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Coherent transfer of topological interface states
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Abstract: We demonstrate the controlled coherent transfer of topological interface states in a
one-dimensional non-Hermitian chain of interacting Bose-Einstein condensates. The topological
protection stems from a spatially patterned pump in an open-dissipative system. As a test bed
setup of the proposed phenomenon, we consider a chain of coupled micropillars with embedded
quantum wells, possessing exciton-polariton resonances. The transfer of an interface state is
driven by spatially localised, adiabatic pump modulation in the vicinity of the interface state. The
stochastic calculations prove the coherent nature of the interface state transfer. For appropriate
system parameters the coherence degree is preserved after multiple transitions, paving the way
towards long-range transfer of a coherent quantum state.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Topological insulators (TI) are a class of materials that possess an energy bandgap and topologically
protected low energy states [1,2]. Topological protection in these systems stems from the
symmetry of the bulk, which is quantified by means of topological invariants. Bulk-boundary
correspondence results in the protection of edge states, which hold promise for applications in
dissipation-less communications and quantum computing.

While in standard TIs non-trivial topology results from the properties of a Hermitian Hamilto-
nian, recently a class of non-Hermitian topological systems attracted great interest [3]. These
are of particular relevance to photonics, where open-dissipative effects are prevalent. The latter,
on one side, makes photonic systems an optimal platform for probing phenomena emerging
specifically in the non-Hermitian domain. In this context phenomena such as lasing of topological
states have been demonstrated [4,5]. On the other side, recently it was proposed to use the
non-Hermiticity of photonics as an efficient tool for controlling the topological properties of the
system. This can be reached, particularly, through asymmetric coupling coefficients [6] or spatial
modulation of gain-loss ratio in each site [7–9]. Arguably, the greatest fundamental interest lies
in the investigation of topological states that result solely from the non-Hermiticity of the system,
since these have no counterparts in the Hermitian case [10–17].

In this paper, we consider the question whether non-Hermiticity can be used for precise
control of topological states. Similarly to electrons in crystalline media, electromagnetic
waves in periodically patterned photonic structures form energy bands, which can lead to
appearance photonic edge states [4,5,18–27]. The presence of topological protection suppresses
the backscattering on disorder, thus generating an energy-efficient propagation channel. However,
in such a setting there is no convenient way to externally control the direction or velocity of
the wave packet. On the other hand, photonic implementations of non-Hermitian Hamiltonians
relying on spatial modulation of external pumping allow to efficiently tune certain terms of
the Hamiltonian. This opens the way to the control of topological states, which can be crucial
for future applications, such as scattering-free optical interconnects, quantum computation, or
Majorana state braiding [28].

The distinctive peculiarities of photonic TIs can be further extended in the regime of strong-
light matter coupling in a microcavity with embedded quantum wells [29]. The emerging
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hybrid quasiparticles, called exciton-polaritons, are interacting via their excitonic component,
allowing thus to achieve a strong nonlinear response in comparison to other photonic systems.
Typically, etching of cavity is used to fabricate an array of coupled micropillars, mimicking
the structure of a tight-binding Hamiltonian. In the majority of existing theoretical proposals
[30–44] and experimental realizations [45–49] topological order emerges from Hermitian band
engineering, whereas open-dissipative nature of the system serves only to create a non-equilibrium
Bose-Einstein condensate of polaritons in each micropillar.

As we demonstrated recently, topological protection in a chain of coupled polariton micropillars
can be achieved solely via the spatial modulation of external pump [9] in a system with equal
hopping coefficients. Topological characterization of the system revealed the existence of multiple
phases, with different number of end states. Here, we show that at the boundary of such phases a
non-decaying topological interface state can be created. By means of adiabatic switching of the
pump pattern, we induce a controllable transfer of the interface state. Moreover, by calculating
the first-order correlation function, we demonstrate that such transfer is of coherent nature. We
determine the optimal conditions for the coherent transfer, such as time dependence of the spatial
pump pattern and the switching time. Our results are confirmed by stochastic simulations within
the truncated Wigner approximation, which include the effect of quantum fluctuations.

2. Model

2.1. Hamiltonian

The structure we consider consists of a chain of unit cells, each including four sites. The on-site
potential within each cell is spatially modulated. The bulk of the chain is analogous as in our
previous work [9]. Here, we consider interface states which emerge at the boundary between two
phases supporting a different number of edge states. The Hamiltonian of the system reads

Ĥ = eiθ
nb∑︂

n=1

(︂
g1â†nân − g2b̂†nb̂n − g1ĉ†nĉn + g2d̂†

nd̂n

)︂
+eiθ

N∑︂
n=nb+1

(︂
g3â†nân − g4b̂†nb̂n − g3ĉ†nĉn + g4d̂†

nd̂n

)︂
+κ

N∑︂
n=1

(︂
b̂†nân + ĉ†nb̂n + d̂†

nĉn + â†n+1d̂n + H.c.
)︂

,

(1)

where N is the total number of unit cells, and nb denotes the boundary unit cell between the two
phases. Here gieiθ denotes the on-site potential, which is generally a complex valued quantity
(gi and θ are real numbers). κ denotes the nearest neighbour hopping rate between the sites,
which is uniform throughout the chain. Such a Hamiltonian corresponds, in particular, to an
exciton-polariton system of coupled micropillars, where the imaginary part of the on-site potential
results from an external incoherent pump, and the real part stands for the Coulomb interaction
between particles in a polariton condensate and in an incoherent reservoir [9]. The parameter
θ describes the ratio of real and imaginary components of the on-site potential, and thus is
determined by the material composition and design of the system, including the exciton-polariton
detuning.

2.2. Interface states and protocol of the transition

It was previously shown [9] that in the homogeneous case (i.e. g3 = g1, g4 = g2) the Hamiltonian
(1) can exhibit one or two pairs of edge states, odd number of edge states, or be topologically
trivial. In order to perform dynamical study of interface state behaviour in a dissipative system,
one needs a single topological state to be the only non-decaying eigenstate. Hence, the imaginary
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part of interface state eigenenergy needs to be the highest among all the eigenmodes. Such a
situation can be reached via judicious choice of parameters, with the interface state appearing on
the boundary of two topological phases, exhibiting one and two pairs of edge states, respectively.
Particularly, here we choose the values of parameters g1 = −2κ, g3 = 2κ, g2 = g4 = κ, θ = π/3,
the length of the chain N = 40, and the boundary unit cell nb = 10. We also uniformly reduce by
−iγ the on-site potentials of the system, so that only the interface state has positive imaginary
part of eigenvalue. The shape of the interface state and the imaginary part of the energy spectrum
are shown in Fig. 1(a), left and right panels, respectively, where γ = 1.35κ. Notably, the interface
state is “M”-shaped, almost completely localized in 5 sites, and centred exactly around the
boundary site between the two phases.We proceed with the study of coherent transfer of an
interface state. The protocol of transfer consists of several steps, which are illustrated as follows.
For a better understanding, let us consider first the evolution in the mean field regime, as sketched
in Fig. 1(b). We start with a random distribution, and eventually reach a nonequilibrium steady
state configuration, if growth saturation is present. The latter naturally emerges in any system
where pumping has a limited capacity. This state is labelled as “initial” in Fig. 1(b). Then, we
gradually modify the pump pattern at the boundary of two phases, and thus shift the boundary by
one unit cell. In the beginning of the “transient" stage the existing interface state ceases to be a
non-decaying mode, and rapidly becomes depleted. The new interface state emerges at the new
boundary between the phases, and becomes populated. Steady state of the configuration hosting
the new shifted interface state is eventually reached in the “final" state. Yet, such a combination
of two independent processes does not lead to a transfer of macroscopic population which retains
the coherence of the condensate. To avoid this scenario, during the transition process we apply
extra pump to the region of existing interface state, which replenishes the decaying population.
In this case we find that the interface state is indeed shifted by one unit cell.

To verify this, we perform stochastic simulations, and calculate the spatially and temporally
resolved degree of coherence between interface states at the initial and final stages of the process.
The evolution of condensate can be described by a stochastic discrete Gross-Pitaevskii equation
[9], in which sites are coupled to each other due to the presence of hopping. The corresponding
set of equations reads

iℏdψn,i =

⎡⎢⎢⎢⎢⎣−κ
∑︂
⟨nn⟩

ψn′,i′ + ϵn,i(t)ψn,i − Γn,i (1 + i tan θ) |ψn,i |
2ψn,i

⎤⎥⎥⎥⎥⎦ dt + ξn,i(t), (2)

where ⟨nn⟩ runs over the nearest neighbours, n ∈ [1, N] and i = A, B, C, D is the sub-lattice
label. Here ψn,i(t) is the condensate amplitude in the corresponding site, ϵn,i(t) = gieiθ − iγ
(see Appendix A for details of the derivation). The parameter Γn,i describes the nonlinearity
in each site. The last term denotes a Gaussian white noise with correlations ⟨ξni(t)ξ∗n′i′(t

′)⟩ =

δnn′δii′δtt′β
2(gi sin θ − γ + γc)/d accounting for quantum fluctuations. It should be noted that

the chosen noise amplitude corresponds to the particular case of exciton-polariton condensates,
but in principle an analogous definition can be given for other related systems [50,51]. Here the
parameter β is the dimensionless scaling factor describing the scaling of noise amplitude, γc and
d characterize polariton decay rate and the diameter of the pillar, respectively. The derivation of
nonlinearity and noise rates for the polariton model are presented in Appendix A.

We subdivide the period of switching process Ttr into three parts of equal duration. At first,
we gradually increase by iσ the on-site potential of two last sites of the boundary unit cell nb,
which is the leftmost cell in Fig. 1(b). Second, we perform the switching of on-site potentials
in the boundary unit cell nb + 1. Finally, in the third step we gradually turn off the supporting
potential. Hence, the majority of on-site potentials in Eq. (2) are time-independent, except the
vicinity of interface state. Particularly, for the unit cell nb + 1, the middle cell in Fig. 1(b), the
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Fig. 1. (a) The spatial density distribution of an eigenstate corresponding to a topological
interface state emerging on the boundary between two topological phases (left panel). The
imaginary parts of eigenvalues of Hamiltonian (1) in units of κ (right panel). The blue dot
corresponds to interface state. Here a uniform reduction of eigenvalues by −iγ is applied.
(b) The sketch of boundary between the topological phases and its temporal evolution. In
transient regime the pump rates in middle unit cell are gradually modified, resulting in
shifting the boundary to one unit cell. In the transient regime a supporting potential is
applied to the boundary pillars (marked by orange), which protects the initial interface state
from depletion during the transfer of the state.

switching is given by

ϵnb+1,A[C] =

(︃
±g3 +

±(g1 − g3)

1 + e−(t−τ1)/∆τ

)︃
eiθ − iγ, (3)

ϵnb+1,B[D] =

(︃
±g4 +

±(g2 − g4)

1 + e−(t−τ1)/∆τ

)︃
eiθ − iγ, (4)

where + [−] signs correspond to sites (A,B), [(C,D)], respectively. In addition, for the last two
sites of unit cell nb we have

ϵnb,C = −g1eiθ +
σ(i + cot θ)
1 + e(t−τ2)/τ

(︃
1 −

1
1 + e(t−τ0)/∆τ

)︃
, (5)

ϵnb,D = g2eiθ +
σ(i + cot θ)
1 + e(t−τ2)/∆τ

(︃
1 −

1
1 + e(t−τ0)/∆τ

)︃
. (6)

Here τ2 − τ0 = Ttr, τ1 = τ0 + Ttr/3, and ∆τ characterizes the transition rate, which we choose as
∆τ ≈ Ttr/45. The dependence of imaginary part of the on-site potentials is shown in Fig. 2.
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Fig. 2. The dependence of interface state coherence on switching speed in the case where
interface state is shifted by one unit cell. Top panel: the temporal dependence of supporting
pump applied to the existing interface state. Middle panel: temporal dependence of pump
rates in the boundary unit cell. The pump values are in units of κ. Bottom panel: first order
correlation function defined by Eq. (8) for different transition times Ttr. The inset illustrates
the maxima of coherence at different transition times. The colour tones in plots correspond
to values of Ttr as shown in inset. The interplay between the adiabaticity rate and finite
coherence time leads to coherence maxima appearing for intermediate transition time, which
for the chosen parameters is Ttr = 30 ps. Hereafter the scaling factor of noise is β = 0.05,
κ = 0.1 meV, and σ = 3γ.

In order to quantify the efficiency of the transition we calculate the coherence between the
initially existing and the newly emerging interface states. As mentioned above, the interface
state is mainly localised in 5 sites around the boundary between two phases. Accordingly, we
introduce a vector describing this state

|Ψn(t)⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψn,B

ψn,C

ψn,D

ψn+1,A

ψn+1,B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Then the spatio-temporal first order correlation function between interface states can be defined
as

g(1)
(nb,∆n)(τ) =

⟨Ψ∗
nb
(τ0)Ψnb+∆n(τ0 + τ)⟩N√︁

⟨|Ψnb (τ0)|2⟩N ⟨|Ψnb+∆n(τ0 + τ)|2⟩N
, (8)
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where ∆n = 0, 1, 2, . . . corresponds to a shift of the interface state by respective number of unit
cells, τ = t − τ0 is the time interval. Here the average ⟨. . . ⟩N is performed over a large number
N of stochastic realizations. In all our simulations we use N = 1000.

2.3. Results

Numerical simulations were performed for the model of an exciton-polariton lattice, where the
tunnelling rate is chosen as κ = 0.1 meV. All the other quantities in the Hamiltonian are scaled
relative to κ. Correspondingly, the temporal evolution is presented in ps. The parameter d in the
definition of white noise corresponds to the diameter of the micropillar, and is chosen as d = 3
µm. The supporting on-site potential is σ = 3γ, and the scaling factor of noise amplitude is
chosen as β = 0.05, corresponding to characteristic coherence time for polariton condensates
[52]. The dependence of coherence degree on β is discussed in Appendix B.

In Fig. 2 we present the evolution of the first order correlation function of (8) during a
shift of a interface state by one unit cell, for different switching rates. We start at t = 0 and
perform the evolution for 500 ps with time independent Hamiltonian, during which we reach the
nonequilibrium steady state. Note that from here onward, in all figures this part of the evolution
is not shown. Then we gradually change the potentials in the boundary unit cells nb and nb + 1.
The process is analogous to Landau-Zener transition [53,54]. One can expect that the lower
is the transition speed, the higher will be the preserved degree of coherence due to a smaller
perturbation of the steady state. This indeed is the case when increasing the switching time Ttr
from 1 to 30 ps. However, due to non-Hermiticity of the Hamiltonian, the system is intrinsically
of open-dissipative nature. This circumstance imposes a finite coherence time even in the steady
state, stemming from the noise associated with input and output channels. In the context of
exciton-polaritons these channels are represented by external incoherent pump and the finite
lifetime of polaritons [29]. Correspondingly, the finite coherence time imposes the upper limit on

Fig. 3. The influence of supporting pump on coherence. The orange and purple curves
show the evolution of correlation function in the absence and presence of supporting pump,
respectively. The gray dashed and dotted lines correspond to temporal profiles of supporting
pump and pump switching in the boundary unit cell. For comparison we show the evolution
of local coherence in the scenario when no transition happens. The red curve corresponds to
the presence of supporting pump, and the blue curve to its absence. The supporting pump
in this case distorts the established steady state, and impose an additional noise. Hereafter
Ttr = 30 ps.
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the transition period. Thus, the interplay of these two factors determines the timescale optimal
for coherent transfer of the interface state to the next unit cell.

We further analyse the impact of the supporting on-site potential applied during the transfer
protocol, defined by Eqs. (5) and (6). In Fig. 3 we present the temporal evolution of the coherence
degree in the presence and absence of the potential. First of all we study coherence in the absence
of switching, i.e. gnb,0(τ). Blue and red curves correspond here to gnb,0(τ) with and without
applying supporting potential, respectively. We note that the additional noise stemming from
the supporting potential largely reduces coherence. On the contrary, the coherence in the case
of shift by one unit cell [gnb,1(τ)] is found to be very small in the absence of the supporting
potential (see orange curve) whereas its presence allows to essentially preserve the coherence
degree (purple line). It is remarkable that after the switching event, the degree and temporal
evolution of the shifted interface state coherence (purple curve) is very close to that of coherence
in the absence of switching (blue curve). This is another clear indication that the coherence is
retained during the interface state transfer event.

In addition, we consider temporal dependence of the first order correlation function in the
case of two consequent switching events, as shown in Fig. 4. The two switching events are
separated by a large temporal window, during which the initial interface state becomes depleted,
and the newly established interface state reaches to quasi steady state. Interestingly, the temporal

Fig. 4. The evolution of coherence (top panel) and population (bottom panel) during a two
switch transfer. The two switching events are separated by a large temporal window (between
60 and 170 ps), which is necessary for the establishment of steady state after the first switch.
The blue curve in top panel shows the temporal dependence of spatially local first order
correlation function in the initial interface state. At the end of the saturation window it tends
to zero, due to the complete depletion of population in the initial interface state (see the
bottom panel). Some revival during the second switching event is an artifact of stochastic
simulations. The red and purple curves correspond to the coherence between initial and
intermediate (red), and intermediate and final interface states (purple). The very similar
shape of these curves indicates that the two switching events are identical. The orange curve
shows the correlation function between the initial and final interface states. The gray dotted
lines correspond to temporal profiles of supporting pumps during the switching events.
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profiles of the correlators gnb,1, gnb+1,1 [red and purple curves in Fig. 4(a)] are almost identical,
indicating that the two switching events have same nature. Finally, after the second transition the
correlator gnb,2 [orange curve in Fig. 4(a)] reaches the maximum value of 0.25. Evidently, this
value shows that for the chosen parameters the multiple transitions will completely wash out the
initial coherence.

In order to increase the conservation of coherence during the multiple transitions it is necessary
the decrease the strength of the noise. However, in a realistic polariton model the latter has a
limited range of allowed values. The dependence of coherence on scaling of the noise amplitude
is discussed in Appendix B. A possible alternative could be the variation of the strength of
supporting on-site potential. The dependence of coherence on the strength of supporting potential
is shown in Fig. 5. The enhancement of supporting potential amplitude prevents the existing
interface state from depletion, increasing thus the conservation of coherence. On the other hand,
the stronger the pump, the more noise is introduced into the system, decreasing the coherence.
The interplay of these factors determines the optimal rate of supporting potential σ = 3γ, which
is used in majority of the calculations.

Fig. 5. Evolution of spatio-temporal correlation function during the shift of interface
state by two cells for different values (in units of κ) of the amplitude of supporting on-site
potential. The enhancement of supporting potential prevents the existing interface state from
depletion. On the other hand, it is an additional source of noise. The interplay of these
factors determines the optimal rate of supporting potential to be σ = 3γ.

3. Conclusion

In conclusion, we show the possibility of controllable coherent transport of topological interface
states in a system of coupled Bose-Einstein condensates. We found that topologically protected
interface state emerges solely due to spatial modulation of complex-valued on-site potential, while
its temporal modulation causes the transfer of interface state. As a toy model we employ a system
of interacting exciton-polariton condensates, where the on-site potential stems from the incoherent
pump, and its spatial modulation provides the topological protection. We demonstrate that for
the high purity systems with low noise amplitude a substantial coherence rate can be retained
within a long-range transfer path, being an important prerequisite for practical applications.
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Appendix A: polariton model

A possible system for the realization of the proposed phenomena is a one-dimensional (1D)
lattice of coupled micropillars [9]. Each micropillar contains a quantum well and is assumed to
host a tightly bound exciton-polariton mode. In the mean-field approximation the evolution of
the system can be described by discrete mean-field Gross-Pitaevskii equations

iℏψ̇n,i = −κ
∑︂
⟨nn⟩

ψn′,i′ +

[︄
gRnR

n,i + i
RnR

n,i − γc

2

]︄
ψn,i,

ṅR
n,i = Pn,i −

(︂
γR + R|ψn,i |

2
)︂

nR
n,i,

(9)

where ψn,i(t) is the condensate amplitude in the n-th lattice cell, nR
n,i(t) is the density of exciton

reservoir in the n, i-th site, Pn,i is the external nonresonant pumping rate, γc and γR are the
decay rates of the condensate and the reservoir, respectively, gc and gR are the corresponding
interaction constants, and R is the rate of scattering from the reservoir to the condensate. We
assume that the polariton interactions within the condensate are negligible in comparison with
the reservoir-condensate interaction gRnR

n,i, which is a good approximation in most experiments
where nonresonant pumping is used.

In the adiabatic approximation [55] we can write

nR
n,i =

Pn,i

γR + R|ψn,i |2
≈ n̄R

n,i −
R
γR

n̄R
n,i |ψn,i |

2 + O(|ψn,i |
4), (10)

where n̄R
n,i = Pn,i/γR. The on-site potential in Eq. (2) stems from the linear terms in Eq. (9). In

particular, we have(︂
gn,i −

γ

sin θ

)︂
eiθ = gRn̄R

n,i +
i
2

(︂
Rn̄R

n,i − γc

)︂
=
(︂
n̄R

n,i −
γc

R

)︂ (︃
gR +

i
2

R
)︃
+

gRγc

R
. (11)

The last term in the above expression is a constant real energy shift, which can be removed by
introducing a rotating frame for condensate amplitudes, ψn,i → ψn,ie−i(gRγc/R)t. Correspondingly,
the term γ cot θ is not present in Eq. (2) of the main text, as it only leads to irrelevant uniform
energy shift. Thus, we introduce the following notations for linear and nonlinear terms

gn,ieiθ − iγ ≡

(︂
n̄R

n,i −
γc

R

)︂ (︃
gR +

i
2

R
)︃

, (12)

and
Γn,i ≡

R
γR

n̄R
n,i, (13)

In the first of Eqs. (9) pumping of the condensate is represented by the term RnR
n,i, and losses

by the decay rate γc. Considering quantum fluctuations only, the noise density is the sum of noise
associated with these channels. Using Eq. (12), one has

Rn̄n,i + γc = 2
[︃(︂

n̄R
n,i −

γc

R

)︂ R
2
+ γc

]︃
= 2 [gn sin θ − γ + γc] , (14)

Thus, we obtain the density of quantum noise as

⟨ξni(t)ξ∗n′i′(t
′)⟩ = δnn′δii′δtt′β

22 [gn sin θ − γ + γc] /d. (15)

Here d denotes the diameter of the micropillar, and β is dimensionless scaling parameter. The
parameter β is introduced here because the above simple theoretical argument overestimates the
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amplitude of quantum fluctuations. In our work, β is chosen to match the results of our simulations
for the condensate coherence decay time with those reported in experimental investigations [52],
i.e. the order of several hundreds of ps.

Finally, substituting the Eqs. (12), (13) into Eq. (9), and adding the noise term (15), we reach
at the Eq. (2) of the main text.

Appendix B: scaling of the noise amplitude

Here we briefly discuss the dependence of first-order correlation function on the noise scaling
factor β. For that, we study the temporal coherence of condensate in a single micropillar, defined
as

g(1)0 (τ) =
⟨ψ∗

n,i(τ0)ψn,i(τ0 + τ)⟩N√︁
⟨|ψn,i(τ0)|2⟩N ⟨|ψn,i(τ0 + τ)|2⟩N

, (16)

∀(n, i), and in the absence of hopping between the pillars, i.e. κ = 0. Figure 6 shows evolution of
coherence for different values of β. As expected, the coherence decays exponentially, with the
decay rate increasing together with noise amplitude.

Fig. 6. The temporal evolution of condensate coherence in a single pillar defined by Eq. (16),
for different scaling of the noise amplitude β.
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