Simulating the complete quantum mechanics

of very large driven-dissipative

Bose-Hubbard systems

Um yeah... on a classical computer, with tricks

-100 -50 0 50 100

PARIS DIDEROT

Piotr Deuar

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Michał Matuszewski

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Alex Ferrier, Marzena Szymańska

University College London, UK

Giuliano Orso

LMPQ, Universite de Paris 7, France

References:

- PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).
- PD, Quantum **5**, 455 (2021).

Driven dissipative Bose-Hubbard model

Also structured lattices – e.g. Lieb lattice

Casteels, Rota, Storme, Ciuti, PRA 93, 043833 (2016)

Baboux, Ge, Jacqmin, Biondi, Galopin, Lemaitre, Le Gratiet, Sagnes, Schmidt, Tureci, Amo, Bloch, PRL **116**, 066402 (2016)

positive-P representation – dealing with quantum complexity

• Evolution equations for samples

$$\begin{split} \frac{\partial \alpha_{j}}{\partial t} &= i\Delta_{j}\alpha_{j} - iU_{j}\alpha_{j}^{2}\widetilde{\alpha}_{j}^{*} - iF_{j} - \frac{\gamma_{j}}{2}\alpha_{j} + \sqrt{-iU_{j}}\alpha_{j}\,\xi_{j}(t) + \sum_{k}iJ_{kj}\alpha_{k}, \\ \frac{\partial \widetilde{\alpha}_{j}}{\partial t} &= i\Delta_{j}\widetilde{\alpha}_{j} - iU_{j}\widetilde{\alpha}_{j}^{2}\alpha_{j}^{*} - iF_{j} - \frac{\gamma_{j}}{2}\widetilde{\alpha}_{j} + \sqrt{-iU_{j}}\widetilde{\alpha}_{j}\,\widetilde{\xi}_{j}(t) + \sum_{k}iJ_{kj}\widetilde{\alpha}_{k} \end{split}$$

White Gaussian noise deals with interparticle collisions

$$\langle \xi_j(t)\xi_k(t')\rangle_s = \delta(t-t')\delta_{jk}, \ \langle \widetilde{\xi}_j(t)\widetilde{\xi}_k(t')\rangle_s = \delta(t-t')\delta_{jk}$$

The rest of the equations is basically mean field

Positive-P simulations stabilised by the dissipation

03.06.2021 DAMOP, USA, speaker: Piotr Deuar, Polish Academy of Sciences

Large systems – example simulation 256 x 256 lattice

Phase space methods - regimes of applicability

many tests were done all confirm positive-P accuracy as long as there is an exact method to compare

Have a dissipative system you want to simulate? non-uniform ?

time-dependent ??

Contact us ;-)

PD, Ferrier, Matuszewski, Orso, Szymańska, PRX Quantum 2, 010319 (2021).

