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Universality and chaos in XY spin glasses

Marek Cieplak and Mai Suan Li*
Institute of Physics, Polish Academy of Sciences 02-668, Warsaw, Poland

Jayanth R. Banavar
Department of Physics and Materials Research Laboratory, Pennsylvania State University,
104 Davey Laboratory, University Park, Pennsylvania 16802
(Received 20 July 1992)

Chaotic behavior in XY spin-glass models is investigated using the discretized Migdal-Kadanoff
renormalizaton-group scheme. The zero-temperature scaling exponent is found to be independent of the
degree of discretization. However, the Lyapunov exponent characterizing the chaotic behavior shows a
continuous variation reflecting the nonuniversal behavior of the interfacial entropy.

The vortex glass phase! has been invoked as an ex-
planation of the unusual magnetic properties of the
mixed state of oxide superconductors. A simplified mod-
el that is believed to capture the physics of the vortex
glass is the random-gauge XY model’> (RGXY) described
by the Hamiltonian

H=-—73J;cosl¢,—¢;,— A4;), (1)
i

where J;; =J when i and j are nearest neighbors and zero
otherwise, 4,; is a quenched random variable distributed
uniformly between O and 2w, and ¢;, the spin variable,
takes on values between O and 27. It has been demon-
strated that the RGXY has a lower critical dimensionali-
ty less than three’” °>—in three dimensions it has a transi-
tion from a spin-glass state to a paramagnetic state at a
nonzero temperature. Strikingly, this behavior is qualita-
tively different from the bimodal XY spin glass (BXY)
(obtained by restricting the values of 4;; to be 0 or = with
equal probability) which has a 7 =0 phase transition in
three dimensions. These results have been deduced using
a powerful yet simple phenomenological scheme called
zero-temperature scaling. %’ The basic idea is that at long
length scales the low-temperature spin glass phase is
governed by a zero-temperature fixed point. One of the
predictions of this approach is the chaotic nature of the
spin-glass phase® !2—in the Ising spin-glass context, the
relative orientations of spins is increasingly sensitive as
the spin separation is increased to small perturbations in
externally controlled variables such as temperature. Re-
cently Nifle and Hilhorst'? have shown that chaos in the
critical region in three-dimensional Ising systems is
characterized by a new critical exponent leading to new
scaling laws. The chaotic nature associated with the flip-
ping of large droplets of Ising spins has been invoked to
interpret dynamical spin-glass experiments involving ag-
ing® and dimensional crossover'® in layered systems and
as a probe of conductance fluctuation in mesoscopic me-

tallic glasses. '
While the droplet theory® for Ising spin glasses is well
developed, much less is known about excitations in sys-
tems of spins with continuous symmetry. Indeed, this is
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a matter of some importance since real materials are ex-
pected to have XY or Heisenberg spins possibly with
some anisotropy. Indeed, the only study!® of the chaotic
nature of such systems employed a Migdal-Kadanoff
renormalization-group (MKRG) approach within a har-
monic approximation: The Hamiltonian is expanded
about the equilibrium angle between neighboring spins up
to quadratic terms with the Gaussian form of the parti-
tion function taken to be valid over the entire range of
angles. This enables a recursion scheme since the quad-
ratic nature is preserved in a decimation process. Unfor-
tunately this scheme is expected to work only for T =0
and even then it is ad hoc. Indeed, such a scheme leads to
an incorrect result that RGXY has a lower critical
dimensionality greater than 3.6

Yet another problem of principle arises in extending a
simple Imry-Ma!” argument for Ising spin glasses to con-
tinuous spins. The argument for the Ising case is as fol-
lows: Consider a system at zero temperature in its
ground state. We now add a tiny random perturbation of
relative strength € to each bond. We ask whether the
ground state is stable to this perturbation. The cost of a
droplet excitation of linear extend L is taken to scale as
JL”? where J is a measure of the width of the unperturbed
bond distribution and —y is the scaling dimension of the
temperature. The possible gain in energy on flipping the
droplet could arise at the interface of the domain and
scales as eL *° where d; is the fractal dimension of the
surface of the droplet. Since {=d;/2—y >0 for Ising
spin glasses, the ground state becomes unstable against
the perturbation on length scales L >L*~1/¢!/%. The
chaotic dependence on the temperature difference follows
from the fact that two identical systems at slightly
different temperatures flow to the zero-temperature fixed
point but with slightly different renormalized exchange
couplings so that the above argument is again valid. In
this context, the physical meaning of d; for a spin pos-
sessing continuous symmetry is unclear. Furthermore,
the nature of the excitations in such system are probably
very different from the Ising case.

In this paper we present the results of the application
of a MKRG scheme to the study of the chaotic phase of
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the RGXY model described by Eq. (1). In addition to the
ad hoc harmonic approximation approach, we consider a
technique introduced recently involving discretization of
the XY spins'®—this scheme is self-consistent, it allows us
to extend our analysis to nonzero temperature thus per-
mitting the investigation of chaos arising from tiny tem-
perature differences, and it allows us to extrapolate be-
tween the RGXY and an Ising spin glass and address im-
portant questions of universality.

The MKRG scheme allows one to obtain closed
renormalization-group recursion relations by expressing a
coupling after renormalization in terms of 2D bare cou-
plings consisting of 22 ™! parallel strings of two couplings
each (D is the spatial dimensionality). The scheme is ex-
act for hierarchical lattices when the spin degrees of free-
dom are discrete so that the form of the Hamiltonian is
preserved under the transformation. The study of sys-
tems with continuous symmetry such as those given by
Eq. (1) poses a problem since the renormalized Hamil-
tonian no longer has the simple cosine form. The key
idea behind the discretization scheme is that instead of
allowing ¢ to be a continuous variable, we allow it to take
on one of many discrete values uniformly distributed be-
tween O and 27. The values of A4;; are also limited to the
appropriate set. The Hamiltonian is defined for values of
¢ restricted to be 2wk /q with k =0,1,...,(g —1). The
coupling between neighboring spins in states k; and k,
will be denoted by J (g, k), where k = |k, —k,|. The con-
tinuous symmetry case is recovered in the limit of ¢ — .
In the limit of g =2, the model reduces to a bimodal Ising
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spin glass (BSG). Previous studies'® using the discretized
MKRG in three dimensions have shown that the ex-
ponent y is the same for both g =0 and 2. This result
does not, however, mean that they are in the same
universality class since y is essentially a 7 =0 scaling ex-
ponent and is quite unrelated to the exponents at critical-
ity. Indeed, numerical calculations using regular lattices
in three dimensions are suggestive that the values of y for
the RGXY (Refs. 4 and 5) and BSG (Ref. 7) do not coin-
cide.

Our calculations follow the procedures in Refs. 11 and
18. We construct a pool of bonds J;(q, k), e=1, N, result-
ing from the random choices in the gauge factors 4;;
where N is typically between 2000 and 10000 (depending
on q), chosen initially to represent the Hamiltonian (1).
22 members of the pool are chosen randomly to construct
one renormalized coupling—this procedure is repeated
until a renormalized pool is formed. The scaling ex-
ponent y is obtained by considering how a characteristic
measure of the coupling strength J(n), defined as

1

N
v ig} m]?xJi(q,k)

(where the iteration index n has been omitted) changes
after n iterations [J(n)~2"]. The Lyapunov exponent
for chaos is determined by taking two pools that are al-
most identical and studying how they diverge from each
other until they become completely uncorrelated. The
characteristic mean-square distance defined by

n —1 N g—1
dn)=3 qz [J,-(q,k)—J,-’(q,k)]z/ S 3 [JiHg k) +JTHg, k)], )
i=j k=0 [

i=1 k=0

approaches 1 (corresponding to uncorrelated pools) with
an initial power-law dependence of d%(n) on a length
scale 2", d%(n)~L?%. We consider two kinds of initial
perturbations, one corresponding to small differences in
the temperature and the other perturbing randomly and
infinitesimally the 4,;’s in (1) but holding the tempera-
ture at zero.

Our results for y and { in D =3 are shown in Figs.
1-4. Figure 1 shows that y is the same for the values of g
studied confirming the previously stated result that
RGXY and BSG have the same y and so does the Gauss-
ian Ising spin glass. However, the exponent § controlling
the characteristic length scale of the system correspond-
ing to complete decorrelation varies continuously with g
and is a striking example of nonuniversal behavior.
Indeed the same continuous variation of { with g is ob-
tained independent of whether one considers minute ini-
tial variation in temperature or in the exchange coupling
at zero temperature (Figs. 2 and 3). We have also investi-
gated the chaotic behavior for D =4 and the results are
shown in Fig. 4. As previously found for Ising spin
glasses and the Heisenberg spin glass within the harmon-
ic approximation, the value of { is substantially indepen-

dent of D. Figure 5 shows a plot of § versus g. The nu-
merical data are described by a fit
£=1-—0.309 exp(—0.18g). The star in Fig. 5 shows the
value of { determined using transfer-matrix methods in
D =2 by Bray and Moore.’ The arrows at the right
represent the values of { deduced using the harmonic ap-
proximation and by taking the fixed-shape probability
distribution to be Gaussian.?°

We now turn to a discussion of the physical
significance of { and d; for continuous symmetry spin
systems. Recall that §, d;, and y are related by the equa-
tions {=d,/2—y. The exponent { determines the
characteristic length scale L* at which two systems at
temperatures T and T + 87T become decorrelated by the
expression

*=(Y/08T)¢ (3)

where Y and o are defined by the expressions for interfa-
cial free energy and entropy,

F, . =Y(T)L” as L— 4)

int
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FIG. 1. Scaling of the characteristic coupling strength for
D =3 and T =0. The characteristic value is chosen to be the
maximum coupling over the angle ¢ between neighboring spins,
or equivalently, over the difference in the discretization index k.
The dotted line corresponds to the Gaussian Ising spin glass.
The data points are for the RGXY model with various values of
q: 2 (large triangles), same as bimodal Ising spin glass; 3 (small-
er triangles); 6 (hexagons); and 12 (asterisks). The lines are data
points obtained from a second run. The deviations between
symbols and their corresponding lines are measures of error
bars. The exponent y =0.26 for all of the data points.
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FIG. 2. Scaling of normalized distance between pools for
D =3 and T =0. The chaos is induced by a perturbation in the
couplings. The symbols are as in Fig. 1. For g =2 the resulting
§ is 0.74 (bimodal and Gaussian Ising spin glass). For ¢ =3, 6,
and 12 the § is 0.82, 0.90, and 0.96, respectively. The error bars
are of order 0.01. )
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FIG. 3. Same as in Fig. 2 but for 7 =0.3J /kp. The chaos is
induced by a perturbation in temperature of magnitude
AT/T=10"°.

and

S, =a(TL"”

int

as L — o . (5)

Thus the nonuniversal behavior of { underscores the
nonuniversal behavior of the interfacial entropy on vary-
ing the parameter g, the number of discretized states in
the model.

As mentioned previously, the RGXY and BXY models
have qualitatively different behaviors in D =3. We have
studied a model with g =500 within the discretized
MKRG scheme that extrapolates from the BXY to the
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FIG. 4. Same as in Fig. 3, but for D =4.
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FIG. 5. Dependence of { on g. Data points (hexagons) are
based on the combined D =3 and D =4 calculations. The ar-
rows indicate results for § in the ¢ — oo limit obtained within
the harmonic approximation. For the BXY model £=0.69 and
for the RGXY model [in the version given by Eq. (6)] £=0.59.
The star corresponds to the transfer-matrix result (§=0.81) for
the bimodal and Gaussian Ising spin glass.

RGXY. Note that the BXY model corresponds to the
distribution of A4;; being either 0 or 7 with equal proba-
bility. Figure 6 demonstrates that spreading this delta
function distribution by a tiny amount is a relevant
perturbation—at long length scales, the behavior crosses
over to that of the RGXY. It would be interesting to ver-
ify whether the dependence of the lower critical dimen-
sionality on the distribution of A;; and the continuous
variation of § with g hold on Euclidean lattices.

We have evaluated the critical behavior of both the
RGXY and a Gaussian Dzyaloshinsky-Moriya model'®!°
(GDM) defined by

H= 2] cos(¢

—¢;)+ zD isin(¢; —é;), (6)
Cij)

where J;; and D;; are independent nearest-neighbor cou-
plings each chosen from a Gaussian distribution. We use
the discretized MKRG with ¢ =100. Our estimates of
T, and the correlation length exponent v for the RGXY
(and GDM) are 0.46%0.01 (0.50+0.01) and 2.5+0.1
(2.540.1), respectively.'* For the RGXY, the Monte
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FIG. 6. Scaling of the characteristic coupling strength in the
q =500 clock model for D=3 and T=0. The open squares
connected by the solid line correspond to the BXY case [ 4;;
randomly equal to O or w, so that J(q,¢) is nonzero only for
¢=0 and 7]. Increasing g extends the downward trend of the
scaling curve. The other data points correspond to the situation
in which the =0 and = states have a probability of 45% each.
The remaining 10% is located in the caps around the poles.
The angular extend of each cap, A, is half of the number indi-
cated on the right. Rescaling results in spreading of the caps
across the whole clock. Varying ¢ for a given A¢+#0 does not
affect the scaling curves.

Carlo estimates’ of 7, are 0.45+0.05 and =~0.6,2
whereas v=1.310.4.° The exponent v has also been ob-
tained experimentally. Olsson et al.?° obtain v=1.7 and
2+1, respectively. In recent work, Dekker, Eidelloth,
and Koch?! get v=1.8+0.2 suggesting that the MKRG
overestimates the value of v.
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