Aggregation Rate of Amyloid Beta Peptides is Controlled by Beta-Content in Monomeric State and **Mechanical Stability of Fibrillar Structure**

Tran Thi Minh Thu^{1,2,3*}, Nguyen Truong Co⁴, Ly Anh Tu⁵ and Mai Suan Li^{4*}

¹Department of Metarials Science and Technology, University of Science-VNUHCM

²Vietnam National University, Ho Chi Minh City

³Institute for Computational Science and Technology,

⁴Institute of Physics, Polish Academy of Sciences,

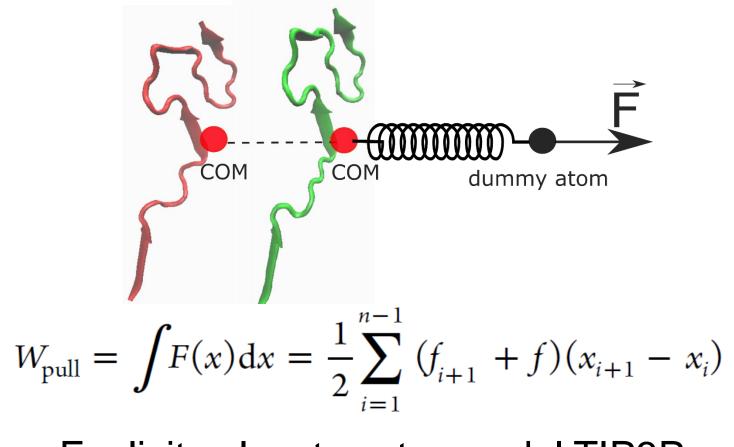
⁵Department of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology

Email : masli@ifpan.edu.pl, ttmtthu@hcmus.edu.vn

Introduction

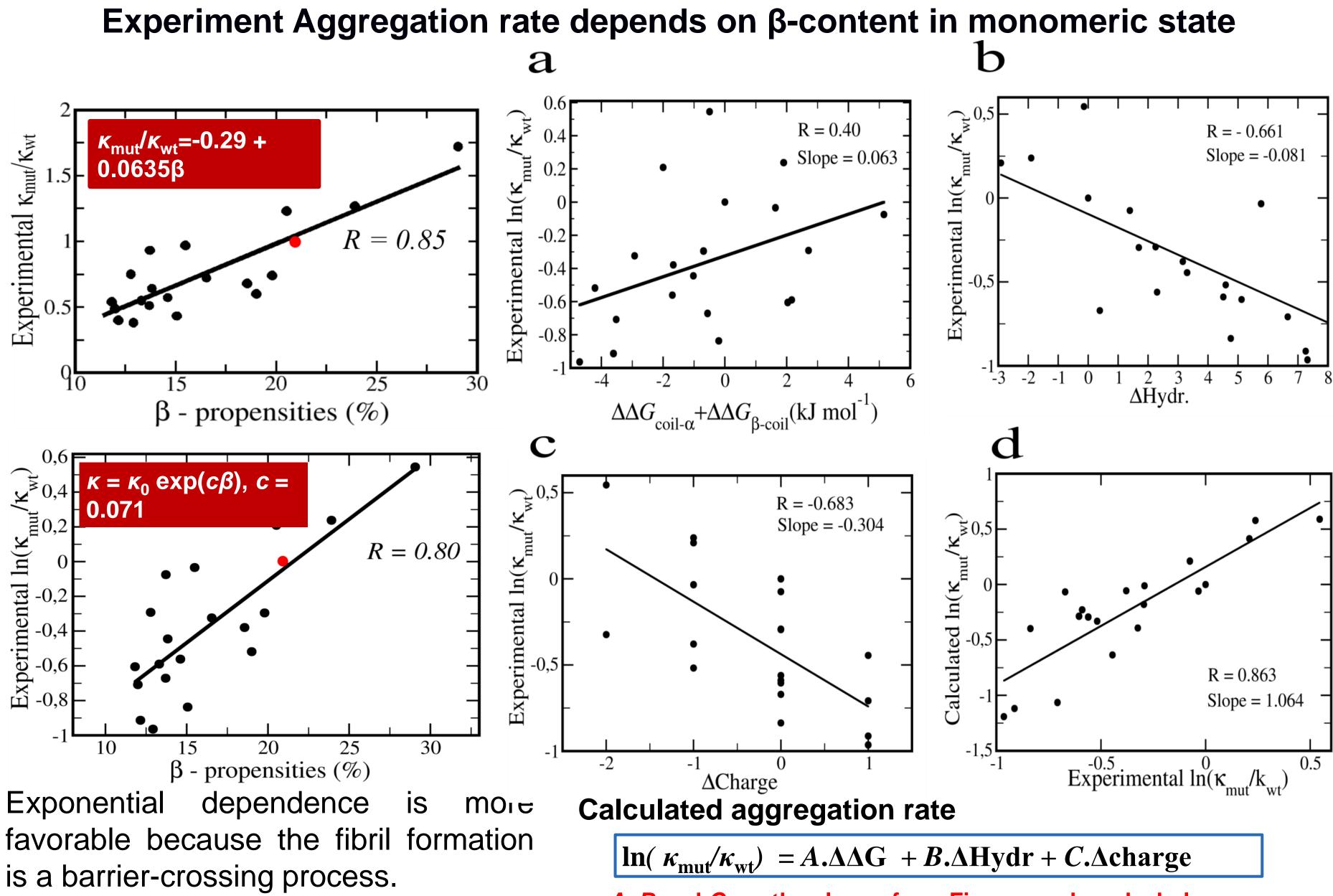
Recently, evidence has been found that the rate of protein aggregation is related to mechanical stability of the fibrillar the structure and the content of beta in the monomeric state in such a way that the higher the mechanical stability or the beta content, the faster the formation of fibrils. However, this conclusion was supported by limited data. In this report, we quantify the relation ship of beta content and mechanical stability with experiment aggregation rate for a data set of A β 42 in wild type and its 20 aggregation rate was mutants, whose measured experimentally. Using all-atom steered molecular dynamics (SMD) and conventional molecular dynamics (CMD) simulations, we can access the mechanical stability of the fibril structure and the beta content in the monomeric state. Our result supports the hypothesis that mechanical stability and beta content are related to the aggregation rate. Since estimation of the aggregation rate using all-atom simulations is nearly forbidden by current computational capabilities, our result is useful for predicting it based on information obtained from CMD for monomers and SMD simulations for fibrils, which are computationally feasible.

		Mutations		Experimental aggregation rate			
	No		Fmax (pN)	Work (kcal/mol)	∆G‡ _{unbind} (kcal/mol)	β-content (%)	log(κ _{mut} /κ _{wt})
)	1	2NAO	1922.9 ± 137.9	473.2 ± 48.2	75.3 ± 12.7	20.94 ± 1.91	0
	2	I41D-A42Q	1550.4 ± 178.6	392.5 ± 33.8	52.5 ± 14.4	12.92 ± 2.37	-0.964
	3	I41D-A42S	1424.5 ± 89.7	337.3 ± 67.5	40.4 ± 3.9	12.15 ± 1.93	-0.913
	4	I41H-A42D	2153.6 ± 228.8	485.4 ± 43.4	95.6 ± 27.5	11.99 ± 2.38	-0.708
	5	I41E-A42L	2117.8 ± 203.4	433.5 ± 66.4	88.6±28.9	13.83 ± 2.32	-0.445
	6	I41H-A42N	1632.1 ± 256.8	437.0 ± 55.0	52.0 ± 20.8	15.06 ± 2.85	-0.837
	7	A21G	1648.1 ± 114.6	362.2 ± 17.9	51.7±12.7	13.7 ± 2.02	-0.671
	8	I41T-A42N	1923.6±155.1	447.2±32.1	77.4±20.7	11.82 ± 1.74	-0.605
	9	I41T-A42Q	1757.1 ± 141.4	462.9 ± 36.8	55.4 ± 17.2	13.31 ± 1.82	-0.59
	10	I41Q-A42Y	1876.7±294.6	434.9 ± 39.3	81.2±32.9		-0.382
	11	I41L-A42N	1666.9 ± 171.9	399.0 ± 35.7	71.0 ± 22.3	14.61 ± 2.66	-0.561
	12	141Q- A42L	1842.7±198.1	410.7±32.8	65.8 ± 24.8	19.79 ± 3.17	-0.295
	13	I41T-A42M	1635.9 ± 316.3	419.2 ± 64.1	85.4±33.4	12.78±1.8	-0.292
)	14	141T- A421	1792.5 ± 201.3	454.5 ± 44.3	82.9±16.3	13.72 ± 1.96	-0.075
(_i)	15	I41K	1821.7±247.9	461.4 ± 35.0	69.9 ± 26.7	19.00 ± 4.12	-0.518
	16	I41K-A42L	2126.6±237.4	443.0 ± 59.1	85.8±29.6	18.56 ± 3.46	-0.379
)	17	I41R-A42R	1543.8 ± 204.0	437.6 ± 54.1	63.3 ± 19.1	16.54 ± 2.07	-0.324
	18	A42R	1972.3±337.0	470.1 ± 43.4	68.1 ± 18.4	15.49 ± 1.9	-0.034
	19	E22G	2240.1 ± 323.3	519.0 ± 47.0	119.9 ± 35.3	20.52 ± 2.43	0.209
	20	D23N	2376.2 ± 208.9	534.9 ± 38.0	153.4 ± 29.8	23.91 ± 2.39	0.238
	21	E22K	2641.4±312.7	574.0±51.2	173.2±43.0	29.06 ± 3.53	0.545


Materials and Methods

Molecular Dynamics Simulation

- Implicit solvent
- Gromacs version 4.5.5
- Force field: OPLS/AA
- 12 replicas each peptide, 500 ns/each replica
- Temperature range: 290.2K. ... 490.2K
- Secondary structure analysis: Stride


Steer Molecular Dynamics Simulation

Neighboring chain Pulledchain

- Explicit solvent: water model TIP3P
- Gromacs version 5.1.2
- Force field: CHARMM36m
- Spring constant k 1000 =(kJ/mol/nm2)
- Pulling speed v = 1 nm/ns

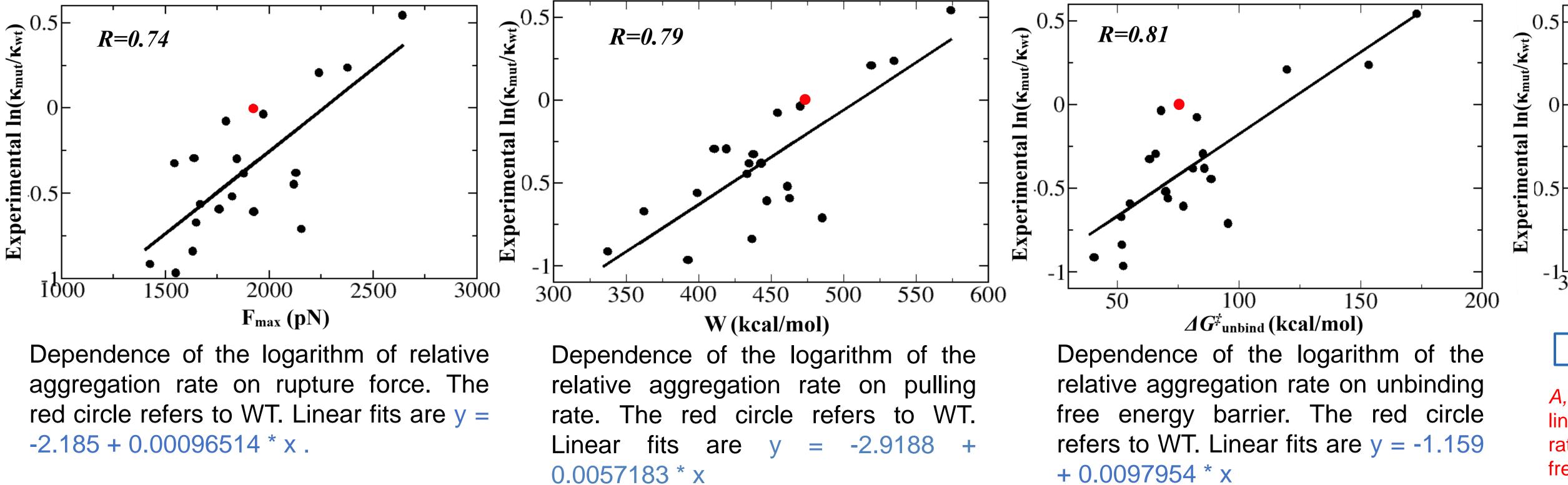
Results

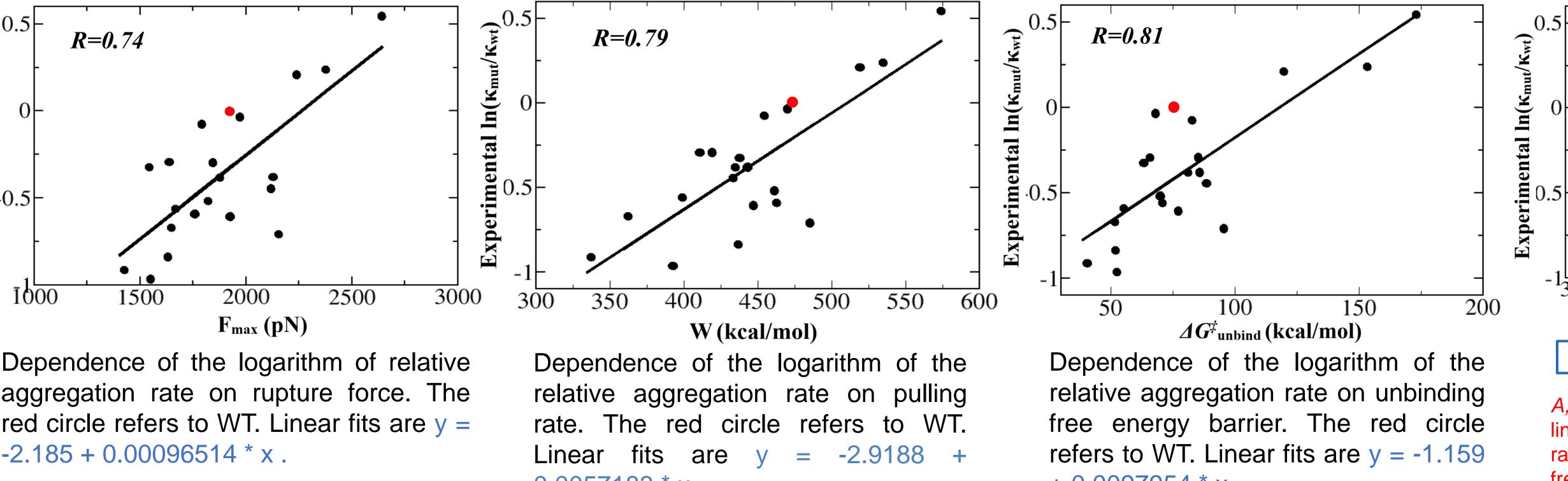
Conclusions

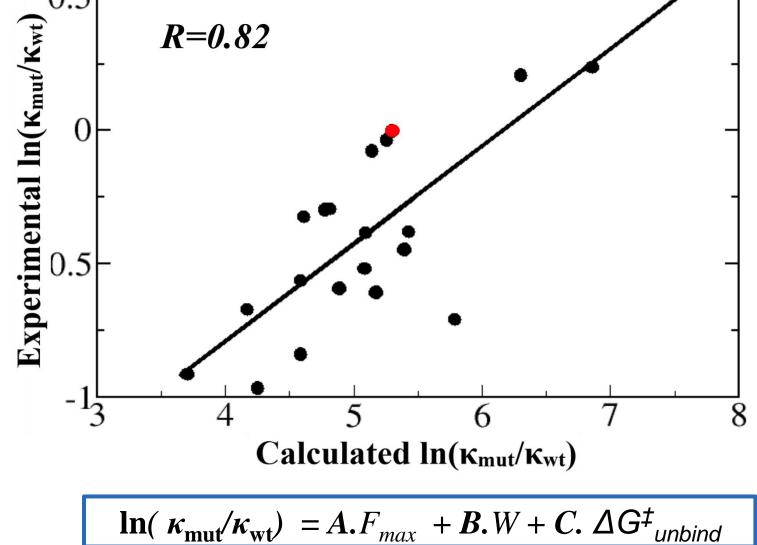
We have found a strong correlation between the experimental aggregation rate and β -propensity in the monometric state and the mechanical stability in the fibrillar structure. The dependence of κ on β , *Fmax*, *W*, and ΔG are expressed by an exponential function in such a way that the higher the β propensity, the faster formation of fibril. But linear dependence is not excluded, probably due to the fact that the data set is not large enough. Nevertheless, our result sheds light on our understanding of major principles that regulate the selfaggregation propensity of proteins, in particular, intrinsically disordered proteins.

References

Thu, T. T. M et al, J. Chem. Phys, 150, 225101, 2019. Thu, T.T.M and Li, M.S., J. Chem. Phys. 157, 055101 2022.


Acknowledgement


The work was supported by Department of Science and Technology at Ho Chi Minh City, Vietnam (grant No 19/2017/HĐ-KHCNTT), Narodowe Centrum Nauki in Poland (grant No 2015/19/B/ST4/02721), and Vietnam National University, Ho Chi Minh City (grant No C2020-18-19).


A, B and C are the slopes from Figures a, b and c below

Aggregation rate depends on mechanical stability of fibrillar structure: Evidence from a dataset of 21 sequences

Calculated aggregation rate

A, B and C are the slopes obtained from the linear fit between the exponential aggregation rate and the rupture force, work and unbinding free energy barriers, respectively