Journal of the Physical Society of Japan
Vol. 66, No. 7, July, 1997, pp. 2110-2122

Chiral Glass: A New Equilibrium Phase
of Ceramic High-T'. Superconductors

Hikaru KAWAMURA* and Mai Suan L1t

Faculty of Engineering and Design, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland

(Received February 17, 1997)

Possible occurrence of an equilibrium thermodynamic phase with a spontaneously broken time-
reversal symmetry is studied in a model ceramic superconductor with anisotropic pairing sym-
metry. It is shown by Monte Carlo simulations that such a “chiral-glass” phase is truly stable
even under the influence of screening. Existence of frustration in zero external field, arising from
the d-wave pairing symmetry of high-T. superconductors, is essential to realize this phase. Via
a finite-size scaling analysis, critical exponents associated with the chiral-glass transition are
estimated to be vcg = 1.3 £ 0.2 and nncg = —0.2 £ 0.2. These values turn out to be close to
those of the Ising spin glass. Phase diagram of the model is constructed and the implications to

experiments are discussed.
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§1. Introduction

Among a variety of macroscopic thermodynamic prop-
erties of superconductors, the type and the nature of
possible thermodynamic phases is of central importance.
For example, considerable attention has recently been
paid to the possible phase of high-T, superconductors in
applied magnetic fields.!) For sufficiently random or dirty
samples, the existence of a true thermodynamic phase
with zero linear resistance was predicted (a vortex-glass
phase).z) Recent numerical works suggest, however, that
the screening effects eventually destabilize the vortex-
glass phase.?) In zero external field, by contrast, the only
thermodynamic phase known to date either in clean or
random superconductors is the standard Meissner phase.

Meanwhile, recent experimental studies have re-
vealed that cuprate high-T. superconductors have an
anisotropic pairing symmetry, probably of the dgz_,2-
wave type.*) Naturally, one may expect that such
anisotropic nature of the superconducting order param-
eter could give rise to novel thermodynamic properties
not encountered in the conventional s-wave supercon-
ductors, possibly the appearance of a new thermody-
namic phase. Unfortunately, this appears not to be the
case in clean single crystals, although enhanced effects of
thermal fluctuations give rise to a variety of interesting
phenomena in high-T¢ superconductors. This is because
the d 2_,2-wave order parameter is characterized by a
single phase variable of the condensate as in the con-
ventional superconductors, and the resulting Ginzburg-
Landau Hamiltonian, which is known to well describe
various macroscopic properties of superconductors, has
essentially the same form as in the conventional super-
conductors. By contrast, in ceramic or granular high-T,
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samples, the situation may well differ because ceramic
samples can be regarded as a random Josephson net-
work and the anisotropic superconducting order parame-
ter largely modifies the properties of the Josephson junc-
tion.

One remarkable effect is the appearance of the ‘r junc-
tion’ characterized by the negative Josephson coupling,
J < 0, across which the order parameter changes the

phase by 7. One important consequence of such 7 junc-

tions is the appearance of frustration even in zero ex-
ternal field.®) Frustration is borne by the ‘odd ring’, a
closed junction-loop having odd numbers of 7 junctions.
On the basis of a single-loop model in which high-T; ce-
ramics were regarded as an ensemble of noninteracting
junction-loops, Sigrist and Rice® successfully explained
the paramagnetic Meissner effect observed experimen-
tally in certain high-T, ceramic samples.”-8) Magnetic
moments spontaneously induced at the odd rings give
rise to a paramagnetic response observed experimentally.

It is also evident, however, that the paramagnetic
Meissner effect itself is not directly related to a new ther-
modynamic phase, since an ensemble of noninteracting
junction-loops is enough to cause the paramagnetic sus-
ceptibility,® ? just as an ensemble of free spins gives rise
to the paramagnetic Curie law. In the present paper, we
wish to address the question whether a new type of equi-
librium phase closely related to the unconventional pair-
ing symemtry of high-T, superconductors is ever possible
in certain ceramic samples. Indeed, one of the present
authors (H. K.) recently proposed that such a novel ther-
modynamic phase might be realized in zero external field
in certain ceramic high-T, superconductors.!?) This state
is characterized by a spontaneously broken time-reversal
symmetry with keeping the U(1l) gauge symmetry, and
is called a ‘chiral-glass phase’.!!) The order parameter is
then a ‘chirality’, which represents the direction of the
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local loop-supercurrent over grains. From a symmetry
consideration, the nonlinear susceptibility was predicted
to diverge with a negative sign at the associated chiral-
glass transition point. Frustration effect, which arises
due to the random distribution of 7 junctions with the
negative Josephson coupling, is essential to realize this
phase. Note that in this chiral-glass state, unlike in the
vortex-glass (gauge-glass) state under external fields, the
phase of the condensate is not ordered, even randomly,
on sufficient long length and time scales: The ordering
occurs only in the loop-supercurrents, or in the chirali-
ties.

There are several experimental results which appear
to corroborate the existence of such a novel glassy zero-
field phase in ceramic high-T, superconductors. Since the
discovery of high-T, superconductors, it has been known
that ceramic high-T. samples often exhibit a glassy be-
havior reminiscent of the spin glass.!?"14) More recently,
Leylekian, Ocio and Hammann observed via the noise
and ac susceptibility measurements that LSCO ceramic
samples showed a glassy behavior reminiscent of the spin
glass even in zero external field . *®) They also observed
an intergranular cooperative phenomenon indicative of
a glassy phase transition. It appears natural to inter-
pret this cooperative phenomenon in terms of the-pro-
posed chiral-glass picture. More direct support of the
chiral glass has recently been reported by the ac suscep-
tibility measurements on YBCO ceramic samples. Thus,
Matsuura et al. observed a negatively divergent nonlin-
ear susceptibility at an intergranular transition point,16)
consistent with the proposed chiral-glass picture.

It should be emphasized here, however, that the theo-
retical analysis of ref. 10 was based on an analogy to the
XY spin glass,!”) and completely neglected the effects of
screening (coupling of the condensate to fluctuating mag-
netic fields). Thus, the fate of the proposed chiral-glass
phase in the presence of screening is not yet clear. It
should be noted that the screening effect could be sub-
stantial in the intergranular ordering of ceramic high-
T, materials, since the length unit to be compared with
the penetration depth is the grain size (~1lum) rather
than the short coherence length of the Cooper pair. As
the screening effect makes the otherwise long-ranged in-
teraction between the chirality (quenched-in half a vor-
tex) short-ranged, one may wonder if it would eventually
wash out a sharp phase transition and destabilize the
chiral glass phase, just as it destabilizes the vortex-glass
phase of type-II superconductors in a field.

The purpose of the present paper is to investigate the
stability of the hypothetical chiral-glass phase against
this screening effect, and to determine whether the
chiral-glass state really exists as a true thermodynamic
phase or not. For this purpose, we perform exten-
sive Monte Carlo simulations on a frustrated three-
dimensional lattice model introduced by Dominguez et
al.,'®) in which the phase variables located at each site of
the lattice are coupled to the fluctuating magnetic-field
variables at each link. The model can also viewed as a
spin-glass-type (i.e., random and frustrated) version of a
U(1) lattice gauge theory. The same model was studied
previously by Monte Carlo simulations with an interest
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in the behavior of linear'® and nonlinear!® susceptibili-
ties. But, neither of these previous simulations was fully
equilibrated, and thus, could not give any information
whether a true equilibrium phase could exist or not. In
the present paper, we perform equilibrium simulations on
the same model based on an extended ensemble method
recently proposed by Hukushima and Nemoto,??) trying
to determine the equilibrium properties of the model. A
part of the results was already reported in ref. 21.

The remainder of this paper is organized as follows. In
§2, we introduce our model and several physical quan-
tities of interest. In §3, we give technical details of our
Monte Carlo simulation. The results of Monte Carlo sim-
ulation are presented and analyzed in §4. By studying
the Binder ratio associated with the chirality, we show
that there indeed exists a stable chiral-glass phase with
a spontaneously broken time-reversal symmetry even in
the presence of screening. Critical exponents characteriz-
ing the chiral-glass transition are determined with use of
a finite-size scaling analysis. Phase diagram of the model
is also constructed. Section 5 is devoted to summary and
discussion. We discuss in some detail the implications of
the obtained results to the possible experimental detec-
tion of the chiral-glass state in ceramic high-T; supercon-
ductors. In particular, requirements for the appropriate
samples as well as the method of detection are examined.

§2. Model

We assume that weak links connecting the neighbor-
ing grains are distributed sufficiently dense, so that the
system can be viewed as an infinite network of Josephson
junctions which are not decomposed into finite clusters.
Putting superconducting grains at the sites of a simple-
cubic lattice, we model such ceramic superconductors by
a three-dimensional lattice model of Josephson-junction
array with finite self-inductance. Neglecting the charging
effects of the grain, we consider the following zero-field
Hamiltonian,!8:19)

H=— Z Jz’j cos(Gi — 9]' — Aij)
(i5)

+ 4 gzs—O)QZ(V x A)?,

2L 21 > (2.1)

where 0; is the phase of the condensate of the grain at the
1-th site of a simple cubic lattice, A being the fluctuating
gauge potential at each link of the lattice, ¢¢ the flux
quantum, J;; the Josephson coupling between the i-th
and j-th grains, and the lattice curl V x A is the directed
sum of A;;’s round a plaquette. £ is the self-inductance
of a loop (an elementary plaquette), while the mutual
inductance between different loops is neglected. The first
sum is taken over all nearest-neighbor pairs, while the
second sum is taken over all elementary plaquettes on
the lattice. Fluctuating thermodynamic variables to be
summed over are the phase variables, 6;, at each site and
the gauge variables, A;;, at each link.

In this model, quenched randomness occurs only in
the distribution of the Josephson coupling, J;;, which is
assumed to be an independent random variable taking
the values J or —J with equal probability (+J or binary
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distribution), each representing 0 and 7 junctions. We
also assume that J;; is independent of temperature and
magnetic field. This assumption is more or less justified
when the intergranular ordering occurs at a temperature
considerably lower than the superconducting transition
temperature of the grain. While our simulation is per-
formed for this particular distribution of J;;, one could
expect from experience in spin-glass studies that the re-
sults would be rather insensitive to the details of the
distribution, e.g., a slight asymmetry between +J or the
detailed form of the distribution.

The bare Josephson penetration depth in units of lat-
tice spacing is given by

o = 1V,

where £ is the dimensionless inductance defined by
L= (21/¢0)*JL.

Thus, larger inductance corresponds to smaller penetra-
tion depth with enhanced effects of screening. In the
limit £ — 0, or A\g — oo, the screening effect becomes
negligible and one recovers the XY spin-glass Hamilto-
nian of ref. 10. In the opposite limit £ — oo, on the
other hand, it can be shown that the model reduces to
the noninteracting one.!?) Therefore, the system remains
in the disordered state even at T'= 0 in this limit.

The symmetry property of the Hamiltonian (2.1) was
analyzed in detail in ref. 19. Contrary to the vortex-
glass (gauge-glass) Hamiltonian, the Hamiltonian (2.1),
defined in zero field, keeps the Z5 time-reversal symme-
try in addition to the U(1) gauge symmetry. Frustration
arises from the random distribution of both positive and
negative Josephson couplings. This should be contrasted
to the vortex-glass (gauge-glass) problem, where the as-
sociated Hamiltonian does not possess the time-reversal
symmetry due to external magnetic fields, while the frus-
tration arises from the magnetic field, not from the J;;.

The Hamiltonian (2.1) can also be written in the di-
mensionless form as

= —ZJZJ COS j —Ai]’)

(i4)

1
il V x A)?
+2£Z( x A)?,

p

(2.2)

(2.3)

Sl

(2.4)

where J;; = J;;/J is the dimensionless quenched random
variable, taking values 1 with equal probability.

The local chirality may be defined at each plaquette
by the gauge-invariant quantity,’®

P
Kp = 2_3/2 Z jij sin(Gi - 9]' - Aﬁ),

)
where the sum runs over a directed contour along the
sides of the plaquette p. Physically, the chirality, &),
is a half (7) vortex, being proportional to the loop-
supercurrent circulating round a plaquette p. If the pla-
quette p is frustrated, the local chirality x, tends to take
a finite value, its sign representing either clockwise or
counterclockwise orientation of circulating supercurrent.

(2.5)

Hikaru KAWAMURA and Mai Suan L1

(Vol. 66,

If, on the other hand, the plaquette is unfrustrated, it
tends to take a value around zero. Note that the chiral-
ity is a pseudoscalar in the sense that it is invariant under
global U(1) gauge transformation, ; — 6; + A9, A;; —
A;j, but changes its sign under global Z, time-reversal
transformation, 6; — —6;, A;; — —A;;. Due to this
symmetry property, chirality can be regarded as an or-
der parameter of the chiral order.

Induced local flux or magnetization threading a pla-
quette p is given in the dimensionless form by,

f p = %7 q)p =
Flux is also a pseudoscalar like chirality, whose sign rep-
resents the direction of the induced magnetic moment
threading the plaquette p. Total magnetization per pla-
quette along the z-axis is given by

V x A. (2.6)

(2.7)

where S is the area of a plaquette and the sum is taken
over all N, plaquettes on the (zy) plane of the lattice.
The corresponding dimensionless quantity, 7, can be de-
fined by

N = —— 2
P pe(zy)
The linear susceptibility, x, is given by!8:19)
dm 78 i)~ 2 1
=—=— - — 2.

where H is an external magnetic field, 3 is the dimen-
sionless inverse temperature defined by 8 = J/kgT, (- -)
represents a thermal average, and [- - -] represents a con-
figurational average over the bond distribution. The lin-
ear susceptibility is dimensionless in cgs units. The non-
linear susceptibility, x2, or its dimensionless counterpart,
X2, is given by!?

1d3m S, .
X2 = gaﬁ = (—%—) X2,
%o = 1(”5NP> (7 —3(a2)?).  (2.10)

In these expressions of x and 2, we omit the parts which
are odd under the time-reversal operation, m — —m: In
zero external field, such odd parts should vanish iden-
tically in any finite system in full equilibrium. Note
that the above 3, being proportional to the minus of
the third-harmonic component of the ac susceptibility, is
sometimes denoted as 3 in the literature.

§3. Monte Carlo Simulation

We perform Monte Carlo simulations for the Hamil-
tonian (2.1) based on the standard Metropolis method
combined with an extended ensemble method. Several
values of the dimensionless inductance, L, are simulated
including £ = 1,3,4,5, with the greatest effort in the
case of £ = 1. Since the bare penetration depth, Ao, in
those cases is equal to, or less than one lattice spacing,
we expect that the effect of screening should manifest
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itself even for rather small lattices studied here, which
contain L X L x L sites with L = 3,4,6,8,10. Sample
average is taken over 1540 (L = 3), 1000 (L = 4), 500
(L = 6), 300 (L = 8) and 100 (L = 10) independent
bond realizations.

We impose free boundary conditions on all sides of the
lattice. If, on the other hand, one applies the standard
periodic boundary conditions on the link variables A4;;’s,
one has somewhat unphysical results that the magneti-
zation vanishes trivially even under external fields. In
zero field, the periodic boundary conditions imposed on
the link variables A;;’s also lead to the trivial vanishing
of the susceptibility. In view of such unphysical nature of
the periodic boundary conditions, we impose free bound-
ary conditions in the following simulations.

Monte Carlo simulation is performed according to the
version of an extended ensemble method of ref. 20, where
the whole configurations at two neighboring tempera-
tures of the same sample are occasionally exchanged. In
this method, one simulates the sample with a given bond
realization at Np distinct temperatures at a time dis-
tributed in the range [Timin, Tmax]. Monte Carlo updating
consists of the two parts: The first part is the standard
local Metropolis updating at each temperature, and the
second part is an exchange of the whole lattices at two
neighboring temperatures.

Since the present spin-glass-like model possesses the
link variable, A;;, in addition to the site variable, 6;,
an equilibrium simulation is rather hard even with the
new efficient algorithm. In the case of L = 8, for ex-
ample, we prepare 20 temperature points distributed in
the range [0.27J, 0.8]] for a given sample, and perform
1.5x 10° exchanges per temperature of the whole lattices
combined with the same number of standard ‘single-spin-
flip’ Metropolis sweeps.2?) Equilibration is checked by
monitoring the stability of the results against at least
three-times longer runs for a subset of samples.

As long as one is interested in the gauge-invariant
quantities like the chirality or the flux, the results would
not depend on the particular choice of the gauge. In
most of our calculation, we choose the gauge where the
A;;’s along the z-direction are fixed to be zero. We also
use other gauges to take some limited data, including
the Coulomb gauge and the ‘temporal gauge’,'8:19) just
to make sure that the results are really independent of
the choice of the gauge.

We run in parallel two independent replicas with the
same bond realization and compute an overlap between
the chiral variables in the two replicas,'”)

1 1 2
qﬁ:—]@;/ﬁ;)ﬁ;).

In terms of this chiral overlap, g, the Binder ratio of the
chirality is calculated by

(3.1)

1, I
906 =50 fp

(3.2)

Here gog is normalized so that in the thermodynamic
limit it tends to zero above the chiral-glass transition
temperature, Tog, and tends to unity below Tog pro-
vided the ground state is non-degenerate. At the chiral-
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glass transition point, curves of gcg against T for differ-
ent L should intersect asymptotically.

The chiral-glass susceptibility, which is expected to di-
verge at the chiral-glass transition point, is given by

xce = Npl{g2)], (3.3)

The behavior of the chiral short-range order may be seen
via the mean magnitude of the local chirality, %, defined
by

R = {Nip SRR, (3.4)

P
Note that for the frustrated noncollinear configurations,
K, tends to take a finite value whereas for the unfrus-
trated collinear configurations < tends to vanish. One
can also define a reduced chiral-glass susceptibility, ¥ca,
corrected for the short-range order effect by dividing xcqg
by the appropriate power of the magnitude of the local

chirality,!”)
Xca = xca /R (3.5)

Similarly to the case of the chirality, one can intro-
duce an overlap between the flux variables in the two
independent replicas,

1
= Y.
Py

In terms of gf, the Binder ratio of the flux is calculated
by

(3.6)

la) ]2 ). (3.7)

1
grG = 5(3 - @5]—
The flux-glass susceptibility, xrg, and its reduced coun-
terpart, Xrq, are defined by
(3.8)
(3.9

xra = Np[(a3)],
¥rc = xra/f*

respectively, where the the mean magnitude of the local
flux is defined by

F= {-j,—p SRR

p

(3.10)

§4. Monte Carlo Results

In this section, we present the results of our Monte
Carlo simulations. Most extensive simulation is made
for the inductance £ = 1, which corresponds to the bare
penetration depth, )\g, equal to one lattice spacing. In
§4.1, we present our Monte Carlo results for this induc-
tance, £ = 1. The results for other inductactances in-
cluding £ = 3,4, 5 will be presented later in §4.2.

4.1 L=1

In Fig. 1, the temperature dependence of the root-
mean square of the local-chirality amplitude, &, defined
by eq. (3.4), is shown for various lattice sizes. Even at
lower temperatures % keeps a nonzero value, slightly in-
creasing with decreasing temperature, which indicates
that the chiral short-range order is developed in the tem-
perature range studied here.
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Fig. 1. The temperature and size dependence of the root-mean

square of the local-chirality amplitude, &, defined by eq. (3.4),
for £ =1.

Figure 2(a) displays the size and temperature depen-
dence of the Binder ratio of the chirality, gcg. The data
of gog for L = 3,4,6,8 all cross at almost the same
temperature 7' ~ 0.28 —0.29, strongly suggesting the oc-
currence of a finite-temperature chiral-glass transition at
Tog = 0.286+0.01 (temperature T is measured in units
of J). In particular, the data below Tgg show a rather
clear fan out.

The determined value of Tcg is slightly lower than the
corresponding chiral-glass transition temperature of the
pure £J XY spin glass determined in ref. 17, Tog =
0.32 £ 0.01. Note that the spin-glass model corresponds
to the £ — 0 limit of the present model. The observed
suppression of Tog by the screening effect seems reason-
able, since the screening effect makes the long-ranged
interaction - between vortices (chiralities) short-ranged,
which should make the chiral-glass transition less favor-
able.

The value of the Binder ratio at the transition point,
9&a, is estimated to be g&g =~ 0.38. The estimated value
is considerably smaller than the corresponding value of
the 3D XY spin glass,'”) g&g ~ 0.72. This large devi-
ation probably comes from the difference in the choice
of boundary conditions, i.e., free boundary conditions in
the present simulation and periodic boundary conditions
in ref. 17. Note that the value of g* is known to depend
on the choice of boundary conditions even in a given uni-
versality class.??)

Standard finite-size scaling analysis is made for gog
based on the one-parameter fit of the form,

goc = gog (LYes | T — Tog |),

with fixing Tog = 0.286, where gog is a scaling func-
tion. Then, the chiral correlation-length exponent vog
is estimated to be vog = 1.3 £ 0.2. The corresponding
finite-size-scaling plot is given in Fig. 2(b).

The temperature and size dependence of the reduced
chiral-glass susceptibility, Yca, defined by eq. (3.5), are

(4.1)
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Fig. 2. (a) The temperature and size dependence of the Binder
ratio of the chirality, gcg, for £ = 1. Inset is a magnified view
around the transition temperature Tocg ~ 0.286. (b) Finite-size
scaling plot of gcg with Tecg = 0.286 and vog = 1.3.

0.0

shown in Fig. 3(a). Finite-size scaling analysis based on
the relation,

Xog = L7190 %qq(LM7eS | T - Teg |),  (4.2)

is made with fixing Tcg = 0.286 and veog = 1.3, yielding
the chiral critical-point-decay exponent ngg = —0.2 +
0.2. The resulting finite-size-scaling plot is displayed in
Fig. 3(b). Other exponents can be estimated via the
standard scaling relations as yog ~ 2.9 and Sog =~ 0.5.

The obtained chiral-glass exponents are rather close
to the values determined previously for the +J XY spin
glass, i.e., the model without screening; vog = 1.5 £0.3
and nog = —0.4 & 0.2.17) Therefore, our present result
seems consistent with the view that the screening effect
is actually irrelevant at the 3D chiral-glass transition.
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Fig. 3. (a) The temperature and size dependence of the reduced

chiral-glass susceptibility, Xcq, for £ = 1. (b) Finite-size scaling
plot of xcg with Tcg = 0.286, vcg = 1.3 and ncg = —0.2.

It should be noted here that the determined chiral-
glass exponents are also not far from the standard spin-
glass exponents of the 3D Ising spin glass.?%24 In re-
cent Monte Carlo simulations of the 3D Ising spin glass,
however, considerably different values were reported for
the exponent v, depending on whether v was determined
from the scaling of the Binder ratio, g, or from the scaling
of the spin-glass susceptibility, xsq. In ref. 23, for exam-
ple, the former procedure gave an estimate v ~ 2.0 while
the latter procedure gave v ~ 1.6, whereas in ref. 24, the
former gave v ~ 3.0 and the latter gave v ~ 1.5. By con-
trast, in the present simulation, we did not observe such
significant discrepancy between the estimated values of
voa: A common value of vog ~ 1.3 gave satisfactory
fits both for gog and ¥cg. At present, we are not sure
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Fig. 4. The temperature and size dependence of the root-mean
square of the local-lux amplitude, f, defined by eq. (3.10), for
L£=1.

whether such apparent difference from the standard Ising
spin glass is simply due to finite-size effects, or is sug-
gesting the possibility that the universality class of the
chiral-glass transition and that of the Ising spin glass are
in fact different. Since the chirality can be viewed as a
“continuous” Ising variable, there exists an obvious sim-
ilarity between the chiral glass and the pure Ising spin
glass from a symmetry viewpoint. By contrast, in the
present model, there exists a local constraint on the pos-
sible configurations of the chiral variables,?%) which is
absent in the Ising spin glass. This may possibly change
the universality class of the transition. Further studies
are required to clarify this point.

Anyway, the occurrence of an equilibrium ordered
phase appears to be clear from our numerical data, and is
in sharp contrast to the vortex-glass (gauge-glass) prob-
lem where the screening was found to destabilize the
equilibrium ordered phase.?) Presumably, such difference
comes from the fact that the broken symmetry is a dis-
crete Z, symmetry here while it is a continuous U(1)
symmetry in ref. 3.

We also study the behavior of the flux. The tempera-
ture dependence of the root-mean square of the local-flux
amplitude, f, defined by eq. (3.10), is shown in Fig. 4.
As can be seen from the figure, the magnitude of the
induced local flux is of order 0.1 flux quantum per pla-
quette for this inductance (£ = 1). Note that, in the
small inductance limit £ — 0, f tends to zero, while in
the large inductance limit £ — oo, f tends to 1 /2 in the
ground state of an isolated frustrated plaquette.

The flux Binder ratio, grg, ‘defined by eq. (3.7),
and the reduced flux-glass susceptibility, Xrg, defined
by eq. (3.9), are shown in Figs. 5 and 6, respectively.
Naively, one expects that the flux should behave in the
same way as the chirality, since the flux is also a pseu-
doscalar variable sharing the same symmetry as the chi-
rality. Indeed, as can be seen from Fig. 6, the flux-glass
susceptibility, ¥rq, shows a divergent behavior similar
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Fig. 5. The temperature and size dependence of the Binder ratio
of the flux, grpqg, for £ =1.
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Fig. 6. The temperature and size dependence of the reduced flux-
glass susceptibility, Xrg, for £ = 1.

to Xcg. However, in contrast to the naive expectation,
clear crossing of the Binder ratio as observed in gog is
not observed in grg at least in the range of lattice sizes
studied here: see Fig. 5. In particular, gpg for smaller
lattices (L = 3 and 4) does not reach zero even at higher
temperatures, considerably worsening the overall scaling
behavior. Asthe flux is an induced quantity generated by
the finite inductance effect, we believe such poor scaling
behavior to be a finite-size effect. Presumably, for this
inductance value, the flux hardly reaches its asymptotic
critical behavior in rather small lattices studied here. Re-
call that, in the £ — 0 limit, the flux vanishes trivially
while the chiral-glass transition itself is most favored.
In fact, for larger inductances, we have found that the
Binder ratios of the flux and of the chirality show more
similar behavior as expected (see below).

We also compute the zero-field linear and nonlinear
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Fig. 7. The temperature and size dependence of the zero-field lin-
ear susceptibility, x, for £ = 1. An arrow in the figure represents
the location of the chiral-glass transition point.

susceptibilities, x and x2, defined by egs. (2.9) and
(2.10), respectively. As can be seen from Fig. 7, the linear
susceptibility turns out to be paramagnetic, x > 0, over
an entire temperature range studied, including in the dis-
ordered phase T' > Tcg, without a clear anomaly at Tog.
In shorter simulations on the same model where the full
equilibration is not achieved, x tends to get smaller and
sometimes becomes negative.!?) These results seem con-
sistent with an earlier finding of Dominguez et al. who
observed a paramagnetic  in the field-cooling mode, but
a diamagnetic y in the zero-field-cooling mode.'®) Mean-
while, the simulation of ref. 18 was performed for a rather
large inductance, L= 8, where the chiral-glass transi-
tion probably did not occur in equilibrium (see below).
It should be stressed here that the sign of x is in fact a
nonuniversal property: Effects not taken into the present
model, such as the contribution of intragranular super-
currents, could give additional diamagnetic contribution
in real systems and could easily change the sign of the
observed Y.

By contrast, on general theoretical grounds, the non-
linear susceptibility, x2, is expected to show a nega-
tive divergence at the transition point where the time-
reversal symmetry is spontaneously broken in a spatially
random manner.'?) Indeed, as shown in Fig. 8(a), we
have observed a behavior fully consistent with this ex-
pectation. The exponent associated with this negative
divergence is estimated via a finite-size scaling analy-
sis with assuming Tcg = 0.286 and vgg=1.3, yielding
72 =~ 4.4 (see Fig. 8(b)), where x2 ~| T — Tcg |77.
This value of 7, is somewhat larger than the chiral-glass
susceptibility exponent, yog =~ 2.9. At present, it is not
entirely clear whether this deviation reflects a true differ-
ence in the asymptotic critical behavior. It appears likely
that the observed larger value of o simply comes from
a finite-size effect related to the possible nonasymptotic
behavior of the flux as observed in gpg.



Chiral Glass: A New Equilibrium Phase

1997)
0.2 T J"/F L
0.0 - xxxﬁggﬁaﬁﬁ*Iﬂi I N
:IE o0 © Xk ox I
—-0.2 — D o ***
> a
§ o1
-04 - Eo N
ity x L=3
-0.6 |- > L=4
o
< F* o L=6
-0.8 - L=8
L=10
-1.0 -
-12
14
_186 | [ | | | |
0.1 02 03 04 05 06 07 08 09
T
()
T T I I f I
0.000 - Qfe?;‘(suﬂpxmﬁ’cl'~‘lt:>()nt:mton o oo [}
L P
)
¥ -0.001 - #& x L=3
— x =
S : s e
X % -
o L=8
-0.002 — S —
a
X
<
~0.003 L
-05 00 05 10 15 20 25 3.0 385
1/1.3
(T-T,)L
Fig. 8. (a) The temperature and size dependence of the zero-field

nonlinear susceptibility, X2, for £ = 1. (b) Finite-size scaling
plot of x2 with Tcg = 0.286, vcg = 1.3 and 2 = 4.4, where
X2 ~ (T' — Tcg)~ ™. An arrow in the figure represents the
location of the chiral-glass transition point.

4.2 L=3,4and5

So far, the results reported were exclusively for the
inductance £ = 1. We have also made similar, but less
extensive simulations for other inductances £ = 3, 4,5 in
order to study the inductance dependence of the chiral-
glass ordering.

In Figs. 9 and 10, the temperature and inductance de-
pendence of the magnitude of the local chirality, 5, and
that of the local flux, f, are shown for a fixed lattice
size L = 6. With increasing £, % tends to be suppressed
while f tends to be enhanced. In Figs. 11(a)-11(c), the
temperature dependence of the chiral Binder ratio, gcg,
is shown for £ = 3,4 and 5, respectively. For £ = 3,4,
the curves of gcg for dlfferent L appear to cross at a
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Fig. 10. The temperature and inductance dependence of the
root-mean square of the local-flux amplitude, f, defined by
eq. (3.10), for a fixed lattice size L = 6.

finite temperature. As expected, the chiral-glass transi-
tion temperature monotonically decreases as £ increases.
For £ = 5, on the other hand, no crossing of gog is ob-
served in the temperature range 7' > 0.1, suggesting that
the chiral-glass transition is highly suppressed at this in-
ductance. We have also tried similar simulations for even
larger inductances, L > 5. However, the relaxation be-
comes extremely slow for these larger inductances, and
we can no longer equilibrate the system down to the tem-
perature range of interest within a reasonable amount of
computation time.

The tendency that the chiral-glass ordering is sup-
pressed at larger inductances can also be seen from other
quantities, such as the reduced chiral-glass susceptibility,
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Yca, the reduced flux-glass susceptibility, Yrg, and the
nonlinear susceptibility, 2. Thus, we show in Figs. 12,
13 and 14 the temperature and inductance dependence
of ¥ca, Xra and 2 for a fixed lattice size L = 6. As can
clearly be seen in these figures, the chiral-glass ordering
is more and more suppressed for larger L. By contrast,
the paramagnetic tendency of the linear susceptibility
tends to be enhanced for larger £. This is evident from
Fig. 15 in which the temperature and inductance depen-
dence of the linear susceptibility, x, is shown for a fixed
lattice size L = 6.

The obtained phase diagram in the T — L plane is
sketched in Fig. 16. There appears to be a finite crit-
ical value of the inductance, L., above which there is
no equilibrium chiral-glass transition. Although it is dif-
ficult to precisely locate £, due to the extremely slow
relaxations we observed at lower temperatures, it ap-
pears to lie around 5 < £. < 7. If this is the case, the
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Fig. 15. The temperature and inductance dependence of the
zero-field linear susceptibility, x, for a fixed lattice size L = 6.

value of the inductance chosen by Dominguéz et al.,'®)

L = 8, lied in the region of the phase diagram where
no equilibrium chiral-glass transition took place. In fact,
the simulation of ref. 18 was made for the concentration

of m bonds equal to ¢ = 0.3, different from our present

choice ¢ = 0.5. However, previous studies on 3D spin
glasses suggest that the transition temperature between
the disordered (paramagnetic) phase and the chiral-glass
(spin-glass) phase is rather insensitive to the concentra-
tion ¢.26) Then, a kind of cooperative phenomenon ac-
companied with a sharp growth of the paramagnetic Yy,
which was observed around 7" ~ 0.4 in ref. 18, might
not be related to an equilibrium phase transition, but be
purely of dynamical origin. This is consistent with our
observation in Fig. 15 that the paramagnetic tendency is
more enhanced for larger L, while the chiral-glass order-
ing itself is suppressed for larger L.

In Figs. 17(a) and 17(b), we show the temperature de-
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Fig. 16. A phase diagram in the T-L plane. Renormalized induc-
tance L is defined by eq. (2.3). The data point at £ = 0 is taken
from ref. 17.

pendence of the flux Binder ratio, grg, for the case of
L = 4 and 5, respectively. In the case of L = 4, the
curves of grg of L = 4 and L = 6 almost cross, while
they do not cross for £ = 5. Such behavior is more
or less similar to the one observed in the correspond-
ing chiral Binder ratio, gcg, for these inductances: see
Figs. 11(b) and 11(c). This observation suggests that
for these larger inductances the flux behaves in the same
way as the chirality even in rather small lattices studied
here, in contrast to the L =1 case.

85. Summary and Discussion

We have shown by extensive Monte Carlo simula-
tions that an equilibrium zero-field phase with a spon-
taneous broken time-reversal symmetry, a chiral-glass
phase, is possible in certain ceramic superconductors
with anisotropic pairing symmetry. This phase is truly
stable even in the presence of screening. As in spin
glasses, the nonlinear susceptibility exhibits a negative
divergence at the chiral-glass transition point. Via a
finite-size scaling, static exponents associated with the
chiral-glass transition are determined. The obtained
exponents are rather close to those of the 3D Ising
spin glass. A rough phase diagram is constructed in
the temperature-inductance plane. It is found that the
chiral-glass transition tends to be suppressed for larger
inductances, and there appears to be a critical value of
the parameter L beyond which there is no equilibrium
chiral-glass phase. By contrast, the paramagnetic ten-
dency of the linear susceptibility (paramagnetic Meiss-
ner effect) tends to be enhanced for larger inductances.
This observation clearly shows that, although the para-
magnetic Meissner effect could also arise from the frus-
tration effect associated with the anisotropic nature of
the superconducting order parameter, it has no direct
relevance to the chiral-glass phase and the chiral-glass
transition.

Next, on the basis of our findings in the present paper,
we wish to discuss some requirements for the appropriate
ceramic samples where one could expect the chiral-glass
phase. One important parameter characterizing the sam-
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of the flux, grg, for (a) £ =4 and (b) £ =5.

ple is the dimensionless inductance, £, given by eq. (2.3).
Our present result suggests that an equilibrium chiral-
glass state could be realized in the type of samples with
smaller £, but not for the samples with larger £. If one
models a loop as a cylinder of radius r and height A,
its inductance is given by £ = 472r%/h. With the type
of the sample used in ref. 16 in mind, we put r ~ 1um
and J ~ 20K. The ratio h/r would be sensitive to the
details of the geometrical contact between grains. Here
we assume a rather smaller value, h/r ~ 0.01, to get
L~ 1~O‘2. Since this value is still considerably smaller
than L., an equilibrium chiral-glass phase may well occur
in such samples. By contrast, if the sample has too large
a grain size or too strong Josephson coupling, an equi-
librium chiral-glass phase will not be realized, or at least
largely suppressed. Another requirement for the sam-
ple is that the grains must be connected via weak links
into an infinite cluster, not decomposed into finite clus-
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ters. Obviously, finite-cluster samples cannot exhibit a
chiral-glass transition, although the paramagnetic Meiss-
ner effect is still possible.®> 9

Once appropriate samples could be prepared, the
chiral-glass transition is detectable in principle via the
standard magnetic measurements by looking for a nega-
tive divergence of x2 or a magnetic ageing phenomenon,
as in the case of spin glasses. In such magnetic mea-
surements, care has to be taken to keep the intensity of
applied ac and dc fields weak enough, typically much less
than 1G, so that the external flux per loop is sufficiently
smaller than ¢g. Recently, a sharp negatively-divergent
anomaly of yo was reported in a YB,C40g ceramic sam-
ple by the ac method by Matsuura et al.,'®) which might
be a signal of the chiral-glass transition. Ageing was ob-
served in certain ceramic samples,?”) but not in other
samples.?)

As in the case of spin glasses, measurements of dy-
namic susceptibilities such as x'(w) and x"(w) would
also give useful information on the possible chiral-glass
ordering, particularly when combined with the dynamic
scaling analysis. For example, near the chiral-glass tran-
sition point, the imaginary part of the linear suscepti-
bility, x”/(w), is expected to satisfy the dynamic scaling
relation of the form,

X" (w, T, H)
w H?

tzcevce ' thcatca ), (

~ wPcc/zcavce X’H(

5.1)

where t =| (T — Tea)/Tce | and zog is a dynamical
chiral-glass exponent. From the present calculation, we
get the static chiral-glass exponents to be vgg ~ 1.3,
Bcog ~ 0.5 and fog + yog =~ 3.4. Although we cannot
give a direct numerical estimate of the dynamical expo-
nent from the present simulation, one might guess that
zog would take a value around zggvcg =~ 7 — 8 if one
would assume the analogy between the chiral glass and
the Ising spin glass also in the dynamics.?8)

Indeed,” a dynamic scaling analysis was made by
Leylekian, Ocio and Hammann for LSCO ceramic sam-
ples.’®) These authors performed both the ac susceptibil-
ity and the noise measurements, and found an intergran-
ular cooperative transition even in zero field at a temper-
ature about 10% below the superconducting transition
temperature of the grain. Note that the noise measure-
ments enable one to probe truly zero-field phenomena
where one can be free from the extrinsic pinning effects
such as the ones envisaged in the so-called critical-state
model.??) It was then found that the data of x” satis-
fied the dynamic scaling of the form (5.1). Here note
that one is not allowed to invoke the standard vortex-
glass scenario to explain such intergranular cooperative
transition in zero field, since in the standard vortex-glass
picture frustration is possible only under finite external
fields. By contrast, the experiment seems consistent with
the chiral-glass picture.

Meanwhile, when the intragranular superconducting
transition and the intergranular transition take place at
mutually close temperatures as in ref. 15, the Josephson
coupling, J, which has been assumed to be temperature
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independent in the present model, is actually strongly
temperature dependent in the transition region. In such
a case, care has to be taken in analyzing the experi-
mental data, since such temperature dependence of J
might modify the apparent exponent value from the true
asymptotic value to some effective value. In fact, the
dynamical exponent zv ~ 30 determined by Leylekian
et al. were different from the standard spin-glass value,
which might be due to the proximity effect of the intra-
granular superconducting transition.!5) If, on the other
hand, the temperature dependence of J was taken into
account in the fit, a more realistic value zv ~ 10 — 15
was obtained in ref. 15. By contrast, when the intergran-
ular chiral-glass transition takes place at a temperature
much lower than the intragranular superconducting tran-
sition temperature as in ref. 16, the Josephson coupling
can safely be regarded as temperature independent as
assumed in the present model. Anyway, it is desirable to
get a direct numerical estimate of the dynamical chiral-
glass exponent, zcg, to be compared with experiments.
We are now planning to perform a simulation to get an
independent numerical estimate of the dynamical expo-
nent.

It may also be possible to detect a spontaneously in-
duced flux in the chiral-glass state by muon spin relax-
ation or electron holography in zero external field. As
in the noise measurements, these measurements can be
made in zero external field, and has an advantage of be-
ing free from the pinning effects of extrinsic origin. Here
it is essential to make such measurements for ceramic
samples with sufficiently many weak links, not for sin-
gle crystals, simply because the chiral-glass phase is ex-
pected only in the former type of samples. By contrast,
the kind of time-reversal-symmetry breaking proposed
by Wen, Wilczek and Zee is associated with the time-
reversal-symmetry of the bulk superconducting order pa-
rameter and should occur even in single crystals.3?)

We could estimate an order of the induced flux below
Tce from the results of our present simulation. In the
case of £ =1, for example, the flux intensity can be es-
timated from the calculated [(¢})] to be about 0.02¢y at
20% below Tcg. For a sample with a typical grain di-

“ameter about 1pm, this corresponds to the flux intensity
equal to 0.4G, which seems well within the sensitivity of
the usR measurements. For a sample with a grain diam-
eter about 10um, the flux intensity would be reduced to
4mG. If the dimensionless inductance, £, is significantly
smaller than unity, the flux intensity would become much
smaller, and eventually vanishes in the £ — 0 limit.

In the chiral-glass state, the U(1) gauge symmetry
will not be broken, even randomly, in the strict sense.
This means that the phase of the condensate, 8, re-
mains disordered in the chiral-glass state at least on suffi-
ciently long length and time scales. Thus, the chiral-glass
state should not be a true superconductor but exhibit an
Ohmic behavior with a small but nonvanishing linear re-
sistance even at and below T¢g. This property has been
established in the £ — 0 limit where the screening effect
can be neglected.'®%!”) Although we have not measured
in the present simulation the quantity directly relevant to
the U(1) gauge-symmetry breaking, the screening effect
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Fig. 18. Two-dimensional segment of the lattice showing
thermally-activated integer vortex lines with vorticity 41, wan-
dering in the background of a frozen pattern of chiralities in
the chiral-glass state. Plus (4) and minus (—). chirality can
be viewed as half-vortices with vorticity +1/2 sitting at frus-
trated plaquettes, while unfrustrated plaquettes are frozen into
the zero-chirality (0) state. If one looks at a given frustrated pla-
quette frozen into the + chirality (or vorticity +1/2) state, for
example, its vorticity occasionally becomes +3/2 or —1/2 when
the thermally-activated integer vortex line of either sign, +1 or
—1, passes this plaquette. Still, the long-time average of the vor-
ticity at this plaquette is equal to +1/2, showing that the free
motion of integer vortex lines is compatible with the long-range
chiral-glass order.

makes the interaction between vortices short-ranged and
makes the the U(1) gauge-symmetry breaking transition
even more unlikely.

Small but finite linear resistivity, pr,, in the chiral-glass
state arises due to the slow motion of thermally-activated
integer vortex lines (unbound vortex loops). Free motion
of integer vortex lines is still possible in the chiral-glass
state where chiralities (half-vortices) sitting at frustrated
plaquettes are frozen, and gives rise to the Ohmic be-
havior. A schematic picture showing such free motion
of integer vortex-line excitations in the background of
a frozen pattern of chiralities is given in Fig. 18. One
can see that free motion of integer-vortex lines of either
sign is possible without seriously destroying the freezing
pattern of chiralities in the background. In order to de-
stroy the chiral-glass ordering in the background, a chiral
domain-wall-type excitation is necessary, which would be
responsible for the chiral-glass transition at T = T¢og.
On decreasing the temperature across Tgg, a sharp drop
of the resistivity will be caused by such chiral domain-
wall excitations, but the resistivity will stay finite even
below Tcg due to the wandering vortex-line excitations.

We try to get a very rough order estimate of p; at
the chiral-glass transition point based on a flux-creep
model.3)) Within this model, the linear I — V relation
with finite py, is expected below a characteristic current-
density scale, jc, given by j. =~ kgT/(¢od?¢?), where
d is a typical grain size and £ is the phase correlation
length (or the ‘spin’ correlation length) in units of d. We
estimate £ at T = Tog from the Monte Carlo data of
the 3D XV spin glass'”32 to be £ ~ 10 lattice spac-
ings. Here note that the standard spin-glass correla-
tion length does not diverge at the chiral-glass transi-
tion point (the only length scale divergent at T — Tcg
is the chiral-glass correlation length).!”) Then, for a typ-
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ical ceramic sample, we put d ~ lpym, T = Teg ~ 30
K, to get jo ~ 2 x 103A/m?. The flux-creep model also
yields pg, ~ ¢3dé/(kgT77), where 7o is an inverse ‘at-
tempt frequency’ of the intergranular vortex motion, and
7 is the phase or ‘spin’ correlation time in units of 7.
Again, from the Monte Carlo data,'”-3%) we estimate 7
at T = Tog to be 7 ~ 5 x 10* Monte Carlo time steps.
Precise value of our time unit, 7y, is largely unknown,
but it should be much longer than the atomic time scale
since the vortex motion of interest here is the one over
grains. If we put 79 ~ 107° sec, for example, we have
pr ~ 02uQ-cm at T = Tgg, while for 79 ~ 1075 sec,
we have py ~ 0.2 x 107%uQ-cm. These values, though
small, may be within the reach of careful experimental
measurements.

All simulations presented in this paper were done in
zero external field. A chiral-glass phase and a chiral-glass
transition are associated with a spontaneously breaking
of time-reversal symmetry, and in that sense, can be re-
garded as a zero-field phenomenon. Still, it should be
emphasized here that the fate of the chiral-glass phase
and the chiral-glass transition in an external field is not
necessarily trivial and is of great interest. Clearly, under
external magnetic fields, the system no longer possesses a
global time-reversal symmetry. Therefore, there cannot
be a chiral-glass transition associated with a spontaneous
breaking of a global time-reversal symmetry. Neverthe-
less, an interesting possibility emerges if the chiral-glass
transition in zero field accompanies the replica symmetry
breaking®® of the chirality. In such a case, an equilib-
rium phase and the associated thermodynamic transition
should persist even under finite fields and are character-
ized by the chiral replica symmetry breaking. Then, the
transition line in the H — T plane might look like the
so-called AT-line familiar in spin glasses.?¥) It is very in-
teresting to relate such chiral-AT line to the AT-like line
often observed experimentally in ceramic high-T, super-
conductors.!?) '

We finally note that the chiral-glass state can be re-
alized not only in high-T;. superconductors, but also in
‘other superconductors with nontrivial pairing symmetry,
such as in heavy fermion superconductors, or possibly, in
some organic superconductors. It would be interesting to
experimentally search for this novel phase in these ma-
terials, since it is a new state of matter realized only in
anisotropic superconductors with unconventional pairing
symmetry.

The numerical calculation was performed on the FA-
COM VPP500 at the supercomputer center, Institute of
Solid State Physics, University of Tokyo. A part of this
work was made when one of the authors (M. S. Li) was
in Kyoto Institute of Technology. M. S. Li thanks the
Japan Society for Promotion of Science for the award of
a fellowship. He was also supported in part by the Polish
KBN grant.
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