Scalable full quantum dynamics

of dissipative Bose-Hubbard systems

PARIS
DIDEROT

(if we get to them...)
Piotr Deuar
Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
Michał Matuszewski
Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
Alex Ferrier, Marzena Szymańska
University College London, UK
Giuliano Orso
LMPQ, Université de Paris, France

References:

- PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).
- PD, Quantum 5, 455 (2021).

Driven dissipative Bose-Hubbard model

$$
\widehat{H}=\sum_{j} \widehat{H}_{j}-\sum_{\text {connections } i, j}\left[J_{i j} \widehat{a}_{j}^{\dagger} \widehat{a}_{i}+J_{i j}^{*} \hat{j}_{i}^{\dagger} \widehat{a}_{j}\right]
$$

Vincentini, Minganti, Rota, Orso
$\widehat{H}_{j}=-\Delta_{j} \widehat{a}_{j}^{\dagger} \widehat{a}_{j}+\frac{U_{j}}{2} \widehat{a}_{j}^{\dagger} \widehat{a}_{j}^{\dagger} \widehat{a}_{j} \widehat{a}_{j}+F_{j} \widehat{a}_{j}^{\dagger}+F_{j}^{*} \widehat{a}_{j}$ Ciuti, PRA 97, 013853 (2018)
driving
$\frac{\partial \widehat{\rho}}{\partial t}=-i[\widehat{H}, \widehat{\rho}]+\sum_{j} \frac{\gamma_{j}}{2}\left[2 \widehat{a}_{j} \widehat{\rho} \widehat{a}_{j}^{\dagger}-\widehat{a}_{j}^{\dagger} \widehat{a}_{j} \widehat{\rho}-\widehat{\rho} \widehat{a}_{j}^{\dagger} \widehat{a}_{j}\right]$

Also structured lattices - e.g. Lieb lattice

Casteels, Rota, Storme, Ciuti, PRA 93, 043833 (2016)

Baboux, Ge, Jacqmin, Biondi, Galopin,
Lemaitre, Le Gratiet, Sagnes, Schmidt, Tureci, Amo, Bloch, PRL 116, 066402 (2016)

Two different kinds of quantum complexity

Suppose we have $M d$-level systems
Size of a (mixed) state in Hilbert space:

(1) Universal quantum computer, Shor's, Grover's algorithms, etc...

* needs precise knowledge of microscopic subsystem observables

$$
\mid 0
$$

$|0\rangle$

(2) Quantum behaviour of (most?) experimental systems

* knowledge of bulk or locally averaged quantities suffices
* statistical uncertainty mirrors experimental reality

Lopes, Imanaliev, Aspect, Cheneau, Boiron, Westbrook, Nature 520, 66 (2015)

Cabrera, Tanzi, Sanz, Naylor, Thomas, Cheiney, Tarruell, Science 359, 301 (2018)

Positive-P representation

M subsystems (modes, sites, volumes) labeled by j
Coherent state basis, complex, local $\alpha_{j} \quad\left|\alpha_{j}\right\rangle_{j}=e^{-\left|\alpha_{j}\right|^{2} / 2} e^{\alpha_{j} \hat{a}_{j}^{\dagger}} \mid$ vac \rangle

Local operator kernel

"ket" amplitude α_{j} "bra" amplitude β_{j}^{*}

full system configuration

$$
\widehat{\Lambda}(\boldsymbol{\lambda})=\bigotimes_{j} \frac{\left|\alpha_{j}\right\rangle_{j}\left\langle\left.\beta_{j}^{*}\right|_{j}\right.}{\left\langle\left.\beta_{j}^{*}\right|_{j} \mid \alpha_{j}\right\rangle_{j}}
$$

$$
\boldsymbol{\lambda}=\left\{\alpha_{1}, \ldots, \alpha_{M}, \beta_{1}, \ldots, \beta_{M}\right\}
$$

Full density matrix

Correlations between subsystems are all in the distribution of configurations

$$
P_{+}(\boldsymbol{\lambda}) \text { The distribution is positive, real } \longrightarrow \text { let's SAMPLE IT! }
$$

Identities and observables

Crucial element: differential identities
Follow from the operator kernel:

$$
\widehat{\Lambda}(\boldsymbol{\lambda})=\bigotimes_{j} \frac{\left|\alpha_{j}\right\rangle_{j}\left\langle\left.\beta_{j}^{*}\right|_{j}\right.}{\left\langle\left.\beta_{j}^{*}\right|_{j} \mid \alpha_{j}\right\rangle_{j}}
$$

Observable: occupation

$$
\begin{aligned}
\widehat{N}_{j} & =\left\langle\widehat{a}_{j}^{\dagger} \widehat{a}_{j}\right\rangle=\operatorname{Tr}\left[\widehat{a}_{j}^{\dagger} \widehat{a}_{j} \hat{\rho}\right] \\
& =\int d^{4 M} \boldsymbol{\lambda} P_{+}(\boldsymbol{\lambda}) \operatorname{Tr}\left[\widehat{a}_{j}^{\dagger} \widehat{a}_{j} \hat{\rho}\right] \\
& =\int d^{4 M} \boldsymbol{\lambda} P_{+}(\boldsymbol{\lambda}) \alpha_{j}\left[\beta_{j}+\frac{\partial}{\partial \alpha_{j}}\right] \operatorname{dr}[\widehat{\Lambda}] \\
& =\int d^{4 M} \boldsymbol{\lambda} P_{+}(\boldsymbol{\lambda}) \alpha_{j} \hat{\hat{\Lambda}(\lambda)} \\
& =\lim _{\mathcal{S} \rightarrow \infty}\left\langle\alpha_{j} \beta_{j}\right\rangle_{\text {stoch. }}
\end{aligned}
$$

$$
\widehat{a}_{j} \widehat{\Lambda}=\alpha_{j} \widehat{\Lambda},
$$

$$
\widehat{a}_{j}^{\dagger} \widehat{\Lambda}=\left[\beta_{j}+\frac{\partial}{\partial \alpha_{j}}\right] \widehat{\Lambda}
$$

$$
\widehat{\Lambda} \widehat{a}_{j}=\left[\alpha_{j}+\frac{\partial}{\partial \beta_{j}}\right] \widehat{\Lambda}
$$

$$
\widehat{\Lambda} \widehat{a}_{j}^{\dagger}=\beta_{j} \widehat{\Lambda}
$$

$$
\operatorname{Tr}[\widehat{\Lambda}]=1
$$

$$
\widehat{\rho}=\int d^{4 M} \boldsymbol{\lambda} P_{+}(\boldsymbol{\lambda}) \widehat{\Lambda}(\boldsymbol{\lambda})
$$

we have S samples of $\boldsymbol{\lambda}$ the configurations distributed according to $P_{+}(\boldsymbol{\lambda})$

Dynamics.

Density matrix $\widehat{\rho} \leftrightarrow$ distribution P_{+}for the fields \leftrightarrow random samples of the fields $\alpha \beta$
Master equation:

$$
\hbar=1
$$

$\frac{\partial \widehat{\rho}}{\partial t}=-i[\widehat{H}, \widehat{\rho}]+\frac{\gamma}{2}\left(2 \widehat{a} \widehat{\widehat{a}} \widehat{a}^{\dagger}-\widehat{a}^{\dagger} \widehat{a} \widehat{\rho}-\widehat{\rho} \widehat{a}^{\dagger} \widehat{a}\right)$

$$
\widehat{H}=\frac{U}{2} \widehat{a}^{\dagger} \widehat{a}^{\dagger} \widehat{a} \widehat{a}-\Delta \widehat{a}^{\dagger} \widehat{a}
$$

Fokker Planck equation

$$
\begin{gathered}
\frac{\partial P_{+}}{\partial t}=\left\{\begin{array} { c }
{ - \frac { \partial } { \partial \alpha } (- i U \alpha \beta + i \Delta - \frac { \gamma } { 2 }) \alpha - \frac { \partial } { \partial \beta } (i U \alpha \beta - i \Delta - \frac { \gamma } { 2 }) \beta + \frac { \partial ^ { 2 } } { \partial \alpha ^ { 2 } } (\frac { - i U } { 2 }) \alpha ^ { 2 } + \frac { \partial ^ { 2 } } { \partial \beta ^ { 2 } } (\frac { i U } { 2 }) \beta ^ { 2 } \} P _ { + } } \\
{ \text { deterministic (ket) } }
\end{array} \left\{\begin{array}{l}
\text { deterministic (bra) } \\
\text { Stochastic (Langevin) equations: } \\
\text { stochastic } \\
\text { correspondence }
\end{array}\right.\right.
\end{gathered}
$$

different noises

$$
\begin{aligned}
\frac{d \alpha}{d t} & =\left(-i U \alpha \beta+i \Delta-\frac{\gamma}{2}\right) \alpha+\sqrt{-i U} \alpha \xi(t) \\
\frac{d \beta}{d t} & =\left(+i U \alpha \beta-i \Delta-\frac{\gamma}{2}\right) \beta+\sqrt{+i U} \beta \widetilde{\xi}(t)
\end{aligned}
$$

Achilles heel - noise amplification limits simulation time

Particularly for closed Hamiltonian systems.

Dealing with noise amplification

- It was found that the simulation time is limited:

$$
t_{\mathrm{sim}} \approx \begin{cases}\frac{2.5}{\max _{j}\left[U_{j} N_{j}^{2 / 3}\right]} & \text { if } \max _{j} N_{j} \gg 1, \\ \frac{C}{\max _{j} U_{j}} & \text { if } \max _{j} N_{j} \ll 1,\end{cases}
$$

PD, Drummond, J Phys A 39, 1163 (2006)

- Various ways have been developed to improve this performance:
* stochastic Gauges
* quantum interpolation

PD, Drummond, PRA 66, 033812 (2002), J Phys A 39, 2723 (2006);
PD et al, PRA 79, 043619 (2009); Wuster, Corney, Rost, PD, PRE 96, 013309 (2017)
PD, PRL 103, 130402 (2009);
Ng, Sorensen, PD, PRB 88, 144304 (2013)

- Or it can be optimal to just use approximate representations:
* truncated Wigner

Sinatra, Lobo, Castin, J Phys B 35, 3599 (2002)
Norrie, Ballagh, Gardiner, PRA 73, 043617 (2006), PRL 94, 040401 (2005)

* STAB (Stochastic adaptive Bogoliubov)

PD, Chwedeńczuk, Trippenbach, Zin, PRA 83, 063625 (2011) Kheruntsyan et al, PRL 108, 260401 (2012)

- It was also found that simulation time grows
with dissipation to an external bath:

$$
t_{\mathrm{sim}} \sim \frac{2-\log N}{U-\gamma}
$$

- But not really tested at the time

Positive-P simulations stabilised by the dissipation

(d) Open Systems

(c)

Closed Systems

instability triggered γ too low

Regime of stability for the positive-P approach

- Remarkably, stability is determined by single-site parameters!

PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).

Large systems - example simulation 256 x 256 lattice

Phase space methods - regimes of applicability

Unequal time correlations

- Expressed in terms of Heisenberg operators

$$
\widehat{A}(t)=e^{i\left(t-t_{0}\right) \widehat{H} / \hbar} \widehat{A}\left(t_{0}\right) e^{-i\left(t-t_{0}\right) \widehat{H} / \hbar}
$$

- Time ordered correlation functions.

Correspond to all sequences of measurements

$$
\xrightarrow[\text { time grows }]{\left\langle\widehat{A}_{1}\left(t_{1}\right) \widehat{A}_{2}\left(t_{2}\right) \cdots \widehat{A}_{\mathcal{N}}\left(t_{\mathcal{N}}\right) \widehat{B}_{1}\left(s_{1}\right) \widehat{B}_{2}\left(s_{2}\right) \cdots \widehat{B}_{\mathcal{M}}\left(s_{\mathcal{M}}\right)\right\rangle} \underbrace{\stackrel{(}{2}}_{\text {time grows }}
$$

- e.g.

$$
\begin{aligned}
& \left\langle\widehat{a}^{\dagger}(0) \widehat{a}^{\dagger}(\tau) \widehat{a}(\tau) \widehat{a}(0)\right\rangle \\
& \left\langle\widehat{a}^{\dagger}(\tau) \widehat{a}^{\dagger}(\tau) \widehat{a}(0) \widehat{a}(0)\right\rangle
\end{aligned}
$$

particle present both at $t=0$ and $t=t a u$
anomalous pair correlation: anihilate pair at $t=0$ create at $t=t a u$

Partial analogy positive-P <-> Heisenberg equations of motion

Correspondence in observable calculations:

Heisenberg equations of motion:

$$
\begin{aligned}
\frac{d \widehat{a}(t)}{d t} & =\left(-i U \widehat{a}^{\dagger}(t) \widehat{a}(t)+i \Delta-\frac{\gamma}{2}\right) \widehat{a}(t) \\
\frac{d \widehat{a}^{\dagger}(t)}{d t} & =\widehat{a}^{\dagger}(t)\left(+i U \widehat{a}^{\dagger}(t) \widehat{a}(t)-i \Delta-\frac{\gamma}{2}\right)
\end{aligned}
$$

$$
\widehat{H}=\frac{U}{2} \widehat{a}^{\dagger} \widehat{a}^{\dagger} \widehat{a} \widehat{a}-\Delta \widehat{a}^{\dagger} \widehat{a}
$$

positive-P equations of motion

$$
\begin{aligned}
& \frac{d \alpha}{d t}=\left(-i U \alpha \beta+i \Delta-\frac{\gamma}{2}\right) \alpha+\sqrt{-i U} \alpha \xi(t) \\
& \frac{d \beta}{d t}=\left(+i U \alpha \beta-i \Delta-\frac{\gamma}{2}\right) \beta+\sqrt{+i U} \beta \widetilde{\xi}(t)
\end{aligned}
$$

Indeed, many unequal time correlations have remarkably simple expressions
$g_{1,1}^{(2)}(\tau)=\frac{\left\langle\widehat{a}_{1}^{\dagger}(t) \widehat{a}_{1}^{\dagger}(t+\tau) \widehat{a}_{1}(t+\tau) \widehat{a}_{1}(t)\right\rangle}{\left\langle\widehat{a}_{1}^{\dagger}(t) \widehat{a}_{1}(t)\right\rangle\left\langle\widehat{a}_{1}^{\dagger}(t+\tau) \widehat{a}_{1}(t+\tau)\right\rangle} \quad=\frac{\operatorname{Re}\left\langle\alpha_{1}(t) \alpha_{1}(t+\tau) \widetilde{\alpha}_{1}^{*}(t+\tau) \widetilde{\alpha}_{1}^{*}(t)\right\rangle_{s}}{N_{1}(t) N_{1}(t+\tau)}$

Evaluation of variously ordered correlations

PD Quantum 5, 455 (2021).

Normal ordering: positive-P variables

$$
\begin{aligned}
& \left\langle\widehat{a}_{p_{1}}^{\dagger}\left(t_{1}\right) \cdots \widehat{a}_{p_{\mathcal{N}}}^{\dagger}\left(t_{\mathcal{N}}\right) \widehat{a}_{q_{1}}\left(s_{1}\right) \cdots \widehat{a}_{q_{\mathcal{M}}}\left(s_{\mathcal{M}}\right)\right\rangle \\
& \quad=\left\langle\beta_{p_{1}}\left(t_{1}\right) \cdots \beta_{p_{\mathcal{N}}}\left(t_{\mathcal{N}}\right) \alpha_{q_{1}}\left(s_{1}\right) \cdots \alpha_{q_{\mathcal{M}}}\left(s_{\mathcal{M}}\right)\right\rangle_{\text {stoch }}
\end{aligned}
$$

Anti-normal ordering: Q distribution variables

$$
\begin{aligned}
& \left\langle\widehat{a}_{p_{1}}\left(t_{1}\right) \cdots \widehat{a}_{p_{\mathcal{N}}}\left(t_{\mathcal{N}}\right) \widehat{a}_{q_{1}}^{\dagger}\left(s_{1}\right) \cdots \widehat{a}_{q_{\mathcal{M}}}^{\dagger}\left(s_{\mathcal{M}}\right)\right\rangle \\
& \quad=\left\langle\alpha_{p_{1}}^{\prime}\left(t_{1}\right) \cdots \alpha_{p_{\mathcal{N}}}^{\prime}\left(t_{\mathcal{N}}\right) \beta_{q_{1}}^{\prime}\left(s_{1}\right) \cdots \beta_{q_{\mathcal{M}}}^{\prime}\left(s_{\mathcal{M}}\right)\right\rangle_{\text {stoch }}
\end{aligned}
$$

conversion $\mathrm{P} \longrightarrow \mathrm{Q}$

$$
\alpha_{j}^{\prime}=\alpha_{j}+\zeta_{j} \quad ; \quad \beta_{j}^{\prime}=\beta_{j}+\zeta_{j}^{*}
$$

$$
\left\langle\zeta_{j}\right\rangle_{\text {stoch }}=0 ;\left\langle\zeta_{j} \zeta_{k}\right\rangle_{\text {stoch }}=0 ;\left\langle\zeta_{j}^{*} \zeta_{k}\right\rangle_{\text {stoch }}=1
$$

Mixed ordering:

1) sample what is possible using positive-P variables
2) convert variables to doubled- Q
3) sample what is possible using Q variables

identities:

positive- P
$\widehat{a}_{j} \widehat{\Lambda}=\alpha_{j} \widehat{\Lambda}$,
$\widehat{a}_{j}^{\dagger} \widehat{\Lambda}=\left[\beta_{j}+\frac{\partial}{\partial \alpha_{j}}\right] \widehat{\Lambda}$
$\widehat{\Lambda} \widehat{a}_{j}=\left[\alpha_{j}+\frac{\partial}{\partial \beta_{j}}\right] \widehat{\Lambda}$
$\widehat{\Lambda} \widehat{a}_{j}^{\dagger}=\beta_{j} \widehat{\Lambda}$.
doubled-Q
$\widehat{a}_{j} \widehat{\Lambda}_{Q}=\left[\alpha_{j}-\frac{\partial}{\partial \alpha_{j}^{*}}\right] \widehat{\Lambda}$
$\widehat{a}_{j}^{\dagger} \widehat{\Lambda}_{Q}=\alpha_{j}^{*} \widehat{\Lambda}_{Q}$,
$\widehat{\Lambda}_{Q} \widehat{a}_{j}=\alpha_{j} \widehat{\Lambda}_{Q}$,
$\widehat{\Lambda}_{Q} \widehat{a}_{j}^{\dagger}=\left[\alpha_{j}^{*}-\frac{\partial}{\partial \alpha_{j}}\right] \widehat{\Lambda}_{Q}$

Order (number of operators)	2nd order	3rd order	4 th order
Total permutations	$\mathbf{1 2}$	$\mathbf{5 6}$	$\mathbf{2 4 0}$
single time correlations	4	8	16
multi-time accessible with P representation	4	14	36
additional accessible with Q representation	4	14	36
additional accessible with mixed order (Sec. 5.4)	-	12	72
Total doable	$\mathbf{1 2}$	$\mathbf{4 8}$	$\mathbf{1 6 0}$
time ordered not doable	-	-	-
Not time ordered, not doable	-	8	80

Table 2: A tally of $\widehat{a}, \widehat{a}^{\dagger}$ products involving up to four operators, evaluated at one of two times. The general form considered is $\left\langle\widehat{A}\left(t_{a}\right) \widehat{B}\left(t_{b}\right) \widehat{C}\left(t_{c}\right) \widehat{D}\left(t_{d}\right)\right\rangle$, where $\widehat{A}, \widehat{B}, \widehat{C}, \widehat{D}$ can be either of \widehat{a} or \widehat{a}^{\dagger} (same mode), and the time arguments can take up to two distinct times $t=0$ and $t=\tau>0$.

Unconventional photon blockade

Complete antibunching, Subtle interference effect $\quad U \ll \gamma$

Liew, Savona, PRL 104, 183601 (2010)
Bamba, Imamoglu, Carusotto, Ciuti, PRA 83, 021802(R) (2011)

potential single-photon source

PD Quantum 5, 455 (2021).
$U=0.0856, J=3, \Delta=-0.275$,
$\gamma=1, F=0.01$

$$
\begin{align*}
\frac{\partial \widehat{\rho}}{\partial t}= & -i[\widehat{H}, \widehat{\rho}]+\frac{\gamma \bar{N}}{2} \sum_{j}\left[2 \widehat{a}_{j}^{\dagger} \widehat{\rho}^{\widehat{a}_{j}}-\widehat{a}_{j} \widehat{a}_{j}^{\dagger} \widehat{\rho}-\widehat{\rho}^{\dagger} \widehat{a}_{j} \widehat{a}_{j}\right] \\
& +\frac{\gamma(\bar{N}+1)}{2} \sum_{j}\left[2 \widehat{a}_{j} \widehat{\rho} \widehat{a}_{j}^{\dagger}-\widehat{a}_{j}^{\dagger} \widehat{a}_{j} \widehat{\rho}-\widehat{\rho}_{j}^{\dagger} \widehat{a}_{j}\right] \tag{96}
\end{align*}
$$

robustness to background photons:

- Full quantum calculations of large Bose-Hubbard models positive-P method found to be stable with sufficient dissipation scalable. e.g. 10^{5} sites is easy
truncated Wigner accurate in complementary regimes

- Many unequal time correlations accessible nontrivial multi-time correlations appear

- Other dissipative models may also be possible.
e.g. spins, Jaynes-Cummings-Hubbard
$\begin{array}{ll}\text { Schwinger bosons } & \begin{array}{l}\text { Ng, Sorensen, J Phys A 44, } 065305 \text { (2011) } \\ \text { Huber, Kirton, Rabl, SciPost Phys 10, } 045 \text { (2021) (truncated Wigner) }\end{array} \\ \end{array}$
SU(n) positive-P-like representations Ng, Sorensen, Pd, PRB 88, 144304 (2013)
Begg, Green, Bhaseen arXiv:2011.07924 (stochastic gauges)

References:

- PD, Ferrier, Matuszewski, Orso, Szymańska, Fully Quantum Scalable Description of Driven-Dissipative Lattice Models, PRX Quantum 2, 010319 (2021).
- PD, Multi-time correlations in the positive-P, Q, and doubled phase-space representations, Quantum 5, 455 (2021).

