupation N � 1 and strong
antibunching g2 
 1.

(iii) A strongly damped regime when γ � U and γ �
|F|. Here N ≈ (2|F|/γ )2 and g2 ∼ 1.

(iv) Detuning can eventually dominate if it is strong
enough and typically leads to lower occupations,
according to N ≈ (|F|/|�|)2 (though at small γ ,
much more complicated behavior appears [34]).

Coupling different sites will inevitably mix the dif-
ferent regimes, leading to novel quantum phenomena
[34,62,66–69], including more exotic physics with hys-
teresis and large collective fluctuations [34,69,70]. Need-
less to say, no exact solution of the steady state of the
many-site problem is currently available, even in one
dimension. Models with space-dependent parameters are
certainly possible and often demonstrated experimentally
(e.g., micropillars allow for the fabrication of systems with
parameters that are very flexible from site to site [71]),
but have been much less studied and simulated. Time
dependence is also possible—most readily for F(t).

III. POSITIVE-P REPRESENTATION

The application of the positive-P representation [55] to
model (1)–(3) generally follows the standard procedure
applied to the related ultracold Bose gas systems without
drive and dissipation [61,72]. One expresses the density
matrix of an M mode or site system as

ρ̂ =
∫

d2Mαd2M α̃P(α, α̃∗)̂�(α, α̃∗),

̂� =
⊗

j

̂�j (αj , α̃∗
j ), ̂�j = |αj 〉j 〈̃αj |j

〈̃αj |αj 〉 ,
(4)

in terms of local coherent state kernels ̂�j at each site j ,
with Tr[̂�j ] = 1. The |αj 〉j and |̃αj 〉j are local coherent
states |αj 〉j = exp[αj â†

j ]|vac〉. The bold notation α indi-
cates a vector of all αj values. As a result of the properties
of ̂�, the distribution P can be made positive real for any
density matrix, and hence it is a true probability distribu-
tion of the configurations �v = {α, α̃∗} [55]. For this to be
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possible, however, the α̃j “bra” duals to the “ket” ampli-
tudes αj must be independent, leading to an off-diagonal
kernel operator ̂�j . There is a full equivalence between the
density matrix ρ̂ and the distribution P(�v). Moreover, a set
of S samples of the configuration �v, distributed accord-
ing to P, is also equivalent to the full density matrix in the
limit S → ∞. Therefore, a set of such samples can in prin-
ciple be used to approximate full quantum mechanics with
increasing and unbiased precision as S grows.

We can then use the properties of the projector ̂� to con-
vert the master equation (3) into a Fokker-Planck equation
(FPE) for the evolution of the distribution P (see Appendix
A for details), which in turn leads to stochastic differential
equations for trajectories of the phase-space variables �v.
The resulting (Itô) stochastic equations for the samples of
�v are

∂αj

∂t
= i�j αj − iUj α

2
j α̃

∗
j − iFj − γj

2
αj

+√−iUj αj ξj (t) +
∑

k

iJkj αk, (5a)

∂α̃j

∂t
= i�j α̃j − iUj α̃

2
j α

∗
j − iFj − γj

2
α̃j

+√−iUj α̃j ˜ξj (t) +
∑

k

iJkj α̃k, (5b)

where the final sum is over all sites k connected to j .
The real random variables ξj (t) and ˜ξj (t) are indepen-
dent white noises of mean zero obeying 〈ξj (t)ξk(t′)〉s =
δ(t − t′)δjk, 〈˜ξj (t)˜ξk(t′)〉s = δ(t − t′)δjk, and 〈ξj (t)˜ξk(t′)〉s =
0, where the notation 〈·〉s denotes stochastic averaging over
the available samples in the limit S → ∞. Moreover, ξj dt
and ξ̃j dt are standard Wiener increments, which are imple-
mented by Gaussian random variables of variance 1/�t at
each time step of length �t.

Equations (5) are those to be solved numerically and
our subsequent analysis in this paper is based upon them.
They contain the full quantum mechanics of the system,
provided that the noise amplification catastrophe alluded
to above does not occur (the useful simulation time tsim
beforehand is estimated in Appendix B).

IV. SINGLE-MODE PERFORMANCE

Let us start with the baseline single-mode case, because
it is very revealing regarding the capabilities of the method,
and allows us to easily compare to the exact solution, as
was given by Drummond and Walls [64]. It also turns
out to be an excellent guide for assessing which many-
site systems can be simulated, and lets us understand more
involved multimode systems that will follow. We omit
the site indices j in this section. The observables of most
interest have the following stochastic estimators in the

positive-P calculations:

N = 〈̂a†̂a〉 = Re〈(αα̃∗)〉s, 〈̂a〉 = 〈α〉s = 〈̃α〉s, (6)

g2 = 〈̂a†̂a†̂âa〉
〈̂a†̂a〉2 = Re〈(αα̃∗)2〉s

N 2 . (7)

For all results we present in this work, we begin simula-
tions in vacuum (α = α̃ = 0) and evolve until the steady
state is reached (or until excessive noise amplification
makes further simulation pointless). Appendix B gives a
perspective on other initial states.

A. Regimes of usefulness

A basic starting question is whether the stationary state
can be reached. For many-site systems, a rough mini-
mum requirement is that single-site simulations can do
so—under all the local conditions found in the large sys-
tem. Hence, the fundamental importance of determining
the conditions under which a single-site system can reach

Strongly driven regime

Interaction

dominated

Strongly

damped

regime

FIG. 2. Regimes of usefulness of positive-P numerical calcu-
lations. Symbols show the performance on the 1-mode model
when � = 0. A green square indicates that the numerical inte-
gration reaches the stationary state and remains stable; a yellow
square indicates that the numerical integration remains stable,
but a poor signal-to-noise ratio makes accurate determinations
intractable (especially for g2); a blue square indicates that the
numerical integration reaches the stationary state but does not
remain stable later; an open circle indicates that the numeri-
cal integration becomes unstable before reaching the stationary
state. The thick gray lines indicate crossovers between physical
regimes listed in Sec. II; the red dashed line shows the empirical
estimate of the usability region (8).
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the stationary state. We have carried out positive-P cal-
culations across the whole spectrum of parameters for
the single-site system, and assessed them according to
whether a stationary state with useful signal-to-noise ratio
is reached. That is, whether for practical numbers of real-
izations, the values of the observables we consider in the
steady state are not masked due to the self-amplification
of the noise. We chose U as an arbitrary energy scale. In
Fig. 2 we present the results of this benchmarking, over
many orders of magnitude of the parameters F , U, and
γ , when � = 0. This is one of the main results of the
paper.

The stable region in which numerical integrations reach
the steady state and remain well behaved is shown in
green, and is attained for all parameters F , U, � when the
damping γ becomes sufficiently large. Examples of such
calculations are shown in Figs. 3(a)–3(c). Dynamics that
do not reach the steady state before the noise instability
occurs, such as Fig. 3(d), are shown as a small open circle.
The blue squares are on the edge of stability, such that a
stationary state is reached, but noise instability similar to
that shown in Fig. 3(d) sets in some time after. The yel-
low square cases are stable, but mode occupation is too
low compared to the vacuum noise, and useful information
cannot be extracted. We find that, for nonzero �, the

regime of stability is qualitatively almost identical to that
in Fig. 2, particularly on a log-log scale (see Appendix C
for details). Dependence on � is investigated further in
Sec. IV C.

An empirical rule that largely captures the regime of
usability, based on the data shown in Fig. 2, is

γ � 3U
(

F
U

)0.30

. (8)

The uncertainty is about ±0.01 on the exponent, and 10%
on the prefactor. For very low driving, a more appropriate
rule is

γ � U when F � 0.01U. (9)

In the usable regime, numerical effort scales linearly with
the number of sites, and quadratically with the precision
(according to the central limit theorem, since all samples
have independent noise input). Much lower damping may
become accessible through the use of stochastic gauges,
particularly in the high occupation regime where they were
shown to be effective for this Hamiltonian [73].
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FIG. 3. Examples of numerical integration with positive P. Plots of g2 (red, top row), N (blue, middle row), and the phase of 〈â〉
(green) and homodyne signal |〈â〉|2 normalized by N (yellow) (bottom row) for different regimes in the one-site system. The parameters
are (a) F = 1000U, γ = 31.6U, � = 0 in the strongly driven regime; (b) F = U and γ = 3.16U in a crossover regime; (c) F = 0.1 U,
γ = 2U, � = 0 in the weakly pumped regime with strong antibunching; and (d) F = 0.1U, γ = U, � = 0 in the interaction-dominated
regime with insufficient damping to reach the steady state before the noise instability occurs. This is an example of positive P failing.
A solid colored line represents the positive-P simulation, 106 samples. A dashed black line represents the exact value [64].
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B. Typical behavior

Here, we now look in more detail at specific examples
presented in Fig. 3. The case in Fig. 3(a) with F = 1000U,
γ = 31.6U, and � = 0 is representative of the strongly
driven regime, with a few oscillations before settling down
to a steady state with high occupation and almost perfect
coherence (g2 ≈ 1). The crossover regime that mixes all
three regimes mentioned in Sec. II, and is often studied
[32,34,65,66,70,74], is shown in Fig. 3(b). There F = U,
γ = 3.16U, � = 0, and the occupation is O(1). This case
is notable in that we can obtain large antibunching, indi-
cating strong quantum effects, while remaining stable and
despite rather strong dissipation. Getting into lower occu-
pations and stronger antibunching, in Fig. 3(c) we show
the case of F = 0.1U, γ = 2U, � = 0. Note that the sta-
tistical error in g2 is becoming more pronounced, despite
averaging over 106 trajectories. This is still a well-behaved
simulation, however, without significant noise amplifica-
tion. The fairly low signal-to-noise ratio is a consequence
of low occupation. When damping is insufficient to stabi-
lize the long-time behavior, a case like Fig. 3(d) occurs,
here with F = 0.1U, γ = U, � = 0. The exact stationary
value is approached, but the evolution does not convinc-
ingly stabilize before noise amplification appears (first
spiking near Ut ≈ 5) and leads to an instability (Ut ≈ 6.2).
As is common for higher-order moments, the g2 estimation
becomes too noisy to be useful some time before.

C. Nonzero detuning

While detuning � does not appreciably influence the
regime of stability, the physics is significantly affected. In
Figs. 4(a) and 4(c) we show the variation of occupation
and bunching when F = U, γ = 3.16U, close to the mix-
ing region of all three regimes. This is quite a strongly
damped case compared to many theoretical studies, but
still shows strong bunching and antibunching. The form
of this variation of g2 with � is qualitatively consistent
with the phase diagram calculated in the weakly damped
γ = 0.05U regime [34], just with a reduced degree of
bunching and antibunching owing to the stronger dissipa-
tion relative to U. Comparison with exact results shows
that all detunings can be reliably and stably simulated,
even close to the � = 0 limit of stability (8).

The fact that those simulations remain stable for � �= 0
can be attributed to the decreasing occupation. To under-
stand this, note first that, for the undamped system, single-
particle energy shifts of the kind represented by � were
shown not to affect the stable simulation time given by
Eq. (B1) for set values of U and mean particle number N
[61]. In the damped system, a similar indirect-only depen-
dence is expected, but N does depend on �. Since |�| > 0
generally reduces the particle number (Fig. 4), estimate
(B1) indicates increased tsim, so one expects increased

FIG. 4. Detuning dependence and comparison between the
positive-P and truncated Wigner methods. Variation of g2 (a),(b)
and N (c),(d) with detuning � at F = U, γ = 3.16U; comparison
of positive-P (circles) and truncated Wigner simulations (dashed
lines) with exact results [64] (solid lines). Panels (b),(d) are the
same data as (a),(c), respectively, but with the scale adjusted to
display deviation of truncated Wigner from exact and positive-P
results.

stability and smaller γ values than in Fig. 2 to become
accessible.

This is borne out in Fig. 5, which shows a study of this
stability dependence at F = U, the typical case of interest.
Near the edge of the stable region, only very rare trajec-
tories exhibit instability, such that small ensembles are
usually still well behaved (cyan color in Fig. 5). Such a
trade-off between better precision in larger ensembles, but
encountering instability if one generates too many trajec-
tories, is typical for the positive-P method in borderline
unstable regimes.

The unstable region is more asymmetric around � = 0
than the density in Fig. 4. Bunching correlates with
increased fluctuations of the occupation, such that maxi-
mum excursions of occupation are larger for � > 0 than
for � < 0, making instability persist at � > 0 for larger
damping.

D. Comparison to the truncated Wigner approach

In Fig. 4 we compare the positive-P and exact results
to those of a leading competitor for scalable quantum
simulations—the truncated Wigner (TW) approach. This
method’s equations are described in Appendix D. Unlike
the positive-P method, the truncated Wigner approach
involves an approximation, namely that the exact evolu-
tion equation for the Wigner distribution [the equivalent
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FIG. 5. Regimes of usefulness of positive-P numerical calcu-
lations as a function of detuning �. We use the same notation as
in Fig. 2, with the addition of cyan cases when the instability after
the steady state is reached is seen only for very large ensembles
(S = 106) but not for S = 105 ensembles.

of Eq. (A4) for that representation] contains third-order
derivative terms, which must be neglected in order to
obtain a stochastic differential equation from the resulting
Fokker-Planck equation. Physically, this means that some
quantum correlations are not included in the description,
which becomes an issue when looking at problems with a
higher degree of entanglement and low mode occupations.
In other words, the more semiclassical the problem is, the
better it is described with the truncated Wigner approach,
which fails for very quantum cases. It is therefore useful
to show that the positive-P method may be applicable in
situations where the truncated Wigner approximation fails

to give accurate results, as well as compare their properties
under conditions where either method would be viable.

One can see that while the truncated Wigner method
gives a qualitatively good description of the occupa-
tion (though with some deviations), two-body correlations
g2 are on the whole completely inaccurate. Unphysical
predictions of g2 < 0 with the truncated Wigner method
are also seen. These are typical known problems with the
truncated Wigner approach when occupations are low. The
method gives much more accurate results for high occupa-
tions, such as in the strongly driven regime. Table I gives
examples of this behavior for some other values of the
parameters.

For both methods, the statistical uncertainty on the
steady-state result is obtained by partitioning the S ≈ 106

trajectories into (roughly) s ∼ 100 subensembles, each
containing S/s trajectories. For each subensemble i, we
extract the steady-state value Oi of a given observable
Ô. We then consider these s values as independent mea-
surements, so that our best estimate is given by O ±
δstatO, where O = (

∑

i Oi)/s is the mean and δstatO =√
var[Oi]/(s − 1) is the associated statistical error.
The positive-P and truncated Wigner methods also dif-

fer with regard to the signal-to-noise ratio (SNR). At low
occupations, the SNR is far superior in positive P, while at
high occupations it is comparable. This can be seen very
clearly in Table. I. On the other hand, despite systematic
errors and SNR issues, the truncated Wigner method never
suffers from the noise catastrophe of Fig. 3(d).

A systematic comparison of the applicability of the
two methods is made in Fig. 6, using the � = 0 case.
We assess the accuracy of the truncated Wigner method
by calculating both the systematic and statistical relative
errors, defined as |O − Oex|/|Oex| and δstatO/|O|, respec-
tively, for each of the four observables shown in Fig. 3:
N , g2, |〈̂a〉|2/N , and phase arg〈̂a〉. Here Oex is the corre-
sponding value of the observable obtained from the exact
solution of Ref. [64]. We then define �TW as the max-
imum relative error out of the entire set (see Appendix

TABLE I. Comparison of stationary values from the positive-P and truncated Wigner methods, with statistical uncertainty. All
simulations used 106 trajectories.

F/U 1 1 0.01 1000
γ /U 3.16 3.16 2.0 31.6
�/U 0 -10 0 0

N

Exact [64] 0.365 89 0.009 739 2 0.000 099 996 99.330 55
Positive-P method 0.3658(1) 0.009 741(2) 0.000 099 95(5) 99.3305(8)
TW method 0.3525(2) 0.010 15(15) 0.000 10(8) 99.3309(5)

g2

Exact [64] 0.862 43 0.909 30 0.799 984 0.996 669 7
Positive-P method 0.8628(6) 0.9093(5) 0.801(5) 0.996 675(9)
TW method 0.779(2) −12(2) ±104 0.996 657(3)
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Positive-P
accurate

Truncated wigner
accurate

Both
accurate

FIG. 6. Applicability of truncated Wigner and positive-P
methods. The TW method is assessed based on a figure of
merit �TW that characterizes the relative systematic and statis-
tical errors of observables in the stationary state, as described
in the text and Eq. (D6). Blue lines show contours of �TW =
0.01, 0.03, 0.1, 0.3 (top to bottom), dashed red lines the limits
(10). For the positive-P method, the limits from Sec. IV A are
used and (8) is shown as green dashes. Other notation follows
Fig. 2.

D for details). The blue contours in Fig. 6 correspond
to values of �TW = 0.01, 0.03, 0.1, 0.3 from top to bot-
tom. We take �TW = 0.03 as the nominal limit of sensible
applicability of the truncated Wigner method. This curve
determines the upper filled region in Fig. 6, corresponding
to the model parameters that can be accurately simulated
by the method.

Explicit conditions for the TW accuracy region can
be obtained by fitting the �TW = 0.03 curve, in the
asymptotic regimes of weak and of strong dissipation, to a
straight line. The obtained results are shown as red dashed
lines in Fig. 6, from which we find that

F � 4U when γ � 2U, (10a)

F � γ /6 when γ � 20U. (10b)

The lower filled region in Fig. 6 refers instead to the regime
of sensible applicability of the positive-P method, where
the empirical limits (Sec. IV A) are used.

The bottom line of this comparison is that the regimes
of applicability of the positive-P and truncated Wigner
methods are mostly complementary. The TW approach is
sufficient for small damping, high driving (alternatively,
large N ), where the system behaves largely semiclassically

and quantum correlations are small, while the positive-P
approach should be the method of choice for low driv-
ing, appreciable damping (low and moderate N ) where
quantum correlations are significant. Both are good in the
high damping, high occupation regime. Together, these
two phase-space approaches cover the vast majority of the
parameter space. What is left is the low occupation [the
limit in Eq. (10a) with N ≈ (F/U)2/3 gives N ≈ 2.5], low
damping regime, which fortunately suits tensor network
methods best.

V. LATTICES AND MULTISITE SYSTEMS

A. Unconventional photon blockade

For the first many-mode example, we consider a sit-
uation where nontrivial behavior can occur in a system
of only two sites. Strong two-particle interference effects
leading to g2 → 0 pose no problem to simulate. A cal-
culation of the so-called unconventional photon blockade
[76] (using parameters from Ref. [75]) proceeds easily,
as shown in Fig. 7. The steady-state value obtained with
106 realizations is −0.001 ± 0.004. This system consists
of two sites “1” and “2”, in which only site 1 is driven.
Destructive two-photon interference leads to the effect seen
in Fig. 7, which demonstrates that two photons never occur
together in this site in the steady state, giving an excellent
single-photon source.

Using this example, we can also show how to calculate
multitime correlations with the positive-P method. Any
multitime correlation function that is normally ordered and
time ordered can be calculated in the positive-P repre-
sentation in a simple way, by averaging the correspond-
ing product of phase-space variables over the trajectories
[77,78]. This follows by a straightforward extension of the
derivation found in Gardiner [78] for the Glauber-P rep-
resentation. Such is not the case in the truncated Wigner

FIG. 7. Photon blockade. A time trace of the density self-
correlation, indicating strong unconventional photon blockade in
a two-site system. Positive P (red) is compared with the numeri-
cal exact solution of the master equation (dashed black). Param-
eters from Ref. [75]: here U = 0.0856, J12 = 3, γ = 1, � =
−0.275 on two sites with driving F = 0.01 on site 1 and F = 0
on site 2. S = 106 trajectories. We show the self-correlation of
driven site 1, g(2)

1,1 = 〈̂a†
1â†

1â1â1〉/〈̂a†
1â1〉2.
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FIG. 8. Two time density correlations. Two time correlations
g(2)

1,1(τ ) for the driven site in the steady state (the same example as
in Fig. 7). Positive P (red) is compared with the numerical exact
solution of the master equation (dashed black).

approach, which is based on symmetrically ordered opera-
tors, making computing useful time correlations challeng-
ing [79,80]. As an example, in Fig. 8, we show the two
time density correlations g(2)

1,1(τ ) of the driven site in the
steady state:

g(2)

1,1(τ ) = 〈̂a†
1(t)̂a

†
1(t + τ )̂a1(t + τ )̂a1(t)〉

〈̂a†
1(t)̂a1(t)〉〈̂a†

1(t + τ )̂a1(t + τ)〉
. (11)

In the positive-P representation this can be calculated as

g(2)

1,1(τ ) = Re〈α1(t)α1(t + τ )̃α∗
1(t + τ )̃α∗

1(t)〉s

N1(t)N1(t + τ)
, (12)

where N1(t) = Re〈α1(t)̃α∗
1(t)〉s as defined in Eq. (6), and

the factors inside the numerator average in Eq. (12) are
constructed using different time values coming from the
same realization. The form of g(2)

1,1(τ ) shows the charac-
teristic oscillations with the delay τ , as seen in previous
literature on the unconventional photon blockade [75,76].

For this two-site system, it is possible for us to compare
to exact numerical solutions of the master equation. It can
be seen in both Figs. 7 and 8 that there is a strong agree-
ment between the positive P and more direct numerical
integration of the master equation.

B. Lieb lattices

Going beyond the two mode case to more complicated
systems, we begin by considering the much studied case
of a Lieb lattice [21,23,25,26], which exhibits frustration
and a flat-band structure. The unit cells contain three sites
(labeled A, B, C), and only some connections allow tunnel-
ing between cells, as per the schematic shown in Fig. 9. A
1D Lieb lattice has been implemented, e.g., by polaritons
in an array of micropillars [21,26]. A Lieb lattice pumped
locally only on the C sites has dark B sites that have far
more striking departures from coherence than the single

FIG. 9. Lieb lattices. A schematic of the 1D (top) and 2D (bot-
tom) Lieb lattices, pumped on the C sites, resulting in dark B
sites.

sites of Sec. IV [74]. In directly pumped sites, the field
is usually close to being pinned by the coherent pump,
whereas the dark sites are free to evolve to a much less
classical stationary state.

The study of Ref. [74] used the corner space renor-
malization method [32] to obtain accurate predictions for
small lattice sizes, which provide a convenient benchmark
for the precision and accuracy of the positive-P approach.
Table II shows a comparison. There is excellent agreement,
and similar precision. Owing to the much more favorable
scaling of the positive-P method, huge lattices are easily
accessible. Results for lattices with up to 100 × 100 unit
cells are shown. They indicate that, for one dimension, the
12 unit cell lattice saturates the infinite size limit. How-
ever, for the 2D system, the 4 × 4 lattice that is achievable
by corner space renormalization does not yet reach the
macroscopic limit in terms of density correlations g(2).

C. Uniform square lattices

A uniform square lattice with tunneling between all
nearest-neighbor sites is also of much current interest.
Here, we use the notation of Ref. [65], where Jij = J/z
between nearest-neighbor sites. The lattices have peri-
odic boundary conditions and M = m × m sites in total.
The coordination number is z = 4 when m > 2, and z =
2 for the special case of m = 2 in which left and right
connections are to the same site.

The homogeneous case with uniform F , U, J , � has
been studied using a self-consistent mean-field (SCMF)
approach pioneered by LeBoite et al. [65]. They found a
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TABLE II. Comparison between positive-P and corner space normalization calculations for the stationary state of 1D (top) and 2D
(bottom) Lieb lattices. Here, Jij = J for all connected sites, U = 0.3γ , � = 0, and Fc = 0.1γ in the driven sites (C sites only) with
periodic boundary conditions. We denote by nA and nB the occupations of A and B sites, respectively, while g(2)

B is the on-site two-body
correlation on the B sites. Here g(2)

B,NN = 〈̂a†
B,j â†

B,kâB,j âB,k〉/n2
B is the normalized density correlation between B sites in nearest-neighbor

unit cells j and k.

Configuration Corner space renormalization [74] Positive-P calculation

Ncells J/γ nB/nA g(2)
B g(2)

B,NN nB/nA g(2)
B g(2)

B,NN Samples S
12 2 0.0180(5) 342(8) 19.3(4) 0.0176(4) 342(16) 19.0(5) 104

12 1 0.0650(3) 23.3(2) 2.35(2) 0.065(1) 23(1) 2.30(6) 1000
100 1 · · · · · · · · · 0.0648(2) 23.3(2) 2.36(4) 1000
4 × 4 2 0.0161(1) 66.2(2) 1.42(3) 0.0161(3) 65(2) 1.2(2) 1000
4 × 4 1 0.0631(1) 4.41(1) 0.996(2) 0.0628(3) 4.42(3) 0.99(2) 1000
10 × 10 1 · · · · · · · · · 0.0632(2) 4.68(3) 0.996(5) 1000
100 × 100 1 · · · · · · · · · 0.063 09(8) 4.685(2) 0.995(2) 100

flat band, collective excitations, and a tunneling-induced
transition to bistability. Later work has also shown
bimodality in the photon number distribution and a hys-
teretic cycle around a first-order phase transition at higher
tunneling [34]. The idea behind the SCMF approach is that
the tunneling terms in the Hamiltonian can be expressed in
the mean-field picture as

−J
z

â†
i âj → −J

z
(〈̂ai〉∗̂aj + 〈̂aj 〉̂a†

i ), (13)

which is equivalent to an effective coherent driving of

Feff = F − J 〈̂a〉. (14)

One then self-consistently solves for the exact quantum
expressions from Ref. [64] for 〈̂a〉 in a single mode
while using Feff(〈̂a〉) from Eq. (14) as the coherent driv-
ing. This can be done by iteration, starting with the bare
F . It is a similar approach to the self-consistent mean
field widely used for conservative Bose-Hubbard models.
Equation (14) also lets one see that it may be useful to
approximate coherent transport into the region of interest
with an effective driving F ≈ −J 〈̂a〉 in some systems. For
cases with negligible quantum depletion, a symmetry bro-
ken “Gross-Pitaevskii” (GP) approach can also be used.
This is equivalent to setting the quantum noises ξ and˜ξ in
Eqs. (5) to zero, i.e.,

∂αj

∂t
= i�j αj − iUj |αj |2αj − iFj − γj

2
αj +

∑

k

iJkj αk,

(15)

so that observable predictions (6) and (7) reduce to N =
|α|2 and g2 = 1. Both approaches have evident gaps in
the description. The SCMF approach assumes a uniform
system (or, potentially, a local density approximation), and
does not take into account any spatial correlations. The GP

approach can treat inhomogeneities properly, but does not
take into account quantum depletion at all. How does the
full quantum approach of the positive-P method compare?

First, we consider the uniformly driven case with peri-
odic boundary conditions. Here F , U, �, and J are identi-
cal at all sites. In Fig. 10, positive-P simulations are shown
for the crossover regime case of F = U, γ = 3.16U, � =
0 studied in Fig. 3(b), now with a nonzero tunneling

FIG. 10. Square lattices. Simulations with different lattice
sizes for F = U, γ = 3.16 U, � = 0 are shown: a 100 × 100 lat-
tice with J = 2U (violet), a 2 × 2 lattice with J = 2U (green),
and a single site with J = 0 (yellow). Panels show g2, the
density-density correlation g2 averaged over all sites (top left),
the average occupation per site N (top right), and the average
amplitude 〈̂a〉 (bottom left). Bottom right: the nearest-neighbor
first-order coherence (normalized) as given by Eq. (16). In some
panels, the J = 2U cases overlap. Also shown are one-site exact
values [64] (dotted lines) and the SCMF predictions [65] for
many modes (dashed lines).
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J = 2U on small and large lattices. The one-site case
is also shown for reference in yellow. The move from
single site to modest lattice to huge lattice is basically
effortless in terms of calculation difficulty. Numerical com-
parisons with standard estimates are shown in Table III.
The quantity

g1NN =
∑

i,j 〈̂a†
i,j âi,j +1〉

MN
(16)

gives the average first-order coherence between nearest-
neighbor sites, where N is the average occupation.

The first thing to note is that there is a significant influ-
ence of J : basically, none of the observables agree between
the one-site model shown in yellow and the lattice calcu-
lations. Furthermore, the 2 × 2 lattice is not sufficient to
reach the asymptotic behavior, as seen in both the first-
and second-order correlations. However, the mean ampli-
tude and occupation can mislead one into thinking that
the asymptotic limit has been reached. Since huge lattices
of 100 × 100 are easily accessible, a positive-P calcula-
tion can be used to determine the size required to reach
the asymptotic regime. In the case of the parameters of
Fig. 10, a 5 × 5 lattice is needed for accurate convergence,
as shown in Table. IV.

An important question is whether the mean-field
approach is faithful to the asymptotic limit of many sites.
The SCMF approach is remarkably good for N and 〈̂a〉,
but poor for density fluctuations g2. This potentially sheds
some doubt on past results obtained this way [34,65], at
least in similar regimes. Going to even simpler approaches,
a cut down version of the SCMF approach simply calcu-
lates the single-mode exact value with detuning modified
as per � → �eff = � + J . This is also shown in Table. III.
We note that there is already a large improvement over
the J = 0 estimate, except for g2, which is sensitive to
quantum correlations. None of the estimates are able to
give any information about g1NN.

D. Nonuniform pumping

A situation where particularly large lattices are nec-
essary is when the system is nonuniform, or excitations
involve many sites collectively [8,34,62]. Systems of
104–106 sites pose no problem for the positive-P approach,
potentially allowing for complicated geometries, exten-
sive transport, or simulations of emergent phenomena. In
Fig. 11 we show results for a truly large 256 × 256 system
with complicated geometry.

Spreading of N (x, y) away from the pumped area is
observed simultaneously with coherent spatial oscillations
as a surface effect around the pumping zone. These behav-
iors are captured well by the Gross-Pitaevskii equation
(15). The SCMF approach does not replicate the emergent
local structure due to tunneling, though the bulk density is
properly described.

FIG. 11. Nonuniform driving. A large 256 × 256 site lattice,
with parameters J = 5U, γ = 3.16U, � = −2U. Local driv-
ing F(x, y) = U or F(x, y) = 0 according to the shape of the
Institute of Physics logo. Top panel: an instantaneous density
in a snapshot of a single realization at the steady state. Bot-
tom panels: steady-state observables along the line y = −29,
calculated with 4000 realizations. Solid lines represent positive-
P calculations of g2 and N with 1σ error bars; dashed lines
represent SCMF predictions [65] based on the local value of
F; and dotted yellow lines represent GP calculations using
Eq. (15).

On the other hand, the density fluctuations are not well
described by either of the approximate methods—only the
positive-P method gives an accurate description, even in
the bulk. This last aspect is consistent with what we saw
in Fig. 10 and Table. III. At the points furthest from the
driven region, g2 seems to tend towards the SCMF esti-
mate, though it becomes very noisy, as one would also
expect in experiment, due to the very low density (e.g.,
observe the regions around x = −70, 5, 25, 50, the furthest
points from the driven region for which the occupation is
still sufficient to have g2 measurable beyond the noise).
Notably, the positive-P calculation allows one to predict
the spatial variation of g2 in the vicinity of the surface,
which is not possible either accurately or even qualitatively
by the approximate approaches.
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TABLE III. Comparison of lattice values to estimates. Here F = F0 = U, γ = 3.16 U, J = 2 U, � = �0 = 0. See the description
in the text.

Estimates Full quantum

Single mode [64] SCMF [65] Positive P

F F0 F0 F0 − J 〈̂a〉 F0 F0

� �0 �0 + J �0 �0 �0
Lattice 1 × 1 1 × 1 1 × 1 2 × 2 100 × 100
〈̂a†̂a〉 0.3659 0.1750 0.1701 0.170 80(6) 0.170 67(6)
|〈̂a〉|2/N 0.9498 0.9751 0.9734 0.978 8(4) 0.976 6(5)
arg〈̂a〉 −1.7680 −0.7333 −0.7219 −0.722 3(2) −0.723 0(3)

g2 0.8624 1.4092 0.8824 0.953 1(6) 0.938 3(4)
g1NN · · · · · · · · · 0.989 43(3) 0.988 23(4)

One realization of the simulation shown in Fig. 11
took 80 s on a single personal computer processor (Intel
Xeon E5645, 2.40GHz). Even larger calculations on a
1000 × 1000 lattice took 1 h per realization under the same
fairly basic conditions. The calculation time grows approx-
imately linearly with J for these parameters due to time
step requirements.

VI. NONZERO TEMPERATURE

The master equation (3) assumes dissipation into empty
modes. A more general form is

∂ρ̂

∂t
= −i[̂H , ρ̂] +

∑

j

γj N B
j

2
[2̂a†

j ρ̂âj − âj â†
j ρ̂ − ρ̂âj â†

j ]

+
∑

j

γj (N B
j + 1)

2
[2̂aj ρ̂â†

j − â†
j âj ρ̂ − ρ̂â†

j âj ],

(17)

which can be used to model systems coupled to baths
with finite occupations N B

j . The correction to the FPE of
Eq. (A4) is then

∂P
∂t

= (A4)rhs +
∑

j

[

∂2

∂αj ∂α̃∗
j

+ ∂2

∂α̃∗
j ∂αj

]

γj N B
j

2
P, (18)

TABLE IV. Lattice size scaling of correlations for F = F0 =
U, γ = 3.16 U, J = 2 U, � = �0 = 0. Note that, for a given
precision, the number of samples decreases approximately pro-
portionally to the lattice size.

Lattice g2 g1NN Samples S
2 × 2 0.953 1(6) 0.989 43(3) 250 000
3 × 3 0.932 7(3) 0.988 45(7) 100 000
4 × 4 0.937 2(4) 0.988 20(4) 50 000
5 × 5 0.938 6(5) 0.988 29(8) 40 000
10 × 10 0.938 9(6) 0.988 19(6) 10 000
100 × 100 0.938 3(4) 0.988 23(4) 100

while the additions to the equations of motion (5) are

∂αj

∂t
= (5a)rhs +

√

γj N B
j ηj (t), (19a)

∂α̃j

∂t
= (5b)rhs +

√

γj N B
j ηj (t), (19b)

with complex white noises ηj of mean zero that obey

〈η∗
j (t)ηk(t′)〉s = δ(t − t′)δjk,

〈ηj (t)ηk(t′)〉s = 0.
(20)

In Fig. 12, we give an example of a single mode with
coherent drive and decay into occupied modes. Compared
to the vacuum bath case, the steady-state value of g2 falls
much closer to the value g2 = 2 that would occur for
thermal states; meanwhile, the coherence (|〈â〉|2/N ) falls
much lower than in previous examples with dissipation
to empty modes, showing that the positive-P method still
works well for less coherent states. We thus expect the
method to apply to condensates with low condensate frac-
tions, materialization, and other problems with no or weak
coherence.

In the absence of coherent driving F , interactions U, and
tunneling Jij , Eq. (18) with the bath coupling leads to a

2.00

1.95

g 2

1.90 P
ha

se
 (

·â
Ò)

1.85

FIG. 12. Finite-temperature bath. Single mode with dissipa-
tion into a bath with occupation N B = 2. Other parameters are
F = 10U, γ = 20U, � = 0. Steady-state values in the N B = 0
system are N = 0.9860, g2 = 0.9886, |〈̂a〉|2/N = 0.9953, phase
= −0.5309π .
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stationary distribution of P(�v) = ⊗

j Pj with

Pj (αj , α̃j ) = const × exp
[

− |αj |2
N B

j

]

δ(2)(αj − α̃j ). (21)

This is a thermal ensemble with occupations nj = |αj |2
and on average N B

j quanta at site j . The thermal occupation
of each mode with energy Ej = −�j can be considered
as Bose distributed N B

j = {exp[(Ej − μ)/kBT] − 1}−1 in
which T and μ are resultant effective parameters of the
reservoir, and in equilibrium—also of the system.

When both the tunneling and the temperature are appre-
ciable, so that density fluctuations become important, a
proper treatment of the coupling of the system to the reser-
voir should involve the extended single-particle states,
instead of the local (site) basis. For a Markovian reser-
voir, where particle and energy exchange takes place
through interaction between system and reservoir quanta,
a model that has often been used [45,81–85] replaces
local N B

j in Eq. (17) with an effective Bose-Einstein dis-
tributed occupation N B → {exp[(̂H − μ̂N )/kBT] − 1}−1.
A thermal bath of this kind in the relatively high tem-
perature limit exp[(E − μ)/kBT] → 1 + (E − μ)/kBT has
been implemented using the positive-P method for the
closely related continuum ultracold atom systems [86].
They differ from our Hamiltonian by having kinetic energy
rather than site-to-site tunneling, and lacking coherent
driving. Since these terms describe one-particle processes,
their contribution to the stochastic differential equations is
obtained by simply replacing âj → αj and â†

j → α̃∗
j in the

Heisenberg equations of motion. Hence, for our driven-
dissipative model, the corresponding equations become

∂αj

∂t
=
(

−i − �

2

){

(Uj αj α̃
∗
j − �j )αj + F −

∑

k

Jkj αk

}

+
√

−iUj (1 − i�)αj ξj (t) +
√

�Tηj (t), (22a)

∂α̃j

∂t
=
(

−i − �

2

){

(Uj α̃j α
∗
j − �j )̃αj + F −

∑

k

Jkj α̃k

}

+
√

−iUj (1 − i�)̃αj˜ξj (t) +
√

�Tηj (t), (22b)

with a reservoir at temperature T (kB = 1), and coupling
constant �. The conditions of applicability of Eqs. (19)
and (22) are different, though there is an overlap regime.
In that regime one can identify the correspondences � =
γj N B

j /(kBT) and N B
j = kBT/(Ej − μ), with μ incorporated

into the �j . Space-dependent temperature profiles can be
included through a site-dependence of T.

A rigorous derivation and consideration of applicability
criteria for Eqs. (22) goes beyond the scope of the arti-
cle, but we include them for completeness of the picture

regarding thermal effects. We also mention that thermal
baths that take into account the quantum particlelike nature
at high energies have been implemented in Refs. [45,85].

VII. CONCLUSIONS

We have described the essential elements for apply-
ing the positive-P method to the driven-dissipative Bose-
Hubbard model, and benchmarked its accuracy—confirming
the lack of systematics down to the fourth significant digit
in our test cases. The method appears to be a versatile
and robust way to describe the full quantum mechanics of
even very large systems, allowing for the study of the sta-
tionary state—and its time correlations—provided that the
dissipation is sufficiently strong.

In particular, one can reach strong antibunching
[Fig. 3(c)], high driving and occupation [Fig. 3(a)], and
crossover regimes, and even a strong photon blockade with
perfect antibunching and destructive interference (Fig. 7).
Large nonuniform systems with 256 × 256 sites (Fig. 11)
and more are easily accessible, opening the way to the
study of much uncharted territory: e.g., dissipative phase
transitions in a flat band with large-scale fluctuations
[8,34,36] or the point at which bimodality predicted by
semiclassical approaches [65,67] morphs to a first-order
phase transition [7,66]. It can also be readily used to deter-
mine the minimal sizes of systems required to reach the
asymptotic regime. We have studied Lieb lattices (Table II)
and simple orthogonal 2D lattices (Table IV, Fig. 10) in
this regard, showing that 4 × 4 systems for example tend
not to be in the asymptotic limit.

The method exhibits clear superiority over various
mean-field approaches and the truncated Wigner approx-
imation in the difficult regime when occupation is small,
and provides the ability to simultaneously and accu-
rately study correlations, interference, tunneling, and
nonlocal effects. Because of the numerical instabilities,
the positive-P approach cannot describe strongly driven
weakly damped conditions. However, this more semiclas-
sical regime is extremely well approximated by the related
truncated Wigner method with (from the technical point of
view) very similar stochastic equations to be solved. Thus,
between the truncated Wigner approach, which gives very
accurate results for large occupations, and the positive-P
approach, we have a viable method for all conditions where
either drive or dissipation are significant effects. Notably,
the positive-P approach gives full quantum results in the
medium to large dissipation regime, whereas most other
full quantum approaches, such as density matrix renormal-
isation group methods, tensor networks, etc., work more
easily under the opposite, low dissipation, conditions.

In the usable regime, numerical effort scales merely lin-
early with the number of sites, and quadratically with the
precision. Space and time dependence of all parameters in
the model is easily incorporated with no extra numerical
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effort. Nonlocal interactions can also be efficiently treated
[87]. Thus, we suggest the positive-P approach as the
method of choice to access large systems in the very
regions that are currently experimentally relevant, espe-
cially in driven-dissipative but correlated photonic plat-
forms.

Owing to the additional stability provided by dissipa-
tion, the positive-P method is applicable to a much wider
range of problems in open dissipative systems than in
closed systems. Its great success in describing the archety-
pal driven-dissipative Bose-Hubbard model shown here
implies that the positive-P method may be an ideal method
for simulating various kinds of open quantum systems that
either consist of or can be mapped onto bosons. Such
promising extensions, such as incoherent driving or sys-
tems with coupled spins and bosons, will be the subject of
future work.
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APPENDIX A: DERIVATION OF POSITIVE-P
EQUATIONS

Here we cover the mathematical details behind the
derivation of the positive-P method. A central element
upon which the following derivations are based are the
differential identities

âĵ�j = αĵ�j ,

â†
j
̂�j =

[

α̃∗
j + ∂

∂αj

]

̂�j ,

̂�j âj =
[

αj + ∂

∂α̃∗
j

]

̂�j ,

̂�j â†
j = α̃∗

j
̂�j .

These allow one to convert expectation values of observ-
ables and the evolution equation (3) to functions of only
the variables �v and the distribution P, leaving ̂�j as the
only remaining operators. For example, the expectation

value of the site occupation is

Nj = 〈̂a†
j âj 〉 = Tr[̂a†

j âj ρ̂] (A1a)

=
∫

d4M �vP(�v)Tr[̂a†
j âĵ�(�v)] (A1b)

=
∫

d4M �vP(�v)αj

[

α̃∗
j + ∂

∂αj

]

Tr[̂�] (A1c)

=
∫

d4M �vP(�v)αj α̃
∗
j (A1d)

= lim
S→∞

〈αj α̃
∗
j 〉s. (A1e)

Line (A1d) follows from Tr[̂�j ] = 1, since any derivative
of 1 is zero. Notably, evaluating line (A1e) with reasonable
precision (say, 3–4 significant digits) can be far more effi-
cient than evaluating the trace with the full density matrix
in line (A1a) when the system is large. This is where the
power of the method comes from.

In a similar vein, to obtain an evolution equation for
the samples �v, master equation (3) is first converted to an
integral equation of the form

∫

d4M �v̂� ∂P
∂t

=
∫

d4M �vP
{

∑

v

Av(�v)
∂

∂v
+
∑

vv′

Dvv′(�v)

2
∂2

∂v∂v′

}

̂�,

(A2)

with v, v′ denoting variables in �v, and the coefficients A
and D making a form akin to that in line (A1b). This step
and subsequent steps have been explained in detail for the
present system in Ref. [72].

The right-hand side of Eq. (A2) can be integrated by
parts to give derivatives of P instead of ̂�, plus boundary
terms at |α|, |̃α| → ∞, which are discarded, i.e.,

∫

d4M �v̂�∂P
∂t

=
∫

d4M �v̂�
{

− ∂

∂v

∑

v

Av(�v) +
∑

vv′

∂2

∂v′∂v

Dvv′(�v)

2

}

P.

(A3)

The discarding of boundary terms relies on an assump-
tion of self-consistency: as long as the distribution (and
therefore the sample trajectories) are well behaved, that
is, P → 0 sufficiently fast as α, α̃ → ∞, the boundary
terms are zero, and vice versa. Indeed, for poorly damped
interacting systems, there can be a time tsim around which
divergent trajectories or huge excursions appear, indicat-
ing that the move from Eq. (A2) to Eq. (A3) is failing
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from this time onward [60]. In such a case, results at sub-
sequent times t > tsim should be discarded. This is now
a well-studied and controlled element of the theory, and
it is known that the once feared “boundary term bias”
[88,89] becomes obscured by noise before it can affect
results [60]. In Bose-Hubbard-like models, a noise ampli-
fication that masks meaningful results appears just prior to
tsim [60,61,73,86,87].

An equation like Eq. (A3) of the form
∫

d4M �v̂�f (�v) =
0 has potentially many solutions, but one of them cer-
tainly is f (�v) = 0. Therefore, from Eq. (A3) one obtains a
Fokker-Planck equation for P. In our model, the equation
is

∂P
∂t

= −
∑

j

∂

∂αj

{

−i[Fj + Uj α
2
j α̃

∗
j − �j αj ] − γj

2
αj

}

P

−
∑

j

∂

∂α̃∗
j

{

i[F∗
j + Uj α̃

∗2
j αj − �j α̃

∗
j ] − γj

2
α̃∗

j

}

P

+
∑

j

∂2

∂α2
j

(−iUj )

2
α2

j P +
∑

j

∂2

∂α̃∗2
j

iUj

2
α̃∗2

j P

−
∑

connections j ,k

[

∂

∂αj
iJkj αk + ∂

∂αk
iJjkαj

− ∂

∂α̃∗
j

iJ ∗
kj α̃

∗
k − ∂

∂α̃∗
k

iJ ∗
jkα̃

∗
j

]

P.

(A4)

This gives the (αj , α̃∗
j ) components of the drift A and

diffusion D as

Aj =
(

[i�j − γj /2 − iUj αj α̃
∗
j ]αj − iFj +∑

k iJkj αk

[−i�j − γj /2 + iUj α̃
∗
j αj ]̃α∗

j + iF∗
j −∑

k iJ ∗
kj α̃

∗
k

)

,

Djj ′ =
(

(−iUj )α
2
j 0

0 iUj α̃
∗2
j

)

. (A5)

Fokker-Planck equations with non-negative diffusion can
be converted to stochastic differential equations by stan-
dard methods [78,90]. The form of the kernel ̂� which is
analytic in the complex variables αj and α̃∗

j allows one to
always ensure that the diffusion is non-negative through
a standard transformation (see Refs. [55,72] for details of
the procedure). For a Fokker-Planck equation with drift
vector A and diffusion matrix D, the corresponding set of
stochastic differential equations is

∂ �v
∂t

= A(�v) + B(�v)�ξ(t), (A6)

where the �ξ(t) are uncorrelated real Gaussian white
noises with zero mean and 〈ξv(t)ξv′(t′)〉s = δ(t − t′)δvv′ ;
the matrix B is such that D = BB� and is generally

nonunique for a given D. For the diffusion matrix D in
Eq. (A5), we choose a matrix B whose (αj , α̃∗

j ) components
are

Bjj ′ =
(√−iUj αj 0

0
√

iUj α̃
∗
j

)

. (A7)

This leads to the form of the stochastic equations given in
Eqs. (5).

APPENDIX B: USEFUL SIMULATION TIMES

It is known [61] that, for a closed undamped system, the
noise catastrophe does rear its head, around the time

tsim ≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2.5

maxj [Uj N 2/3
j ]

if maxj Nj � 1,

C
maxj Uj

if maxj Nj 
 1,
(B1)

where C ∼ 10 is a numerical constant. Estimate (B1) is
borne out qualitatively in our simulations. The basic trade-
off has been that, while results for short evolution times
are always accessible, a nonlinear amplification of the tra-
jectory spread would eventually appear at long times and
obscure predictions below a rising noise floor. Dissipa-
tion has been shown to stabilize the positive-P equations
above a threshold strength [60]. A later study of simulation
times tsim introduced a characteristic logarithmic variance
V = var[log |α| + log |̃α|]/2 that cannot exceed O(10) for
a useful signal-to-noise ratio [61]. A simplified version of
the medium-time estimates made there for a single mode
gives

V ≈ Ut
2

+ U2N 2
[

1
q − γ

(

1 − e−γ t

γ
+ e−qt − 1

q

)

− (1 − e−γ t)2

2γ 2

]

, (B2)

where q = 2(γ − U). This suggests that, at least for large
N (when the term proportional to U2 N 2 is dominant),
the variance growth is arrested if q > 0, that is, γ > U
(because then all exponentials are decaying with t). For
small N , on the other hand, we have V ≈ Ut/2. Note now
that the time to reach the stationary state must be at least
several times 1/γ (say, 6 times). Hence, to reach this with-
out first breaking the V ∼ 10 limit, at the least one needs
3U/γ 
 10, i.e., γ � U/3. In both cases, the regime γ �
U looks promising for simulations that make it into the sta-
tionary state. However, this has not actually been tested in
numerical calculations prior to the current work.

For the coherently driven-dissipative model, we con-
sider in this work that the steady state does not depend on
the initial conditions chosen. While one could in princi-
ple choose an initial state with significantly larger occu-
pation than the steady state, and hence large α and α̃,
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the self-amplification of the noise terms could cause the
simulation to fail earlier. Such dynamical effects have been
extensively studied in Refs. [61,73], with the conclusion
that stability is essentially determined by the maximum
occupation during evolution. Based on Eq. (B1), this only
arises when Nj � 1. For the above reasons, we choose
and recommend a vacuum initial state as a simple univer-
sal option for reaching the stationary state that will not
cause such unnecessary instabilities in cases that would
otherwise be stable.

APPENDIX C: STABILITY DIAGRAM FOR
NONZERO �

As seen in Sec. IV C and elsewhere [34], the natu-
ral energy scale for � is U. The usefulness diagram of
positive-P simulations is shown in Fig. 13 for the rele-
vant case of � = U. This indicates that detuning does not
introduce large modifications to the picture already seen in
Fig. 2, or Eq. (8), at least on a log-log scale.

APPENDIX D: TRUNCATED WIGNER
EQUATIONS AND ERRORS

The evolution equations in the truncated Wigner repre-
sentation, corresponding to Eqs. (5), are

∂αj

∂t
= i�j αj − iUj (|αj |2 − 1)αj − iFj − γj

2
αj

+
√

γj

2
ηj (t) +

∑

k

iJkj αk, (D1)

Strongly driven regime

Interaction

dominated

Strongly

damped

regime

FIG. 13. Regimes of usefulness of positive-P simulations for
� = U. We use the same notation as in Fig. 2, apart from the
change in �.

with complex white noise η as per Eqs. (20). In principle,
one should start with half a particle’s worth of complex
noise in each mode as per αj (0) = χj /

√
2, where

〈χ∗
j χk〉s = δjk, 〈χj χk〉s = 0. (D2)

However, the stationary state does not depend on this,
because the dynamical noise generates the appropriate
variance (provided the truncation error is small). Observ-
able predictions use the ensemble average of the Weyl
symbols:

N = 〈|α|2〉s − 1
2 , (D3)

g2 = 〈|α|4 − 2|α|2 + 1/2〉s

N 2 . (D4)

As mentioned in Sec. IV D, we assess the accuracy of
our TW simulations for the single-site problem using the
estimates of the four observables N , g2, |〈̂a〉|2/N , and
phase arg〈̂a〉. For given values of the parameter ratios
γ /U and F/U, we carry out TW calculations using s = 96
subensembles, each containing 10 416 trajectories. Next,
we extract the best estimates O(j ) ± δstatO(j ) with j =
1, . . . , 4 for the four observables, to be compared with the
exact predictions O(j )

ex by Drummond and Walls [64]. For
each observable, we compute the systematic and statistical
relative errors as

�(j )
sys =

∣

∣

∣

∣

O(j ) − O(j )
ex

O(j )
ex

∣

∣

∣

∣

, �
(j )
stat = δstatO(j )

|O(j )| . (D5)

We then repeat the same procedure by varying the ratios
γ /U and F/U over several orders of magnitude, using
a grid of size 21 × 29. In Fig. 14 we show the results
obtained for the systematic and statistical relative errors
(D5) for the four observables. We see that the system-
atic error is the stronger restriction in practically all cases.
In particular, there are very large regions in which this
error is seen without being masked by attendant statisti-
cal error. We also note that at low γ the highest systematic
error comes from the coherent amplitude characterized by
|〈̂a〉|2/N , whereas at high γ the limiting systematic error is
from g2, though the corresponding errors in N and |〈̂a〉| are
also comparable. We finally take the largest relative error

�TW = maxj [�(j )
sys, �

(j )
stat] (D6)

as the overall assessment of the errors expected from the
truncated Wigner method. This quantity is displayed in
Fig. 6. From the above discussion, its behavior closely fol-
lows the systematic relative errors in either the coherent
amplitude |〈̂a〉|2/N or in g2.
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(a) (b)

(c) (d)

FIG. 14. Error budgets in the truncated Wigner method for dif-
ferent observables. Blue lines show contours of the systematic
error �sys at values of 0.01, 0.03, 0.1, and 0.3 (top to bottom) for
the main observables. The same contours for the statistical error
�stat with approximately 106 realizations are shown in yellow.
Red dashed lines are the overall limits (10). All data are for zero
detuning (� = 0).
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Exponents in Driven-Dissipative Quantum Systems, Phys.
Rev. Lett. 121, 095302 (2018).

[51] D. Ballarini, D. Caputo, G. Dagvadorj, R. Juggins, M. D.
Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, and
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