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INTRODUCTION
Coleman’s theory of quantum tunneling [1,2] predicts that a relativistic scalar quantum
field from a metastable vacuum (i.e. false vacuum) decays to a stable vacuum (i.e. true
vacuum). Applying Coleman’s theory to the cosmological model of an inflationary uni-
verse, the decay of false vacuum can result in the formation of early universe "bubbles".
The quantum-field-theory prediction of such false vacuum tunneling has not been tested.
Here we study a proposed table-top experiment using a one-dimensional two-species
Bose-Einstein condensate (BEC) to simulate the inflationary universe [3-6]. To include
finite temperature effects that would be found under realistic conditions, we present a
theoretical model which combines the Wigner stochastic phase-space method and the
Bogoliubov theory [7] to numerically evaluate the dynamics of a coupled Bose field.

HAMILTONIAN OF THE TWO-SPECIES SYSTEM
The Hamiltonian of a uniform one-dimensional two-species ( j = 1,2) Bose gas is
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where the s-wave intraspecies scattering strength g = 2h̄aω⊥. In this proposed ex-
periment, the spin components are coupled by a cw microwave field with an addi-
tional amplitude modulation frequency ω . The interspecies coupling strength is given
by ν (t) = ν + δ h̄ω cosωt. According to the concept of Stephenson-Kapitza pen-
dulum, the sinusoidal time-dependent coupling creates an engineered phase potential
U (φa)=ω2

0
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]
, where ω0 = 2

√
νg|ψc|2/h̄ and λ = δ

√
2g|ψc|2/ν

for an initial condensate density |ψc|2. This creates a high-energy metastable state for
the relative phase φa between the two components, here we define φa = φ1−φ2−π .

Figure 1: Illustration of the engineered phase potential creating a metastable state for
λ > 1, the BEC is in false vacuum state when φa = 0 and true vacua when φa =±π .

INITIAL STATE AT FINITE TEMPERATURE
The BEC is initially prepared with single spin component j = 1. Following the Bogoli-
ubov theory, the Bose field operator at finite temperature is expanded as

Ψ̂1(x,0) = ψc +
1√
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k

[
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]
.

The Bogoliubov expansions, uk = εk+Ek
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, have u0 = 1 and v0 = 0

at zero momentum [8], where Ek = h̄2k2/2m and εk =
√

Ek(Ek +2g|ψc|2). Applying
the Wigner stochastic method, the phonon modes are represented as complex Gaussian
random variables b̂k ∼ βk and b̂†

k ∼ β ∗k which follow 〈|βk|2〉 = 1
exp(εk/kBT )−1 +

1
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finite temperature T . The Wigner field expression for the j = 1 field operator is given by
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The spin component j = 2 is initially in a vacuum state ψ2 =
1√
L ∑

k
αkeikx. The vacuum

modes are represented as complex Gaussian random variables where 〈|αk|2〉 = 1
2 . The

Wigner fields are then rotated to give the initial fields ψ1,0 and ψ2,0, where
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)
. This corresponds to applying a microwave pulse

to Rabi rotate the BEC into two hyperfine levels, so that the two species have equal
initial occupation with a relative phase of π (i.e. 〈|ψ1,0|2〉= 〈|ψ2,0|2〉, φa = 0). The time
evolution of the Wigner field trajectory (in dimensionless form) then follows [9]:
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TOPOLOGICAL PHASES OF TRUE VACUA
Starting with a φa = 0 false vacuum initialized with finite-temperature effects, the fol-
lowing single-tracjectory example shows that three true vacua bubbles expand until they
meet at the domain walls of false vacuum, or else form localized oscillons. The bubbles
representing distinct universes each have phase either −π or π .

Figure 2: The false vacuum (green) decays to two distinct topological phases (blue or
yellow). The numerical results are evaluated using an open-source software xSPDE [10].

DECAY OF FALSE VACUUM AT FINITE TEMPERATURE

Converting the relative phase into the relative number distribution pz, where pz(x̃) =
|ψ̃2|2−|ψ̃1|2
|ψ̃2|2+|ψ̃1|2

. Results show that at higher reduced temperature τ = T/Td , thermal fluctua-
tions reduce the survival time and disturb the clear structure of the true vacua bubbles.
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Figure 3: Decay of the false vacuum (yellow) to true vacua (blue): (a) at a lower reduced
temperature τ = 1×10−5 with four "universe bubbles" clearly formed and; (b) at a higher
temperature τ = 3×10−4, strong fluctuations occur between the false and true vacua.

TUNNELING RATE
Determining the tunneling rate Γ from the survival probability of the false vacuum, Γ

shows a power-law dependence on ν̃ . For a fixed coupling ν̃ , the quantum vacuum
nucleation is accelerated at higher temperature.
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Figure 4: Tunneling rate Γ determined from the coherent state and thermal states.

MODULATION INSTABILITY
The simulation results below show that at the same reduced temperature, increasing the
oscillator frequency ω̃ can suppress the short-wavelength fluctuations and stabilize the
true vacua. This increases the feasibility of a false vacuum BEC experiment.
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Figure 5: (a) Strong fluctuations present at a lower oscillator frequency ω̃ = 50, and; (b)
short-wavelength instabilities are removed at a higher oscillator frequency ω̃ = 200.
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