HARVARD UNIVERSITY Department of Chemistry

12 Oxford Street Cambridge 38, Massachusetts

October 19, 1961

Dear Contributor:

This is the third microwave spectroscopy information letter and is being sent to those who contributed.

> 1-- AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS Department of Chemistry (Albert W. Jache)

SiF₃I S₂Cl₂

FCHCN

FC¹³N FCN¹⁵

c1³⁵cc¹³H

C1 35 C1 3 CH

about finished

14 lines measured

2--UNIVERSITY OF BIRMINGHAM Department of Chemistry (John Sheridan)

nitramide H₂NNO₂ (J.K. Tyler), (A-C) and asymmetry parameter assigned

cyanamide (NH₂CN) (J.K. Tyler) Quadrupole coupling constants assigned from H_2NCH^{15} and $H_2N^{15}CN$

B_o, C_o evaluated

(B. Job) Assignment made of main species. Preliminary note sent for publication; other forms under investigation.

(J.K. Tyler) B values determined. Paper in manuscript

HCCCCN, DCCCCN

sih, DCl³⁵, Sih, DCl³⁷

CH₂CF₂

CH₃SiF₃ SiH₂DI SiH₂DBr⁷⁹, SiH₂DBr⁸¹

(J.K. Tyler, A.P. Cox) D_J determined from mm-wave measurements

(A.P. Cox) D_{JK} , D_{J} determined from mm-wave measurements

(A.C. Turner)

	(continued	UNIVERSITY OF BIRMINGHAM)
si ²⁸ d ₃ i si ³⁰ d ₃ i		B _o , D _{JK} determined
	,	B _o determined
siH ₃ C1 ³⁵		D_{JK} , D_{J} determined
SiH ₃ CN		D _{JK} determined
siH ₃ c ¹³ N		B _o determined
SiD ₃ CN		B _o , D _{JK} determined

~ Q ~

3--UNIVERSITY OF CALIFORNIA Department of Chemistry (Rollie J. Myers, W. D. Gwinn, and J. A. Howe)

l,l-dichlorocyclopropane
sulfur tetrafluoride
formic acid (dipole moment)
l,l-dichloroethane

ethylenimine

trimethylene sulfide cyclobutene trifluoronitromethane

methyl nitrite

tetrahydrofuran

IF5

CH₃SF₅ at cis-1,2-dichloroethylene p l,1-dichloroethylene s phosgene s trans-1-chloro-2-fluoroethylene

preprints distributed preprints distributed revised note in progress assignment including quadrupole coupling

quadrupole coupling measured (no inversion observed)

assignment including excited states

A.C. Turner

Q-branch assignment

assignment confirmed-work in progress on barrier determination

assignment confirmed-work in progress

assignment confirmed-work in progress

assignment-symmetric top

assignment-symmetric top

preprints to be distributed

strong field Stark effect

strong field Stark effect

work in progress

4--COLUMBIA UNIVERSITY Department of Chemistry (Benjamin P. Dailey)

cyclobutylbromide

pyrimidine

essentially complete partially complete nearly finished

quadrupole coupling patterns in chlorobenzene

5--COLUMBIA RADIATION LABORATORY (L. C. Krisher)

CH₂COI

in progress

6--UNIVERSITY OF COPENHAGEN Chemical Laboratory (Børge Bak)

benzonitrile

5 isotopic species prepared and analyzed. Three further species being prepared (${}^{13}C$ ring compounds). 2- ${}^{13}C$ and 3- ${}^{13}C$ furans prepared. Not yet analyzed. Same for ${}^{18}O$ -furan

furan

 β -fluoronaphthalene methyl ketene analyzed; being published

The parent compound prepared, microwave analysis in good progress. So far, no isotopic work, but planned.

7--EMORY UNIVERSITY Department of Chemistry (J. H. Goldstein)

excited torsional states in <u>acrolein</u> in progress α-chloroacrylonitrile in progress

8--UNIVERSITY OF FREIBURG Institute for Physical Chemistry, Freiburg I.BR. (W. Maier)

(CH₃)₂S (CH₃)₂S₂

in progress, publication being prepared in progress, assignment under way

9--GEORGIA INSTITUTE OF TECHNOLOGY School of Physics (Quitman Williams and T. L. Weatherly)

CHClF2

NOBr

Rotational constants for CHCl³⁵F, and CHCl³⁷F, have been determined from low-J transitions. The spectrum of CDClF will be studied in order to improve² the structure determination. Dipole moment of CHCl³⁵F, has been measured by the Stark effect.

CHFCl₂ Many lines have been detected. An attempt is being made to identify them.

The Stark effect of the $l_1 \longrightarrow 2_0$ transition is being analyzed.

10--HARVARD UNIVERSITY Department of Chemistry (E. B. Wilson, Jr.)

(I. Levine), in press CH₂NOH NSF3 (W. Kirchhoff), in press CH₃SnH₃ (P. Cahill and S. Butcher), in press $F_{2}O$ (L. Pierce and R. Jackson) (See Notre Dame), in press O₂F₂ (R. Jackson), in manuscript CH₃CHCHF cis and (R. Beaudet), in manuscript trans CH₃CH₂CH₂F trans (I. Hirota), in manuscript and gauche CH₂CHCHCl trans (R. Beaudet), work completed CH₂OC1 (J. Rigden), analysis of several isotopes completed СНЗСНСНО (S. Butcher), analysis of several isotopes completed GeH₂F (J. Rigden), analysis of several isotopes completed CH3CH2CH2CN trans (I. Hirota), partially analyzed and gauche

-5-

GeH ₃ Br	(J. Rigden), partial analysis
CF3C6H5	(T. Sarachman), partial analysis, no further work
cyclopentene	(G. Rathjens and A. Esbitt), new analysis completed

SNF

(W. Kirchhoff), early stages

ll--UNIVERSITE LOUVAIN Centre de Physique Nucleaire (Robert Goedertier)

vinyl bromide

sulphur dioxyde

(F. Greindl) The spectrum has been observed between 13 and 25.5 Gc at normal and dry ice temperature. The spectrum is attributed for the fundamental vibrational state with J up to 40 and some new lines for the S³⁴⁰2. This work is carried out in view to investigate the first excited vibrational state.

We have observed and attributed between 13.5 and 25.5 Gc the transition from $J = 1 \rightarrow 2$ and $J = 2 \rightarrow 3$ of 22 isotopic species (all the deuterated species, with carbon 12 and the two isotopes of bromine, and all the carbon

13 species with light hydrogen).

calculations for the determination of structure are presently in course.

The

(J. Michielsen-Effinger) The spectra of C_2H_0OH and C_2H_5OD are observed in the 13 - 25.5 Gc range.

Earlier we tried to study this molecule, but no spectrum was observed.

12--MICHIGAN STATE UNIVERSITY Department of Chemistry (R. H. Schwendeman)

ethylchloride, CH₂CH₂Cl

complete structure by the substitution method; work completed and manuscript submitted.

menta llo an

ethyl alcohol

e ong i areenor

1.2 dibrom-ethylene

-6-MICHIGAN STATE UNIVERSITY) (continued chloromethylsilane, SiH₃CH₂Cl complete structure by the substitution method, quadrupole coupling parameters, and barrier to internal rotation; work completed and manuscript submitted. cyclopropyl chloride, CH₂CH₂CHCl assignment made of C-type spectra of C1-35 and C1-37 species, work in progress on preparation of isotopic species. isopropyl chloride, (CH₃)₂CHCl work just getting underway. 13--NATIONAL BUREAU OF STANDARDS (D. R. Lide, D. E. Mann, L. J. Nugent, T. N. Sarachman) propylene(structure determination $(CH_3)_3CCCH$ and $(CH_3)_3CCN$ work completed, preprints already distributed. CH3AsF2 CHCl₃(structure determination) investigations sub-×(сн₃)₃сс1 stantially completed, but not yet written up. ✓ CH₂:CFCH:CH₂(fluoroprene) CH2:C(CH3)CH:CH2(isoprene) problems now under active investigation on which √CH₃CH₂CH₂Cl significant progess has $_{V}$ ClO₂F been made. VNF_o(spectrum not yet detected) other work in progress (CF3NSF2(tentative assignment) CH₃CCl₃(isotopic species) C3F8(perfluoropropane) problems investigated during last year but dropp C₃F₆(perfluoropropylene) because results were not 1,3 butadiene(unsuccessful attempt promising. made to detect spectrum of cis form)

14--NATIONAL RESEARCH COUNCIL Division of Pure Physics (C. C. Costain)

acrolein, CH₂CHCHO

H-bonding, CF₂COOH-HCOOH and deuterated species

CF₃COOH-CH₃COOH

measurements completed on normal three $\rm C^{13}$ and $\rm O^{10}$ species. Sear Search for isomers not successful.

Note in press, J. Chem. Phys.

measurements of "symmetric-top" spectrum completed.

15--UNIVERSITY OF NOTRE DAME Department of Chemistry (Louis Pierce)

(V. Dobyns), Common, d₂, ³⁴S, and 13C species assigned. ²H.F.S. 1,2,5 thiadiazole partially resolved. (N. DiCianni, collaborating with OFo R. Jackson of Harvard University), 17 ground state transitions assigned. ethyl bromide (C. Flanagan), Common species_remeasured, isotopic species $(^{\perp}\mathcal{I}C)$, 13C, and 2 deuterated) prepared. (J. Flood), Ground-state a-type propyl silane and b-type transitions of trans species assigned. (L. Pierce), Ground-state assigned (b-type) for both trans and gauche form. (L. Pierce), Ground-state and several excited states assigned (b-type) for trans form.

dimethyl sulfide and dimethyl silane

(L. Pierce), Measurements on firstexcited torsional state in progress.

16--UNIVERSITY OF PADUA Institute of Physical Chemistry, Padua, Italy (Paola G. Favero)

FC1 35CO

spectrum has been completed, paper to be submitted.

ethyl methyl sulfide

ethyl methyl ether

(continued UNIVERSITY OF PADUA)

FC1³⁷CO

Letter and the second

almost complete and will shortly analyze the centrifugal distortion effect on relatively high J lines in the millimetre wave region.

l7--RICE UNIVERSITY Department of Chemistry (R. F. Curl)

chlorine dioxide	manuscript	submitted
formaldoxime	manuscript	submitted

18--STANFORD UNIVERSITY Department of Chemistry (Victor W. Laurie)

F2CO

assignment made

19--Swiss Federal Institute of Technology Zurich, Switzerland (Hs. H. Gunthard)

cyclobutanone	spectra measured,	partially analyzed
2-iodopropene	spectra measured,	not analyzed
2-bromopropene	spectra measured,	not analyzed
2-chloropropene	isotopes made	
nitroethylene	spectra measured	
azulene	spectra measured	

20--TECHNISCHEN HOCHSCHULE KARLSRUHE, Germany (Werner Zeil)

(CH ₃) ₃ CC1	isotopes made and spectra measured
(CH ₃) ₃ CBr	normal species partially analyzed
(CH3)3SICCH and (CH3)3SICCD	compounds prepared
(CH ₃) ₃ CCCCI	normal species investigated
$(CH_3)_3^{\circ}CCBr$ and $(CH_3)_3^{\circ}CCI$	prepared but no spectra yet
C ₆ H ₅ CCH	normal species investigated

Papers for the molecules in the ground vibrational state have been published. Spectroscopy for the molecules in the vibrationally excited state is in progress. The spectra for the excited states of v_3 , v_5 , and v_6 modes have been assigned.

Spectral lines for the excited state of the v_2 mode have been found. A number of lines of isotopic species have been assigned.

so2

CH₂CO

 $CD_{2}CN$

(CH₂0)₃

Vibrationally excited lines were assigned. Anomaly of the v_7 excited state was explained by the near degeneracy of v_4 and v_7 . Spectral lines of several vibrationally 18

excited states have been found. C^{13} and O^{18} species were observed with the natural abundances and the structure of the ring has been determined.

I appreciate your cooperation and hope this list will prove useful.

Sincerely, E. Bright Wilson, Jr.

EBW:jm

FORMULA INDEX

(Arrangement as in Townes and Schawlow. Numbers refer to institution)

		12 25 25 12 .
BrH ₃ Ge	(GeH ₃ Br) 10	сс ¹³ нс1 ³⁵ (с1 ³⁵ с ¹³ сн) - 2
BrH2DSi	$(GeH_3Br) - 10$ $(SiH_2DBr^{79}, SiH_2DBr^{81}) - 2$	$C_{2}HF_{3}O_{2}$ (CF ₃ COOH) - 14
BrNO	(NOBr) - 9	C2H2Br2 (1,2 dibrom-ethylene) -
ссі ³⁵ ғо _{ссі} 37 _{ғо}	$(FC1^{35}CO) - 16$ $(FC1^{37}CO) - 16$	C ₂ H ₂ ClF (trans-1-chloro-2-fluoro- ethylene) - 3
		$C_{2}H_{2}ClN$ (a-chloroacrylonitrile) -
CC1 ₂ 0	(phosgene) - 3	C ₂ H ₂ Cl ₂ (1,1-dichloroethylene) - 3
cci ₂ s _{CFN} 15	$(\text{SCCl}_2) - 9$ $(\text{FCN}^{15}) - 2$	C ₂ H ₂ Cl ₂ (cis-1,2-dichloroethylene)
al3mu	$(FC^{13}N) - 2$	CHERN (FCH2CN) - 2
		$C_2H_2N_2S$ (1,2,5 thiadiazole) - 1
CF ₂ O		C ₂ H ₂ O (CH ₂ CO) - 21
	trifluoronitromethane) - 3	C ₂ H ₃ Br (vinyl bromide) - 11
	$(CF_3NSF_2) - 13$	$C_0H_2Cl_2$ (CH_2CCl_2) - 13
(pear-	$(CHClF_2) - 9$	$C_{2}^{H_{3}}F_{3}^{F_{3}}$ (CH ₃ CF ₃) - 2
	$(CHFC1_2) - 9$	с ₂ H ₃ IO (СН ₃ COI) - 5
	(CHCl ₃) - 13	$C_2H_3NO_2$ (nitroethylene) - 19
	(cyanamide NH ₂ CN) - 2	$c_2 d_3 n^2$ ($c d_3 c n$) - 21
	rmic acid(dipole moment)) 3	$C_2H_4Cl_2$ (1,1-dichloroethane) - 3
	(HCOOH) - 14	$c_2 H_4 o_2$ (CF ₃ COOH-CH ₃ COOH) - 14
CH3AsH2	$(CH_3AsF_2) - 13$	C_2H_5Br (ethyl bromide) - 15
CH3CTO	(CH ₃ OC1) - 10	C ₂ H ₅ C1 (CH ₃ CH ₂ C1) - 12
CH ₃ F ₃ Si	$(CH_3SiF_3) - 2$	C_2H_5N (ethylenimine) - 3
CH ₃ F ₅ S	(CH ₃ SF ₅) - 3	C_2H_60 (ethyl alcohol) - 11
	H ₂ NOH - formaldoxime) - 10	C_2H_6S ((CH ₃) ₂ S) - 8
CH ₃ NO (C	H ₂ NOH - formaldoxime) - 17	d_2H_6S (dimethyl sulfide) - 15
) 6	(methyl nitrite) - 3	$c_2 H_6 S_2$ ((CH ₃) ₂ S ₂) - 8
CHJNSI	$(SiH_{3CN}) - 2$	C_2H_8Si (dimethyl silane) - 15
C ^{⊥3} H ₃ NSi	$(sih_{3}cn) - 2$ $(sih_{3}c^{13}n) - 2$	$C \mathbf{E}_{2} = \left(C \mathbf{E}_{2} \right) = 13$
CD ₃ NSi	(SID ₃ CN) - 2	C_3F_6 (C_3F_6) - 13 C_F_6 (C_F_6) - 13
CH ₅ ClSi	(SiH ₃ CH ₂ Cl) - 12	$C_{3}F_{8}$ ($C_{3}F_{8}$) - 13 $C_{3}H_{4}Cl_{2}$ (1,1-dichlorocyclopropane)
CH6Sn	$(CH_3SnH_3) - 10$ $(C135CC^{13}H) - 2$	$C_3H_4O_2$ (methyl ketene) - 6
CCT3HC135	$(c135cc^{\perp}3H) - 2$	$C_{3}H_{4}O$ (methyl ketene) - 6
γ		

-10-

 $\left\{ 1 \right\}$

(??

4

ey .

0,0,0 (acrolein) - 7 (сн₂снсно) - 14 (2-bromopropene) - 19 C_3H_5Br $(CH_2CHCHC1) - 10$ C₃H₅Cl (CH₂CH₂CHC1) - 12 C₃H₅Cl (2-chloropropene) - 19 C₃H₅Cl (CH₃CHCHF) - 10 C₃H₅F C₃H₅I (2-iodopropene) - 19 (1,3-butadiene) - 13 C3H6 (propylene) - 13 C3H6 C₃H₆O $(CH_{2}CH_{2}CHO) - 10$ $C_3^{H_6^{O}}$ (trioxane (CH₂O)₃) - 21(trimethylene sulfide) -C3H6S $((CH_3)_2 CHC1) - 12$ C3H7C1 C₃H₇Cl (CH₃CH₂CH₂Cl) - 13 $(CH_{3}CH_{2}CH_{2}F) - 10$ C₃H₇F (ethyl methyl ether) - 15 C3H80 (ethyl methyl sulfide) - 15 C₃H₈S (propyl silane) - 15 $C_{3}^{H}_{10}^{Si}$ (HCCCCN, DCCCCN) - 2 $C_{\mu}HN$ C₄H₄N₂ (pyrimidine) - 4 (furan) - 6 СЦНЦО $(CH_2:CFCH:CH_2) - 13$ $C_{4}H_{5}F$ (cyclobutene) - 3 $C_{4}H_{6}$ C₄H₆O (cyclobutanone) - 19 C_4H_7Br (cyclobutylbromide) - 4 $(CH_3CH_2CH_2CN) - 10$ C₄H₇N с₄н₈0 (tetrahydrofuran) - 3 $((CH_3)_3CBr) - 20$ C₄H_QBr $((CH_3)_3CC1) - 13$ C4H9Cl C4H9C1 $((CH_3)_3 CC1) - 20$ (cyclopentene) - 10 C5H8 C₅H₈ (CH₂:C(CH₃)CH:CH₂) - 13 $((CH_3)_3 CCBr) - 20$ C₅H₉Br $((CH_3)_3 CCI) - 20$ C₅H₉I $((CH_3)_3 CCN) - 13$ C₅H₉N

 $C_5 H_{10} Si$ ((CH₂)pices راللبات شاتان الرياد شكر C6H5Cl (quadrupole coupling patterns in chlorobenzene) $((CH_3)_3 CCCC1) - 20$ C6H9C1 ((сн₃)₃сссн) - 13 C6H10 $(CF_{3}C_{6}H_{5}) - 10$ ^C7^H5^F3 (benzonitrile) - 6 C7H5N (с_бн₅ссн) - 20 C₈H₆ C₁₀H₇F $(\beta$ -fluoronaphthalene) - 6 C₁₀H₈ (azulene) - 19 C1FO2 $(Clo_3F)_{2} - 13$ c1³⁵H₃Si (SiH₃C1³⁵) ~ 2 cl³⁵DH₂Si (SiH₂Dcl³⁵, SiH₂Dcl³⁷) - : (chlorine dioxide) - 17 C102 $(S_2Cl_2) - 1$ Cl₂S₂ DH2ISi $(SiH_0DI) - 2$ D₃IS1²⁸ (S1²⁸D₂I) - 2 $(S1^{30}D_{3}^{-1}I) - 2$ $\tilde{D_3}$ ISi³⁰ $(GeH_3F) - 10$ FH3Ge (SNF) - 10 FNS (NF₂) F2N - 13 F20 $(F_0) - 10$ (F₂0) F_20 - 15 $(0_{2}F_{2}) - 10$ F202 $(SiF_2I) - 1$ F₃IS1 FJNS $(NSF_3) - 10$ F_ЦS (sulfur tetrafluoride) F₅I · $(IF_5) - 3$ (nitramide HoNNO) H2N202 2 (SO_2) 02s - 11 (SO₂) - 21 0₂S

- 11 m