Single shot phenomena in quantum atom optics

Piotr Deuar
Joanna Pietraszewicz
Tomasz Świsłocki
Igor Nowicki

Institute of Physics, Polish Academy of Sciences
Outline

• Single shot physics
• Spontaneous solitons
• Classical field method
• “Equilibrium dynamics”
• Judging the accuracy of classical fields
• Extension to include quantum fluctuations
Underlying fact

Ultracold atom experiments do not usually measure the simple density

\[n(x) = \langle \hat{\Psi}^\dagger(x) \hat{\Psi}(x) \rangle \]

that we are familiar with from basic quantum mechanics and most calculations

- Absorption imaging actually measures a very high order object:

 " "

 (Read: the position of all indistinguishable atoms in the many-body wavefunction OR: the number of atoms at each pixel simultaneously)

- Often it doesn't matter that "......" \(\neq n(x) \)
 (e.g. when resolution is worse than density correlations)

- However, it is interesting, when it does.
Warm-up example

Attractively interacting Bose gas in a trap

Density

\[\rho^{(1)}(x;x) = \left(\frac{\omega_1}{\pi} \right)^{3/2} e^{-\omega_1 x^2/2}. \]

COM fluctuations

Measurement 1

\[X_0 \]

Measurement 2

\[X_0 \]

Measurement 3

\[X_0 \]

Conditional density

\[\rho^{(1|1)}_\text{cond}(x;x|x_0) = \left(\frac{\omega}{2\pi} \right)^{3/2} e^{-\omega(x-x_0)^2/2}. \]

\(\omega \gg \omega_1 \)
Graying of dark solitons

Generation by phase imprinting

\[\Delta \Phi \approx - \frac{U(x) t}{\hbar} \]

Burger, Bongs, Dettmer, Ertmer, Sengstock, Sanpera, Shlyapnikov, Lewenstein, PRL 83, 5198 (1999)

Simulation of density at \(T=0 \)

Mishmash, Carr, PRL 103, 140403 (2009)

Filling in?
By excitations?
Quantum fluctuations?
Actually – random position

One-particle density $n(x)$: “greying”

Histogram of atom positions measured sequentially from wavefunction

Wigner simulation at $T=0$

Correlations: false friends

Two body correlation

Looks like greying+broadening

Mishmash, Carr, *PRL* 103, 140403 (2009)

Counterexample

$g^{(2)}$ is not a good indicator of the shape of the dip!

Defect formation during evaporative cooling

Expected a Kibble-Zurek mechanism:
Formation of condensate grains, and defects on the boundaries

We saw defects, but according to a rather different picture:

Początek termalizacji

Cooling ramp

Thermalization

Ramp beginning

Formation of solitons

End of ramp
Low order correlations do not describe the state

DENSITY PHASE COHERENCE $g^{(1)}(x,-x)$

End of cooling ramp

Long times

Temperature quench - experiment

Temperature quench in a sodium condensate

Different shots

Analysis of each shot separately

Soliton counting statistics

Kibble-Zurek-type scaling
Solutions induced by a disturbance are common.

Evaporative cooling (temperature quench)

Interaction quench

Uniform gas after chemical potential quench

Growth of quasicondensate during thermalization

Swisłocki, PD, arXiv: 1409.0146
Classical fields approximation

Gives access to single realizations

Full quantum field \rightarrow Ensemble of complex-fields

$\hat{\Psi}(x) = \sum_k \hat{a}_k \psi_k(x) \rightarrow \left\{ \sum_{k \in C} \xi_k \psi_k(x) \right\}$

N-body state

Assume highly occupied modes

Replace mode amplitude operators \hat{a}_k with complex number amplitudes ξ_k

“Quantum field theory, without discretized particles”

Developed by many authors:
A. Sinatra, M. Brewczyk, M. Gajda, M. Davis, K. Rzazewski, K. Burnett, E. Witkowska, … (no particular order)

Two ways to thermal equilibrium (GCE)

Metropolis sampling:

\[P(\Psi(x)) \propto \exp\left\{ -\frac{1}{T} \int dx \Psi(x)^* \left[-\frac{\hbar^2}{2m} \nabla^2 + V(x) + \frac{g}{2} |\Psi(x)|^2 - \mu \right] \Psi(x) \right\} \]

Witkowska, Gajda, Rzążewski, Optics Communications 283, 671 (2010)

Stochastic Gross-Pitaevskii equation (SGPE):

\[i\hbar \frac{\partial \Psi}{\partial t} = (1 - i\gamma) \left(-\frac{\hbar^2 \nabla^2}{2m} + V - \mu + g|\Psi|^2 \right) \Psi + \sqrt{2\hbar\gamma k_B T} \eta, \]

reservoir coupling (weak \(\gamma \ll 1 \))

Gross-Pitaevskii equation (GPE)

Complex white noise (thermal fluctuations)

Solitons in thermal equilibrium state

Solitons in equilibrium with phonons

Swisłocki, Nowicki, Pietraszewicz PD, *in preparation*

Lieb-Liniger excitations:
- Type I (phonons)
- Type II (solitons)
Equilibrium dynamics - uniform gas
Issue 1: Qualitative or quantitative?

- For many problems, classical fields (c-fields) are the only viable method.
 * Especially when single realizations are needed

- Perennial questions:
 * Fine, but, are the effects real?
 * is it quantitative or only qualitative?
 * what was the cutoff used?

- Perennial answers:
 * It's okay if there are many particles
 * Can work very well

Local density fluctuations in a trapped 1D bose gas

Cutoff benchmarking

Canonical ensemble, trapped ideal Bose gas

Witkowska, Gajda, Rzazewski, PRA 79, 033631 (2009)
However, it depends on the observable...

<table>
<thead>
<tr>
<th>Study</th>
<th>Cutoff energy suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal gases</td>
<td>Uniform: $0.30\ k_B T$ in 1D</td>
</tr>
<tr>
<td>Canonical ensemble</td>
<td>Trapped: $1.0\ k_B T$ in 1D</td>
</tr>
<tr>
<td>Consideration of number of excited atoms</td>
<td>Other values in 2D, 3D</td>
</tr>
<tr>
<td>SGPE calculations of interacting gas</td>
<td>Match particle number in truncated Wigner description to ideal gas</td>
</tr>
<tr>
<td>Cockburn, Negretti, Proukakis, Henkel, PRA 83, 043619 (2011)</td>
<td></td>
</tr>
<tr>
<td>Brewczyk etal</td>
<td>Match energy in high E modes to $k_B T$ (equipartition) ~ 1 particle in high E modes</td>
</tr>
<tr>
<td>Consideration of damping rates</td>
<td>$\sim k_B T$</td>
</tr>
<tr>
<td>Widely used rule of thumb</td>
<td>$k_B T$ + chemical potential</td>
</tr>
</tbody>
</table>

Initial plan: benchmark 1D quasicondensate with exact solution

Realization: even ideal gas is not well understood
Generic case: uniform section of gas

- Local Density approximation (LDA)
 → Grand Canonical ensemble
 (rest of gas acts as a reservoir)

Units:

Dimensionless temperature

\[\tau = \frac{T}{T_d} \]

Ideal gas degeneracy temperature

Dimensionless cutoff

\[f_c = \frac{k_c}{k_T} \]

\[k_T = \frac{2\pi}{\Lambda_T} \]

Thermal de Broglie wavelength

\[\Lambda_T = \sqrt{\frac{2\pi \hbar^2}{mk_B T}} \]
Cutoff optimum for different observables

Pietraszewicz, PD, arXiv:1504.06154

- E_{kin} Kinetic energy per particle
- $\text{var}N / N$ Coarse-grained fluctuations
- l_{pg} phase grain volume (~ coherence length l_Φ)
- Half-width of $g^{(1)}(x)$
- ρ_0 condensate fraction

Most extreme behaviour
Accuracy

Pietraszewicz, PD, arXiv:1504.06154

Single observable error

$$\delta_{\alpha}(\tau, f_c) := \frac{\Delta \alpha}{\alpha} = \left(\frac{\alpha^{(cf)}(\tau, f_c)}{\alpha^{(id)}(\tau)} - 1 \right)$$

Global error

$$RMS_{\alpha, \beta, \ldots}(\tau, f_c) = \sqrt{\left(\delta_{\alpha}\right)^2 + \left(\tilde{\delta}_{\beta}\right)^2 + \ldots}$$

Error in any observable will be < RMS

- Kinetic energy and coarse-grained fluctuations capture most extreme behaviour

→ use these only
Recommendation:
Accuracy better than 10% for $T < 0.007 \ T_d$
Use $f_c = 0.65$ (Energy cutoff = $1.3 \ k_B T$)

Pietraszewicz, PD, arXiv:1504.06154

~ independent of density (τ) → very good!
Recommendation:
Accuracy better than 10% for $T < 0.49 \, T_c$
Use $f_c = 0.78$ (Energy cutoff = $1.9 \, k_B T$)
Recommendation:
Don't use classical fields, at the least not near the ideal gas regime

Pietraszewicz, PD, arXiv:1504.06154
Interacting gas benchmarking

Comparison to Yang & Yang exact solution

\[
\gamma = \frac{g}{n} = 0.005
\]

\[
\tau = \frac{T}{T_d} = 0.0016
\]

interaction strength

Quasicondensate:

\[
g(2)(0) = 1.06
\]

Quite similar to ideal gas case:

10% accuracy

Same cutoff \(1.3 k_B T\)
Thank you

Collaboration

IF PAN
Joanna Pietraszewicz
Tomasz Świsłocki
Igor Nowicki
Emilia Witkowska
Mariusz Gajda

CFT PAN
Kazimierz Rzążewski
Krzysztof Pawłowski
Przemysław Bienias

University of Białystok
Mirosław Brewczyk
Tomasz Karpiuk
Krzysztof Gawryluk

Jagiellonian University
Krzysztof Sacha
Jacek Dziarmaga

University of Newcastle
Nick Proukakis
Stuart Cockburn
Donatello Galluci

Swinburne University of Technology
Peter Drummond

TU Wien
Jorg Schmiedmayer
Tim Langen
Max Kuhnert

McMaster University
Erik Sorensen
Ray Ng

University of Queensland
Karen Kheruntsyan
Matthew Davis
Tod Wright

Funding
Summary

• Cutoffs and accuracy depend strongly on the observable
 Kinetic energy and density fluctuations are most incompatible

• We found the temperatures and best cutoff for which a
 consistent and accurate c-field description exists in 1D and 3D.
 However, the 2D ideal gas is never well described

• Preliminary results in the interacting quasicondensate:
 Same cutoff as ideal gas, 10% accuracy also possible.