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Stability and spatial coherence of nonresonantly pumped exciton-polariton condensates
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We investigate the stability and coherence properties of one-dimensional exciton-polariton condensates under
nonresonant pumping. We model the condensate dynamics using the open-dissipative Gross-Pitaevskii equation.
In the case of spatially homogeneous pumping, we find that the instability of the steady state leads to significant
reduction of the coherence length. We consider two effects that can lead to the stabilization of the steady state,
i.e., the polariton energy relaxation and the influence of an inhomogeneous pumping profile. We find that, while
the former has little effect on the stability, the latter is very effective in stabilizing the condensate, which results
in a large coherence length.
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I. INTRODUCTION

Exciton polaritons are light-matter bosonic quasiparticles
created due to strong coupling between excitons and pho-
tons [1–3]. Their extremely light effective mass combined
with strong exciton-mediated interparticle interactions makes
them an ideal system for the investigation of fundamental
phenomena such as room-temperature Bose-Einstein conden-
sation [4–6] as well as applications [7–11]. A wide range of
phenomena observed in exciton-polariton systems, such as
superfluidity [12], or spontaneous creation of self-localized
structures, including solitons and vortices, has attracted great
interest in recent years [13,14]. In contrast to condensates
of ultracold atoms, polariton superfluids are nonequilibrium
systems in which continuous pumping is required to maintain
the condensate population [1,3,14,15].

In a number of experiments, spatial coherence extend-
ing over the whole polariton cloud was demonstrated
[3,14,16–18]. Recently, stability limits for polariton conden-
sates under nonresonant pumping were determined within the
open-dissipative Gross-Pitaevskii model [19]. It was predicted
that spatially homogeneous steady states are stable in regions
of parameter space determined by the ratio γRgC/γCgR , where
γ −1

C,R are the lifetimes of the polariton condensate and the
exciton reservoir and gC,R are the coefficients of interaction
within the condensate and between the condensate and the
reservoir, respectively. Importantly, for comparable interaction
constants, stability close to the threshold was predicted only
for relatively small values of γC/γR . It is important to note
that values of γR varying by orders of magnitude are used
throughout the literature [20–22]. According to independent
measurements [23,24], physical values of γR correspond to
the unstable regime, where, as we show below, a significant
reduction of the coherence length can be expected.

In this work, we investigate whether large coherence length
can emerge in condensates even in the unstable region of
parameter space predicted by the homogeneous theory. We
analyze the stability and coherence properties of polariton
condensates in more detail, taking into account the effects of
polariton relaxation and the inhomogeneous pumping profile.
We use the Bogoliubov-de Gennes theory as well as direct
numerical integration of the open-dissipative Gross-Pitaeskii

equations. We demonstrate that full coherence can be achieved
even for large values of γC/γR once the finite size of the
pumping spot is taken into account. We believe that further
experiments, in particular with homogeneous or ring-shaped
pumping profiles, are necessary to determine stability limits
in parameter space and fix the values of phenomenological
parameters of the model. In particular, the observation of
coherence reduction or its absence in the case of almost-
homogeneous pumping would verify whether the ratio γC/γR

corresponds to the unstable regime.

II. THE MODEL

In one dimension (e.g., in a microwire [17]), the exciton-
polariton condensate with the wave function ψ(x,t) can
be modeled with the generalized open-dissipative Gross-
Pitaevskii equation coupled to the rate equation for the
polariton reservoir density, nR(x,t) [15,25],
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2

2m∗
∂2ψ
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+ g1D

C |ψ |2ψ + g1D
R nRψ

+ i
�
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(R1DnR − γC)ψ, (1)

∂nR

∂t
= P (x) − (γR + R1D|ψ |2)nR,

where P (x) is the exciton creation rate determined by the
pumping profile, m∗ is the effective mass of lower polaritons,
γC and γR are the polariton and exciton loss rates, and
(R1D,g1D

i ) = (R2D,g2D
i )/

√
2πd2 are the rates of stimulated

scattering into the condensate and the interaction coefficients,
rescaled in the one-dimensional case. Here, we assumed a
Gaussian transverse profile of |ψ |2 and nR of width d. In the
case of a one-dimensional microwire [17], the profile width
d is of the order of the microwire thickness. We note that the
exciton field corresponds to the “active” exciton population
rather than the reservoir at high-energy levels [21]. While the
latter may have much longer lifetime γ −1, it is not subject to
a considerable backaction from polaritons, such as stimulated
scattering, which is relevant for the stability properties of the
system.
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By rescaling time, space, wave-function amplitude, and
material coefficients as t = τ t̃ , x = ξ x̃, ψ = (ξβ)−1/2ψ̃ , nR =
(ξβ)−1ñR , R1D = (ξβ/τ )R̃, (g1D,g1D

R ) = (�ξβ/τ )(̃g,̃gR),
(γ,γR) = τ−1(γ̃ ,γ̃R), and P (x) = (1/ξβτ )P̃ (x), where
ξ = √

�τ/2m∗, while τ and β are arbitrary scaling parameters,
we can rewrite the above equation in the dimensionless form
(from now on we omit the tildas for convenience):

i
∂ψ

∂t
=

[
− ∂2

∂x2 + i

2
(RnR − γ ) + g|ψ |2 + gRnR

]
ψ, (2)

∂nR

∂t
= P (x) − (γR + R|ψ |2)nR. (3)

In particular, we may choose the time scaling τ in such a way
that γR = 1 without loss of generality. The norms of both
fields Nψ = ∫ |ψ |2dx and NR = ∫

nRdx are scaled by the
factor of β.

III. HOMOGENEOUS PUMPING

We investigate the stability of a uniform condensate solution
with the assumption of homogeneous pumping (P = const),

ψ(x,t) = ψ0e
−iμ0t ,

(4)
nR(x,t) = n0

R,

where μ0 is the chemical potential of the condensate. Substi-
tution of the above equations into Eq. (2) gives the steady-state
solutions. For P < Pth = γ γR/R, only the noncondensed
solution ψ0 = 0 exists with n0

R = P/γR . Above threshold,
the condensate density is |ψ0|2 = (P/γ ) − (γR/R) with the
chemical potential μ0 = g|ψ0|2 + gRn0

R and the reservoir
density n0

R = γ /R [15,19].
The stability of the condensed state depends on the system

parameters. In Fig. 1, we show typical examples of dynamics
of the condensate density in stable, weakly unstable, and
strongly unstable cases. Periodic boundary conditions are
imposed, which corresponds to a ring-shaped geometry of the
microwire. The initial state is perturbed by a white noise, which
mimics classical (e.g., thermal) density fluctuations in the
initial polariton field. We checked that stability is independent
of the amplitude of the noise provided that it is much smaller
than the amplitude of the steady state.

It is important to note that while in all three cases the
population of low-momentum states is much larger than that
below threshold, there is no long-range order in the final
states in Figs. 1(b) and 1(c), even in the mean-field limit.
As shown in Fig. 1(d), the coherence length is of the order
of the typical size of the structures visible on the figures.
The reason for the reduced coherence is different than in the
case of one-dimensional (1D) quasicondensates of ultracold
atoms [26–28] since here we work in the mean-field limit, and
the same instability is present also in the higher-dimensional
versions of the model. The above modulational instability of
the condensate was first reported in [15], where it was named
the “hole-burning effect.” The analytical condition for stability
was derived in [19]

P

Pth
>

gR

g

γ

γR

. (5)

FIG. 1. (Color online) Evolution of the stationary state
ψ0 = √

(P − Pth)/γ with additional noise in the case of
homogeneous pumping. The evolution of density in (a) the
stable case and (b),(c) the unstable case near and far from the
critical point, respectively. Parameters are R = 1, g = 1, gR = 2g,
P/Pth = 1.2, and γ /γR = 0.1,0.66,4.5 for (a), (b), and (c),
respectively. Bottom panel shows the first-order correlation functions
g(1)(d) = 〈ψ∗(x)ψ(x + d)〉/〈|ψ(x)|2〉 at t = tmax, calculated
from about 500 samples. Solid lines show g(1) calculated with
Eqs. (1) and dashed lines depict the corresponding results with
quantum fluctuations included (see text). Corresponding parameters
in physical units are time unit τ = γ −1

R = 10 ps, length unit
ξ = 3.4 μm, g = 3.4 μeV μm2, R = 5.1 × 10−3 μm2 ps−1 for
d = 2 μm, m∗ = 5 × 10−5me, and β = 0.003. TWA correlation
lengths are (a) ξ = 70 μm, (b) ξ = 17 μm, and (c) ξ = 3 μm.

The stability limit for gR = 2g is marked in Fig. 2(a) with a
thick black line.

The above result has important practical consequences. As
shown in several experiments, the lifetime of polaritons is
typically much shorter than the exciton lifetime. This can
be easily understood since the cavity photon lifetime even
in very high-Q cavities [29] is still shorter than the natural
lifetime of excitons, which are of the order of hundreds of
picoseconds. The reported exciton lifetimes were as high as
γ −1

R = 700 ps [23,24] or γ −1
R = 300 ps [20]. Taking into

account that typical polariton lifetimes γ −1 are of the order
of a few or a few tens of picoseconds, these values correspond
to values of γ /γR in the phase diagram in Fig. 2(a), where
stability can be achieved only at a very high pumping powers.
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FIG. 2. (Color online) (a) Stability limits of a static condensate
created with homogeneous pumping (solid line) and for a uniform
condensate flowing with momentum p = 1 (dashed line). Parameters
are R = 1, g = 1, gR = 2g, and γR = 1. The dash-dotted line
corresponds to the critical velocity condition p = cs = √

2g|ψ |2. The
black solid line corresponds to the analytical condition (5) for stability
of the homogeneous solution. Blue points correspond to particular
cases from Fig. 1. (b) Evolution of |ψ(x,t)|2 for a uniform flow
with homogeneous pumping and momentum p = 1 in the motionally
unstable regime, P/Pth = 1.5, γ /γR = 0.17.

Here, we suggest how this fact can be reconciled with the
emergence of large coherence length in experiments. It was
pointed out that the lifetime of active excitons, i.e., excitons
that can scatter directly to the condensate, can be much shorter
than the average lifetime of excitons in the system [21].
Since these excitons become dressed with light field at low
momenta, their lifetime can be reduced due to a nonzero pho-
tonic Hopfield coefficient. However, there is no fundamental
reason why the lifetime should become shorter than the photon
lifetime, which is necessary for stability at any power P > Pth

in Eq. (5). On the other hand, we show that this condition can
be relaxed in the case of a finite pumping spot. We show that in
the case of inhomogeneous pumping profiles, large coherence
lengths can emerge for relatively large values of γ /γR .

A. Quantum fluctuations

We note that while the above calculations take into account
only the classical fluctuations in the initial polariton field,
it is possible to include the effect of quantum fluctuations
on the level of classical fields approximation [30–32]. In

the truncated Wigner approximation (TWA), the quantum
field is simulated by an ensemble of realizations of the
Gross-Pitaevskii equations in the form similar to (2) and (3),
with the addition of a stochastic term. The extended version
of Eq. (2) reads dψ = (. . . )dt + dW , where dW is a complex
stochastic variable with [30–32]

〈dW (x)dW (x ′)〉 = 0,
(6)

〈dW (x)dW ∗(x ′)〉 = β
dt

2	x
(RnR + γC)δx,x ′ ,

reflecting the quantum noise due to the particles entering
and leaving the condensate. In Fig. 1 (bottom panel, dashed
lines), we show the effect of quantum fluctuations on the
correlation functions. While quantum fluctuations lead to
decay of correlation functions over long distance [17,33,34],
this effect is overwhelmed by the instability in the unstable
case (c) (black lines), which marks a dramatic reduction of the
correlation length.

B. Stability of a uniform flow

Another important issue in the case of uniform pumping is
the stability of a condensate with a finite momentum. In this
case, the stationary solution is

ψ(x,t) = ψ0e
ipx−iμ0t , (7)

where p is the condensate momentum and
μ0 = gψ2

0 + gRn0
R + p2 is the chemical potential. Such

polariton flow can occur naturally, e.g., in the presence of a
spatially varying exciton-photon detuning which generates
a potential gradient, or due to repulsive interactions with
reservoir excitons which are generated by the pump [17].
Similarly to the case of a static condensate [15,19], the
modulational stability of the steady-state solution (7)
can be investigated within the Bogoliubov-de Gennes
approximation [35,36]. Small fluctuations around the steady
state have the form

ψ = ψ0e
ipx−iμ0t

[
1 +

∑
k

{ake
−i(ωkt−kx) + b∗

ke
i(ω∗

k t−kx)}
]
,

nR(x,t) = n0
R

[
1 +

∑
k

{cke
−i(ωkt−kx) + c∗

ke
i(ω∗

k t−kx)}
]

, (8)

where ωk is the frequency of the mode with the wave number k,
and ak,bk,ck are small fluctuations. Substituting Eqs. (8) into
the system of Eq. (2) and keeping linear terms only, we
get the standard eigenvalue problem LkUk = ωkUk , where
Uk = (ak,bk,ck)T and

Lk =

⎛⎜⎝gψ2
0 + 2kp + k2 gψ0

2 i
2R + gR

−gψ2
0 −gψ2

0 + 2kp − k2 i
2R − gR

−iγψ2
0 −iγψ2

0 −i
(
γR + Rψ2

0

)
⎞⎟⎠. (9)

The existence of an eigenvalue ωk with a positive imaginary
part marks the dynamical instability of the flow.

We solved the above eigenvalue problem numerically to
obtain the stability limits in parameter space. The results are
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presented in Fig. 2, where the stability of the flow with a finite
momentum is marked with a dashed line. Similarly to [36],
the region of stability of solutions is further decreased with
respect to the static case. There is a certain area for small
P/Pth and γ /γR in which the condensate becomes unstable.
In this region, the dynamics of the instability is qualitatively
different from the one presented in Fig. 1. Instead of chaotic
dynamics, regular waves are created by the unstable flow,
as shown in Fig. 2(b). Here, instead of periodic boundary
conditions, we used boundary conditions that provide a flow
of particles with a prescribed momentum through the borders
of the computational window: ∂ψ/∂x = ipψ .

The origin of the above modulational instability of the flow
is clearly due to the movement of polaritons with respect to
the practically immobile reservoir excitons. This instability is
absent in the standard version of the polariton model which
does not include a separate equation for the reservoir [35,37],
since in this case the system is Galilean invariant. However,
it can be recovered by inclusion of frequency-dependent
pumping [35], which resembles the momentum dependence
of scattering from the immobile reservoir. Notably, similar
to [35], the modulational instability does not correspond to p

being higher than the critical velocity; see dash-dotted line in
Fig. 2(a). The latter condition defines the limit on stability of
the flow with respect to scattering against defects.

IV. EFFECTS OF POLARITON ENERGY RELAXATION

One of the drawbacks of the Gross-Pitaevskii model based
on Eq. (2) is that the relaxation of polariton energy is not taken
into account. Several experiments [17,20,38] have shown that
energy relaxation (or thermalization) may play an important
role in the dynamics. It is important to investigate whether it
can have a stabilizing effect on the condensate. To estimate
the effect of relaxation, we follow Refs. [20,38] by adding a
phenomenological relaxation term to the condensate evolution
equation (2),

∂ψ

∂t
=

[
(i + A)

∂2

∂x2 + 1

2
(RnR − γ ) − ig|ψ |2 − igRnR

]
ψ,

(10)

where the real coefficient A corresponds to the energy
relaxation in the condensate. Following the steps of the
previous section, we obtain the matrix which describes the
Bogoliubov-de Gennes excitations in the static (p = 0) case,

Lk =

⎛⎜⎝gψ2
0 + iαk2 gψ0

2 i
2R + gR

−gψ2
0 −gψ2

0 + iαk2 i
2R − gR

−iγψ2
0 −iγψ2

0 −i
(
γR + Rψ2

0

)
⎞⎟⎠,

(11)

where α = i + A.
The correction to the stability diagram with the relaxation

term included is shown in Fig. 3, where we compare the stabil-
ity limits obtained numerically by solving (11) with the analyti-
cal condition for the relaxation-free case (5). It is clear that even
the large relaxation rate (A = 0.5) cannot lead to the stabiliza-
tion of the condensate in a large parameter range, although the
region of stability is increased with respect to the A = 0 case.

0 1 2 3 4 5

2

3

4

5

P
/P

th

γ/γ

unstable

1.2

FIG. 3. (Color online) Comparison of stability regions with and
without the energy relaxation term included. In both cases, p = 0.
Red dash-dotted lines mark out the stable region for A = 0.5, which
partially overlaps with the stable region for A = 0. Parameters are
R = 1, g = 1, gR = 2g, γR = 1, and γ ∈ [0,5].

We note that excitation spectrum of a formally similar
hybrid Boltzmann-Gross-Pitaevskii model was calculated
recently [39]. In this model, steady states were found to be
dynamically (modulationally) stable in the whole parameter
range. This stability is a consequence of the assumption of
an ideally thermalized reservoir, which translates into an
immediate response of the reservoir to the change of the
condensate density. This includes the response of the reservoir
density distribution nR(x,t). To describe the instability shown
in Fig. 1, it is important to take into account that the
relatively heavy excitons remain practically immobile on a
short-time scale, so that their density distribution can become
out of equilibrium (although the reservoir may be thermalized
locally).

V. INHOMOGENEOUS PUMPING

Experiments with nonresonantly pumped polariton conden-
sates are performed using inhomogeneous, typically Gaussian-
shaped, pumping beams. In this section, we investigate how the
shape of the pump can influence the stability of the condensate.

In Fig. 4, we show examples of dynamics for various
parameters of the system with a Gaussian pumping profile,
P (x) = Pmax exp(−x2/W 2). The initial state is a small white
noise in the polariton field ψ(x). Figures 4(a) and 4(b) show
examples of stable and unstable dynamics, corresponding to
Figs. 1(a) and 1(c). There are also a number of other possible
nonstationary states, as shown in Figs. 4(c)–4(e), including
the oscillating wave packets and breathers. These states,
despite the complex dynamics, display correlation length that
is comparable with the size of the Gaussian pump. For this
reason, we classify these states as “coherent” in contrast to
the “incoherent” unstable state of Fig. 4(b). We note that
nonstationary condensate states have been previously shown
to emerge in two-dimensional models with inhomogeneous
pumping [37,40].

In Fig. 5, we show the regions of parameter space where
coherent (stationary or nonstationary) states exist. The limits of
the regions were determined numerically by solving the Gross-
Pitaevskii equation (2). Clearly, the region of coherence in the
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FIG. 4. (Color online) Evolution of the polariton density for
Gaussian pumping P (x) = Pmax exp(−x2/W 2) (A = 0). (a),(b) The
condensate densities in the coherent and incoherent cases, respec-
tively. Parameters are R = 1, γ /γR = 1.5,5 for (a) and (b), respec-
tively, g = 0.38, Pmax/Pth = 1.7, W = 44.7. Frames below show
examples of coherent nonstationary states: (c),(d) oscillating wave
packets with parameters R = 2.5, γ /γR = 0.15, g = 3, and R =
1, γ /γR = 0.7, g = 0.38, Pmax/Pth = 1.8, W = 15.8, respectively,
and (e) a breather with parameters R = 1, γ /γR = 0.7, g = 0.38,
Pmax/Pth = 1.6, W = 15.8.

case of inhomogeneous pumping is much larger than in the
homogeneous case of Fig. 2. Moreover, it expands significantly
as the pump size is decreased. The reduction of the pumping
spot appears to be a very effective way to stabilize condensates
even at high ratios of γ /γR . Condensates with γ /γR = 3.5 are
fully coherent at all pumping powers already at a relatively
wide pumping spot with W = 15.8. We note that the threshold
value of Pmax for the appearance of the condensate in the case
of inhomogeneous pumping is higher than Pth [41]. However,
since our pumping profiles are relatively wide, this difference
cannot be seen in the area covered by Fig. 5 which begins at
P/Pth = 1.2.

VI. CONCLUSIONS

In conclusion, we investigated the dynamical stability
and its relation to the spatial coherence properties of one-
dimensional exciton-polariton condensates under nonresonant

FIG. 5. (Color online) Stability regions for Gaussian pumping
profiles. The lines mark out the coherent regions for narrower
pumping of width W = 15.8 (dash-dotted lines) and for wider
pumping of width W = 44.7 (dashed lines). The black solid line
corresponds to the analytical stability condition of a homogeneous
condensate [19]. Blue points correspond to particular cases from
Fig. 4. Parameters are R = 1, g = 0.38, gR = 2g, and γR = 1. For
the choice of scaling parameters as in Fig. 1, the width of the pumping
is W = 54 μm (dash-dotted lines) and W = 152 μm (dashed lines).

pumping. In the case of spatially homogeneous pumping, we
found that the instability of the steady state leads to a significant
reduction of the condensate coherence. This instability is pre-
dicted to occur in the physically relevant case when the loss rate
of the exciton reservoir is lower than the loss rate of the exciton
polaritons. Since the experiments with inhomogeneous opti-
cal pumping reported large coherence lengths [3,14,16–18],
we considered two effects that can potentially lead to the
stabilization of condensates. These are the effect of polariton
energy relaxation and the inhomogeneous pumping profiles.
We found that while the former has little effect on the stability,
the latter is very effective in stabilizing the condensate, which
results in a large coherence length.

It is noteworthy that in the two-dimensional experiment
with a top-hat-shaped pumping profile, which is the closest
to the homogeneous profile, strong internal dynamics and
vortex creation were observed [22], which evidences the
existence of a nonstationary state. However, we believe that
further experiments, especially with almost-homogeneous or
ring-shaped pumps, are necessary to determine the stability
limits in the parameter space. Such experiments would also
provide verification of the open-dissipative Gross-Pitaevskii
model (1) and its modifications widely used in the literature,
and allow for the determination of their phenomenological
parameters.
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