Simulating the complete quantum mechanics of very large dissipative Bose-Hubbard models

Piotr Deuar

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

collaboration:

Michał Matuszewski

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Alex Ferrier, Marzena Szymańska

University College London, UK

Giuliano Orso

LMPQ, Universite de Paris 7, France

References:

DIDEROT

- PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).
- PD, Quantum **5**, 455 (2021).

- Driven dissipative Bose-Hubbard model
- About quantum complexity and phase-space representations
 - * the *positive-P* method
 - * The *truncated Wigner* method
- Simulations of the driven-dissipative Bose-Hubbard model
- Outlook

Driven dissipative Bose-Hubbard model

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

Arrays of optical cavities

Vincentini, Minganti, Rota, Orso, Ciuti, PRA 97, 013853 (2018)

Ultracold atoms in optical lattice with forced losses

Labouvie, Santra, Heun, Ott, PRL 116, 235302 (2016)

Polaritons in micropillars

Baboux, Ge, Jacqmin, Biondi, Galopin, Lemaitre, Le Gratiet, Sagnes, Schmidt, Tureci, Amo, Bloch, PRL **116**, 066402 (2016)

Also structured lattices – e.g. Lieb lattice

Casteels, Rota, Storme, Ciuti, PRA 93, 043833 (2016)

NARODOWE

Difficulties of simulating quantum mechanics

Suppose we have a system with M sites, each site can have 0,1,..., (d-1) particles orbitals (2,3,...,d-level systems) modes

How many variables do we need to describe the state?

- Classical physics: configuration $\{n_1, n_2, \dots, n_M\}$ $\sim M$ real variables
- Closed quantum system: state vector $\sim d^M$ complex variables $|\Psi\rangle = \sum_{n_1=0}^{d-1} \sum_{n_2=0}^{d-1} \cdots \sum_{n_M=0}^{d-1} C_{n_1,n_2,\cdots,n_M} |n_1\rangle \otimes |n_2\rangle \cdots \otimes |n_M\rangle$
- Open quantum system: density matrix

$$\widehat{\rho} = \sum_{j} \lambda_{j} |\Psi_{j}\rangle \langle \Psi_{j}|$$

How can there be hope?

 $\sim \frac{1}{2} d^{2M}$ complex variables

Quantum complexity

(Type 1) Universal quantum computer, Shor's, Grover's algorithms, etc...

* needs precise knowledge of microscopic subsystem observables

(Type 2) Quantum behaviour of (most?) experimental systems

- * knowledge of bulk or locally averaged quantities suffices
- * statistical uncertainty mirrors experimental reality

Lopes, Imanaliev, Aspect, Cheneau, Boiron, Westbrook, *Nature* **520**, 66 (2015)

Cabrera, Tanzi, Sanz, Naylor, Thomas, Cheiney, Tarruell, *Science* **359**, 301 (2018)

Complete quantum mechanics with limited precision

Approach full quantum predictions as some technical parameter is changed

- "Asymptotic approach"
 - * Reduce basis set but treat what happens inside exactly
 - * matrix product states, "DMRG", PEPS
 - * multi-configuration methods, MCDHF...

• "Stochastic approach"

*

. . . .

. . .

- * Use full basis but randomly choose a few configurations
- * path integral Monte Carlo
- * phase space methods (positive-P, Wigner...)

Positive-P representation 1/3: configurations

M subsystems (modes, sites, volumes) labeled by j

Coherent state basis, complex, *local* α_i

$$|\alpha_j\rangle_j = e^{-|\alpha_j|^2/2} e^{\alpha_j \widehat{a}_j^{\dagger}} |\text{vac}\rangle$$

"ket" amplitude
$$\ lpha_j$$

"bra" amplitude $\ eta_j^*$

Local operator kernel

full system configuration

$$\widehat{\Lambda}(\boldsymbol{\lambda}) = \bigotimes_{j} \frac{|\alpha_{j}\rangle_{j} \langle \beta_{j}^{*}|_{j}}{\langle \beta_{j}^{*}|_{j} |\alpha_{j}\rangle_{j}}$$

$$\boldsymbol{\lambda} = \{ lpha_1, \dots, lpha_M, eta_1, \dots, eta_M \}$$

Full density matrix

$$\widehat{\rho} = \int d^{4M} \lambda \ P_{+}(\lambda) \,\widehat{\Lambda}(\lambda)$$

Correlations between subsystems are all in the distribution of configurations

 $P_+(\boldsymbol{\lambda})$ The distribution is positive, real — let's SAMPLE IT !

Positive-P representation 2/3: Identities and observables

 $\widehat{a}_j\widehat{\Lambda} = \alpha_j\widehat{\Lambda},$

 $\widehat{a}_{j}^{\dagger}\widehat{\Lambda} = \left[\beta_{j} + \frac{\partial}{\partial\alpha_{j}}\right]\widehat{\Lambda}$

Crucial element: differential identities

Follow from the operator kernel:

$$\widehat{\Lambda}(\boldsymbol{\lambda}) = \bigotimes_{j} \frac{|\alpha_{j}\rangle_{j} \langle \beta_{j}^{*}|_{j}}{\langle \beta_{j}^{*}|_{j} |\alpha_{j}\rangle_{j}}$$

$$\widehat{\lambda}_{j} = \langle \widehat{\alpha}_{j}^{\dagger} | \widehat{\beta}_{j} | \widehat{\beta}_{j} | \widehat{\alpha}_{j} \rangle = \widehat{\alpha}_{j} | \widehat{\alpha}_{j} | \widehat{\beta}_{j} | \widehat{\alpha}_{j} | \widehat{\beta}_{j} | \widehat{\alpha}_{j} | \widehat$$

Positive-P representation 3/3: Dynamics. One site example

Density matrix $\hat{\rho} \leftrightarrow \text{distribution } P_{+}$ for the fields $\leftrightarrow \text{random samples of the fields } \alpha \beta$

Master equation:

Bose-Hubbard site

dissipation
$$\gamma$$

$$\frac{\partial \hat{\rho}}{\partial t} = -i \left[\hat{H}, \hat{\rho} \right] + \frac{\gamma}{2} \left(2\hat{a}\hat{\rho}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a}\hat{\rho} - \hat{\rho}\hat{a}^{\dagger}\hat{a} \right)$$

$$\hat{H} = \frac{U}{2}\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a} - \Delta\hat{a}^{\dagger}\hat{a}$$

$$\hat{H} = \frac{U}{2}\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a} - \Delta\hat{a}^{\dagger}\hat{a}$$

$$\frac{\partial P_{+}}{\partial t} = \left\{ -\frac{\partial}{\partial \alpha} \left(-iU\alpha\beta + i\Delta - \frac{\gamma}{2} \right)\alpha - \frac{\partial}{\partial \beta} \left(iU\alpha\beta - i\Delta - \frac{\gamma}{2} \right)\beta + \frac{\partial^{2}}{\partial \alpha^{2}} \left(\frac{-iU}{2} \right)\alpha^{2} + \frac{\partial^{2}}{\partial \beta^{2}} \left(\frac{iU}{2} \right)\beta^{2} \right\}P_{+}$$

$$deterministic GPE (ket)$$

$$deterministic (bra)$$
diffusion (quantum noise)
Stochastic (Langevin) equations:

$$\frac{d\alpha}{dt} = \left(-iU\alpha\beta + i\Delta - \frac{\gamma}{2} \right)\alpha + \sqrt{-iU}\alpha\xi(t)$$

$$\frac{d\beta}{dt} = \left(+iU\alpha\beta - i\Delta - \frac{\gamma}{2} \right)\beta + \sqrt{+iU}\beta\tilde{\xi}(t)$$

$$\text{White noise}$$

$$\langle \xi(t)\xi(t') \rangle_{\text{stoch}} = \delta(t - t')$$

$$15.11.2021 \text{ Seminarium ZOA, Jagiellonian University, Kraków, Poland}$$

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

Overall properties for a many-body system

Density matrix $\hat{\rho} \leftrightarrow \text{distribution } P_+$ for the fields $\leftrightarrow \text{random samples of the fields } \alpha \beta$

• From
$$\sim \frac{1}{2} d^{2M}$$
 variables we go to *S* samples x 2M

- Therefore ---- Scales extremely well (linear with the number of modes M)
- Requires no particular symmetries, explicit time-dependence trivially added
- BUT **can be unstable**, usually no good for long-time equilibrium.

[more on this later !]

• Still..... particularly suited to large and "dirty" problems.

Dirty problems done dirt cheap!

Comparison to path integral Monte Carlo

Configuration size: *N particles x T* time slices

Typical algorithm: Metropolis

weights

--> phase problem in dynamics

no noise amplification problem

Configuration size: *M modes*

Typical algorithm: Langevin equations

no weights for dynamics --> no sign problem there

noise amplification if dissipation insufficient

long time dynamics excluded

Particularly for closed Hamiltonian systems.

Dealing with noise amplification

• It was found that the simulation time is limited:

$$t_{\rm sim} \approx \begin{cases} \frac{2.5}{\max_j [U_j N_j^{2/3}]} & \text{if } \max_j N_j \gg 1, \\ \frac{C}{\max_j U_j} & \text{if } \max_j N_j \ll 1, \end{cases}$$

- Various ways have been developed to improve this performance:
 - * stochastic Gauges PD, Drummond, *PRA* 66, 033812 (2002), J Phys A 39, 2723 (2006); PD *et al*, PRA 79, 043619 (2009); Wuster, Corney, Rost, PD, PRE 96, 013309 (2017)
 - * quantum interpolation

PD, *PRL* **103**, 130402 (2009); Ng, Sorensen, PD, PRB **88**, 144304 (2013)

- Or it can be optimal to just use approximate representations:
 - * truncated Wigner

Sinatra, Lobo, Castin, J Phys B 35, 3599 (2002) Norrie, Ballagh, Gardiner, *PRA* **73**, 043617 (2006), PRL **94**, 040401 (2005)

- * STAB (Stochastic adaptive Bogoliubov) PD, Chwedeńczuk, Trippenbach, Zin, PRA 83, 063625 (2011) Kheruntsyan *et al*, *PRL* **108**, 260401 (2012)
- It was also found that simulation time grows with dissipation to an external bath:

$$t_{\rm sim} \sim \frac{2 - \log N}{U - \gamma}$$

• But not really tested at the time

positive-P representation of the driven dissipative BH model

PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).

• Evolution equations for samples

 \sim

$$\frac{\partial \alpha_j}{\partial t} = i\Delta_j \alpha_j - iU_j \alpha_j^2 \widetilde{\alpha}_j^* - iF_j - \frac{\gamma_j}{2} \alpha_j + \sqrt{-iU_j} \alpha_j \xi_j(t) + \sum_k iJ_{kj}\alpha_k,$$

$$\frac{\partial \widetilde{\alpha}_j}{\partial t} = i\Delta_j \widetilde{\alpha}_j - iU_j \widetilde{\alpha}_j^2 \alpha_j^* - iF_j - \frac{\gamma_j}{2} \widetilde{\alpha}_j + \sqrt{-iU_j} \widetilde{\alpha}_j \widetilde{\xi}_j(t) + \sum_k iJ_{kj} \widetilde{\alpha}_k$$

White Gaussian noise deals with interparticle collisions

$$\langle \xi_j(t)\xi_k(t')\rangle_s = \delta(t-t')\delta_{jk}, \ \langle \widetilde{\xi}_j(t)\widetilde{\xi}_k(t')\rangle_s = \delta(t-t')\delta_{jk}$$

The rest of the equations is basically mean field

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

N A R O D O W E C E N T R U M

Positive-P simulations stabilised by the dissipation

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

Regime of stability for the positive-P approach

• Remarkably, stability is determined by single-site parameters

PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

Truncated Wigner representation

Different operator basis, different operator identities

 $\widehat{a}_{j}\widehat{\Lambda}_{W} = \begin{bmatrix} \alpha_{j} - \frac{1}{2}\frac{\partial}{\partial\alpha_{j}^{*}} \end{bmatrix} \widehat{\Lambda}_{W} \qquad \begin{array}{l} \widehat{a}_{j}\widehat{\Lambda} = \alpha_{j}\widehat{\Lambda}, \\ \widehat{a}_{j}^{\dagger}\widehat{\Lambda}_{W} = \begin{bmatrix} \alpha_{j}^{*} + \frac{1}{2}\frac{\partial}{\partial\alpha_{j}} \end{bmatrix} \widehat{\Lambda}_{W} \qquad \widehat{a}_{j}^{\dagger}\widehat{\Lambda} = \begin{bmatrix} \beta_{j} + \frac{\partial}{\partial\alpha_{j}} \end{bmatrix} \widehat{\Lambda} \\ \widehat{\Lambda}_{W}\widehat{a}_{j} = \begin{bmatrix} \alpha_{j} + \frac{1}{2}\frac{\partial}{\partial\alpha_{j}^{*}} \end{bmatrix} \widehat{\Lambda}_{W} \qquad \widehat{\Lambda}\widehat{a}_{j} = \begin{bmatrix} \alpha_{j} + \frac{\partial}{\partial\beta_{j}} \end{bmatrix} \widehat{\Lambda} \\ \widehat{\Lambda}_{W}\widehat{a}_{j}^{\dagger} = \begin{bmatrix} \alpha_{j}^{*} - \frac{1}{2}\frac{\partial}{\partial\alpha_{j}} \end{bmatrix} \widehat{\Lambda}_{W} \qquad \widehat{\Lambda}\widehat{a}_{j}^{\dagger} = \beta_{j}\widehat{\Lambda}.$

$$\begin{aligned} \widehat{H} &= \frac{U}{2} \widehat{a}^{\dagger} \widehat{a}^{\dagger} \widehat{a} \widehat{a} - \Delta \widehat{a}^{\dagger} \widehat{a} \\\\ \frac{\partial \widehat{\rho}}{\partial t} &= -i \left[\widehat{H}, \widehat{\rho} \right] \\\\ &+ \frac{\gamma}{2} \left(2 \widehat{a} \widehat{\rho} \widehat{a}^{\dagger} - \widehat{a}^{\dagger} \widehat{a} \widehat{\rho} - \widehat{\rho} \widehat{a}^{\dagger} \widehat{a} \right) \end{aligned}$$

Different Fokker-Planck equation $\frac{\partial P_W}{\partial t} = \left\{ -\frac{\partial}{\partial \alpha} \left(-iU \left(|\alpha|^2 - 1 \right) + i\Delta - \frac{\gamma}{2} \right) \alpha + iU \frac{\partial^3}{\partial \alpha^* \partial \alpha^2} \frac{\alpha}{2} + \text{c.c.} + \frac{\gamma}{2} \frac{\partial^2}{\partial \alpha^* \partial \alpha} \right\} P_W$ Deterministic GPE-1 *positive-P* $\frac{\partial P_+}{\partial t} = \left\{ -\frac{\partial}{\partial \alpha} \left(-iU\alpha\beta + i\Delta - \frac{\gamma}{2} \right) \alpha - \frac{\partial}{\partial \beta} \left(iU\alpha\beta - i\Delta - \frac{\gamma}{2} \right) \beta + \frac{\partial^2}{\partial \alpha^2} \left(\frac{-iU}{2} \right) \alpha^2 + \frac{\partial^2}{\partial \beta^2} \left(\frac{iU}{2} \right) \beta^2 \right\} P_+$

Truncated Wigner equations

Stochastic (Langevin) equations:

$$\frac{d\alpha}{dt} = \left(-iU\left(|\alpha|^2 - 1\right) + i\Delta - \frac{\gamma}{2}\right)\alpha + \sqrt{\frac{\gamma}{2}}\,\eta(t)$$

Initial condition:

$$\alpha_j(0) = \phi_j^0 + \frac{1}{\sqrt{2}} \eta_j \qquad \langle \eta_j^* \eta_k \rangle = \delta_{jk}$$

Always stable, sometimes not exact

 $\alpha_j(0) = \phi_j^0 = \beta_j^*(0)$

positive-P

$$\frac{d\alpha}{dt} = \left(-iU\alpha\beta + i\Delta - \frac{\gamma}{2}\right)\alpha + \sqrt{-iU}\alpha\xi(t)$$
$$\frac{d\beta}{dt} = \left(+iU\alpha\beta - i\Delta - \frac{\gamma}{2}\right)\beta + \sqrt{+iU}\beta\widetilde{\xi}(t)$$

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

N A R O D O W E C E N T R U M N A U K I I.

Phase space methods - regimes of applicability

PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).

- Stability is largely independent of coupling *J*
- computational effort scales <u>linearly</u> with the size of the system.
- Computational effort is independent of dimensionality.
- Time-dependent system parameters and nonuniformity are trivial to implement.

pos-P Stability condition:
$$\gamma \gtrsim 3U \max\left[\sqrt{N}, 1\right]$$

NARODOWE

Large systems – example simulation 256 x 256 lattice

- Quantum dynamics of huge systems can be done under the right conditions, though stability issues
- Full quantum calculations of large Bose-Hubbard models

 positive-P method found to be stable with sufficient dissipation
 scalable. e.g. 10⁵ sites is easy
 truncated Wigner accurate in complementary regimes
 ¹⁰
 ¹⁰
 ¹⁰
 ¹⁰
 ¹⁰
- Other dissipative models may also be possible.
 - e.g. spins, Jaynes-Cummings-Hubbard

Schwinger bosons

Ng, Sorensen, J Phys A **44**, 065305 (2011) Huber, Kirton, Rabl, SciPost Phys **10**, 045 (2021) (truncated Wigner)

SU(n) positive-P-like representations Ng, Sorensen, PD, PRB 88, 144304 (2013) Begg, Green, Bhaseen arXiv:2011.07924 (stochastic gauges)

• Phase space approach also very good for multi-time correlations similar form to Heisenberg equations

References:

- PD, Ferrier, Matuszewski, Orso, Szymańska, *Fully Quantum Scalable Description of Driven-Dissipative Lattice Models*, PRX Quantum **2**, 010319 (2021).
- PD, Multi-time correlations in the positive-P, Q, and doubled phase-space representations, Quantum **5**, 455 (2021).

NARODOWE

• Expressed in terms of Heisenberg operators

$$\widehat{A}(t) = e^{i(t-t_0)\widehat{H}/\hbar} \ \widehat{A}(t_0) \ e^{-i(t-t_0)\widehat{H}/\hbar}$$

• Time ordered correlation functions. Correspond to all sequences of measurements

$$\begin{array}{ll} \langle \widehat{A}_1(t_1) \widehat{A}_2(t_2) \cdots \widehat{A}_{\mathcal{N}}(t_{\mathcal{N}}) \widehat{B}_1(s_1) \widehat{B}_2(s_2) \cdots \widehat{B}_{\mathcal{M}}(s_{\mathcal{M}}) \rangle & t_1 \leqslant t_2 \leqslant \ldots \leqslant t_{\mathcal{N}} \\ & s_1 \geqslant s_2 \geqslant \ldots \geqslant s_{\mathcal{M}} \\ & \text{time grows} \end{array}$$

• e.g.

 $\langle \widehat{a}^{\dagger}(0)\widehat{a}^{\dagger}(\tau)\widehat{a}(\tau)\widehat{a}(0)\rangle$

particle present both at *t=0* and *t=tau*

 $\langle \hat{a}^{\dagger}(\tau) \hat{a}^{\dagger}(\tau) \hat{a}(0) \hat{a}(0) \rangle$

anomalous pair correlation: anihilate pair at *t=0* create at *t=tau*

Partial analogy positive-P <-> Heisenberg equations of motion

Correspondence in observable calculations:

 $\widehat{a} \leftrightarrow \alpha \qquad \widehat{a}^{\dagger} \leftrightarrow \beta$

Heisenberg equations of motion:

$$\frac{d\,\widehat{a}(t)}{dt} = \left(-iU\widehat{a}^{\dagger}(t)\widehat{a}(t) + i\Delta - \frac{\gamma}{2}\right)\widehat{a}(t)$$
$$\frac{d\,\widehat{a}^{\dagger}(t)}{dt} = \widehat{a}^{\dagger}(t)\left(+iU\widehat{a}^{\dagger}(t)\widehat{a}(t) - i\Delta - \frac{\gamma}{2}\right)$$

$$\widehat{H} = \frac{U}{2}\widehat{a}^{\dagger}\widehat{a}^{\dagger}\widehat{a}\widehat{a} - \Delta\widehat{a}^{\dagger}\widehat{a}$$

positive-P equations of motion

$$\frac{d\alpha}{dt} = \left(-iU\alpha\beta + i\Delta - \frac{\gamma}{2}\right)\alpha + \sqrt{-iU}\alpha\xi(t)$$
$$\frac{d\beta}{dt} = \left(+iU\alpha\beta - i\Delta - \frac{\gamma}{2}\right)\beta + \sqrt{+iU}\beta\widetilde{\xi}(t)$$

Indeed, many unequal time correlations have remarkably simple expressions

$$g_{1,1}^{(2)}(\tau) = \frac{\langle \hat{a}_1^{\dagger}(t) \, \hat{a}_1^{\dagger}(t+\tau) \, \hat{a}_1(t+\tau) \, \hat{a}_1(t) \rangle}{\langle \hat{a}_1^{\dagger}(t) \, \hat{a}_1(t) \rangle \langle \hat{a}_1^{\dagger}(t+\tau) \, \hat{a}_1(t+\tau) \rangle} = \frac{\operatorname{Re}\langle \alpha_1(t) \, \alpha_1(t+\tau) \, \tilde{\alpha}_1^*(t+\tau) \, \tilde{\alpha}_1^*(t) \rangle_s}{N_1(t) \, N_1(t+\tau)}$$

PD Quantum 5, 455 (2021).

Evaluation of variously ordered correlations

Normal ordering: positive-P variables

$$\langle \widehat{a}_{p_1}^{\dagger}(t_1) \cdots \widehat{a}_{p_{\mathcal{N}}}^{\dagger}(t_{\mathcal{N}}) \widehat{a}_{q_1}(s_1) \cdots \widehat{a}_{q_{\mathcal{M}}}(s_{\mathcal{M}}) \rangle = \langle \beta_{p_1}(t_1) \cdots \beta_{p_{\mathcal{N}}}(t_{\mathcal{N}}) \alpha_{q_1}(s_1) \cdots \alpha_{q_{\mathcal{M}}}(s_{\mathcal{M}}) \rangle_{\text{stoch}}$$

Anti-normal ordering: Q distribution variables

 $\langle \widehat{a}_{p_1}(t_1) \cdots \widehat{a}_{p_{\mathcal{N}}}(t_{\mathcal{N}}) \widehat{a}_{q_1}^{\dagger}(s_1) \cdots \widehat{a}_{q_{\mathcal{M}}}^{\dagger}(s_{\mathcal{M}}) \rangle$ $= \langle \alpha'_{p_1}(t_1) \cdots \alpha'_{p_{\mathcal{N}}}(t_{\mathcal{N}}) \beta'_{q_1}(s_1) \cdots \beta'_{q_{\mathcal{M}}}(s_{\mathcal{M}}) \rangle_{\text{stoch}}$

conversion P->Q

$$\alpha'_j = \alpha_j + \zeta_j \qquad ; \qquad \beta'_j = \beta_j + \zeta_j^*$$

$$\langle \zeta_j \rangle_{\text{stoch}} = 0 \; ; \; \langle \zeta_j \zeta_k \rangle_{\text{stoch}} = 0 \; ; \; \langle \zeta_j^* \zeta_k \rangle_{\text{stoch}} = 1$$

Mixed ordering:

- 1) sample what is possible using positive-P variables
- 2) convert variables to doubled-Q
- 3) sample what is possible using Q variables

Order	2nd	3rd	4th
(number of operators)	order	order	order
Total permutations	12	56	240
single time correlations	4	8	16
multi-time accessible			
with P representation	4	14	36
additional accessible			
with Q representation	4	14	36
additional accessible			
with mixed order (Sec. 5.4)	_	12	72
Total doable	12	48	160
time ordered not doable	_	_	_
Not time ordered, not doable	_	8	80

Table 2: A tally of \hat{a} , \hat{a}^{\dagger} products involving up to four operators, evaluated at one of two times. The general form considered is $\langle \hat{A}(t_a)\hat{B}(t_b)\hat{C}(t_c)\hat{D}(t_d)\rangle$, where $\hat{A},\hat{B},\hat{C},\hat{D}$ can be either of \hat{a} or \hat{a}^{\dagger} (same mode), and the time arguments can take up to two distinct times t = 0 and $t = \tau > 0$.

NARODOWE

Unconventional photon blockade

Complete antibunching, Subtle interference effect

Liew, Savona, PRL **104**, 183601 (2010) Bamba, Imamoglu, Carusotto, Ciuti, PRA **83**, 021802(R) (2011)

15.11.2021 Seminarium ZOA, Jagiellonian University, Kraków, Poland

potential single-photon source

robustness to background photons:

PD Quantum 5, 455 (2021).

N A RODOWE CENTRUM

 $\frac{\partial \widehat{\rho}}{\partial t} = -i \left[\widehat{H}, \widehat{\rho} \right] + \frac{\gamma \overline{N}}{2} \sum_{i} \left[2\widehat{a}_{j}^{\dagger} \widehat{\rho} \widehat{a}_{j} - \widehat{a}_{j} \widehat{a}_{j}^{\dagger} \widehat{\rho} - \widehat{\rho}^{\dagger} \widehat{a}_{j} \widehat{a}_{j} \right]$ $+\frac{\gamma(\overline{N}+1)}{2}\sum_{j}\left[2\widehat{a}_{j}\widehat{\rho}\widehat{a}_{j}^{\dagger}-\widehat{a}_{j}^{\dagger}\widehat{a}_{j}\widehat{\rho}-\widehat{\rho}\widehat{a}_{j}^{\dagger}\widehat{a}_{j}\right].$ (96)

26/22

Multi-time correlations ctd

PD Quantum 5, 455 (2021).

32 site Bose-Hubbard chain correlation wave after quench

NARODOWE

Ľ

Closer look at occupation dependence

