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Evaporative cooling

T > T
c

μ < T < T
c

T < μ

spillover level

both thermal cloud and condensate 

are evaporated

no more cooling, just loss

good cooling

good cooling

spillover level

spillover level
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Spinor condensate – more tricks to choose from

Pasquiou, Marechal, Bismut, Pedri, Vernac, Gorceix, Laburthe-Tolra, PRL 106, 255303 (2010)

● Several hyperfine species of the same atom

● Atoms can change of species 

quasispin state m
S 
=

polarised cloud, high B

images after spin separation by B field gradient

unpolarised cloud, low Blo
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Spin distillation cooling – concept

● schematic for the case of 23Na (discussed in detail later)

Add B field gradient to
eject m

F
 ≠ 0

m
F
=+1

m
F
= +1 

m
F
= 0

m
F
= -1 

initial t=0 after free evolution

higher spin states removed
;

ready for next cycle

ΔE > μ

μ

V(x
)

x

m
F
= +1 

m
F
= 0

m
F
= -1 

m
F
= 0

prepared in high B field B field lowered at t=0
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Spin distillation cooling – Paris experiment

52Cr
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Open questions

● Can successive cycles lead to more cooling?

● What are the limitations / conditions needed?

* how should magnetic field be changed in successive cycles? 

● does it also work for 23Na (suggested in the paper)

* contact interactions only

* using quadratic Zeeman effect

● why is there a worsening at small magnetic field? 
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Semiclassical field theory

Bose field semiclassical replacement

so-called 
“classical fields”

Assuming high occupation:

Developed by many authors: 

M. Brewczyk, M. Gajda, M. Davis, K. Rzazewski, A. Sinatra, K. Burnett, E. Witkowska, … (no priority implied)

Useful Reviews: M. Brewczyk et al, J. Phys B 40, R1 (2007); P. Blakie et al. Adv. Phys. 57, 363 (2008)
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Notable qualities of the classical field method

●  Treats both condensate and thermal part

●  Good scaling: makes 107 modes tractable

●  Nonperturbative

●  Single shots ~ single experimental realizations

Liu, Donadello, Lamporesi, Ferrari, Gou, Dalfovo, Proukakis, Commun. Phys. 1, 24 (2018)

1d gas – phase domains after cooling

1d gas – thermal equilibrium

Phys. Rev. Lett. 109, 205302 (2012)

Phys. Rev. Lett. 106, 135301 (2011)

HERE ~ 4x105 sites in each spin component
~ 3x106 modes
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Initial state generation: 1 component Stochastic GPE

Compare to GPE: 

complex noise

loss of particles to tails
(dissipation)

Hamiltonian dynamicsProjection onto 
low energy subspace 

(cutoff) gain of particles from tails
(fluctuation)

chempot sets N
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Initial state generation: SGPE

Cutoff and numerical lattice:

● kmax : optimised for several variables according to

● volume: chosen to match known condensate fraction

Pietraszewicz, PD, PRA 92, 063620 (2015)
Pietraszewicz, PD, PRA 98, 023622 (2018)

momentum cutoff
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Thermalised ensemble at long time

Temperature is easily set
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Chromium 52Cr    S=3 
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52Cr   S=3
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T=235nK

N=20000

cond frac 55%

Parameters as in experiment Seven spinor components

Trap frequencies

Linear Zeeman effect
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Evolution during cooling simulation

According to “plain” 7-component GPE with dipolar interactions: 

is the dipolar interaction term. It will not be written down today.
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Two conditions on B for successful cooling

1) Thermal energy should be sufficient to overcome the magnetic energy barrier

2) The magnetic field should be high enough that the condensate ground state 
remains polarised and cannot overcome the magnetic energy barrier 

 

scattering lengths in the total spin 6 and 4 channels

Santos, Pfau, PRL 96, 190404 (2006)
Diener, Ho, PRL 96, 190405 (2006)

Combining conditions leads to

for our system this gives 0.05Tc, 0.13 μ --- very low 
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Simple cooling cycles

simple choice of magnetic field using initial T

So .... successive cooling cycles give more cooling

but limited by 
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adaptive B

Adapting B after every cycle

Limited by minimum B
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Single cooling cycle - details

thermal clouds

condensate
m

S
=  -3

m
S
=  -2
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Threshold vs no-threshold

BEC components mutually thermaliseStationary but not thermalised

HERE: magnetic threshold
no threshold

Swisłocki, Bauer, Gajda, Brewczyk PRA 89, 023622 (2014)

→  different mechanisms

populations of spin states
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mean kinetic energy of thermal atoms

no thresholdHERE: magnetic threshold

Stationary but not thermalised
thermalised

What’s the mechanism here? It’s not thermalisation.....
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hypotheses for the mechanism

● no threshold: thermalised condensates formed in all spin states

● here: 

* BEC cannot jump the threshold energy

* “thermal clouds” not mutually thermalised.

* which process is responsible for populating higher spin states?

●    no contact interaction process for transfer from mS=-3  (mS must be conserved)

*             only leaves dipole scattering

● Thermal-thermal scattering timescale:   at least several seconds (too long)

●    Timescales (rough estimate) for scattering off condensate mode:

* ms=-3BEC  &  ms=-3BEC   →  ms=-3BEC  &  ms=-2therm      ~ 1s  
                                                                  (need better estimate)

* ms=-3BEC  &  ms=-2therm   →  ms=-3BEC  &  ms=-1therm      ~ 100 s (ruled out) 

* Thermal-thermal scattering timescale:   at least several seconds 
                                                                           (too long)

●  Therefore: all processes involving two thermal atoms are far too slow

●  Simulations suggest similar timescales for population of all higher spin states. 
Perhaps populations decrease because less states are energetically available.

●  Hypothesis is that non-thermalised one-time scattering off condensate mode is 
responsible for the transfer:

* ms=-3BEC  &  ms=-3BEC   →  ms=-3BEC  &  ms>-3therm

●   more quantitative analysis in progress.....
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Swisłocki, Bauer, Gajda, Brewczyk PRA 89, 023622 (2014)
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Sodium 23Na    F=1 manifold

m
F
=  0

m
F
=+1, -1

23Na   F=1
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Quadratic Zeeman effect is relevant here

Three quasispin components

Was conjectured to also allow cooling via the quadratic Zeeman effect, 

purely through contact spin-dependent interactions
Naylor, Marechal, Hackens, Gorceix, Pedri, Vernac, Laburthe-Tolra, PRL 115, 243002 (2015)
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The rest of the 23Na Hamiltonian

spin-independent; large

spin-dependent; small
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Equations of motion
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Sodium cooling cycles

q=0.011  B=100 mG
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A closer look

● Hmm, kind of different to Cr ....

● Fast Rabi oscillation timescale

● Condensate spreads easily into all spin states

m
F
=0 m

F
=±1

condensed and thermal atoms
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max B threshold for cooling
q=0.15 B=368 mG q=0.17 B=392 mG

m
F
=0 condensed and thermal atoms
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Magnetic field dependence
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initial condensate fraction

one cooling cycle

or more, in this whole range. 

→  magnetic energy is tiny compared to thermal!

why does it cool at all?
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Why a threshold at low magnetic field?

● No spin changing collisions near ground state, zero magnetization 

unless

plugging in, get

Stenger, Inouye, Stamper-Kurn, Miesner, Chikkatur, 
Ketterle, Nature 396, 345 (1998)
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How does it cool if condensate also spreads?

long times:

● equal thermal populations

● equal thermal energies

● UNequal condensate populations 

(for some reason...)

● More condensate remains in mF=0

m
F
=0 m

F
=±1

popuations of thermal and condensate atoms

kinetic energy per thermal atom
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Hypothesis..

● Equal thermal population in all 3 clouds is no surprise

(magnetic energy is negligible compared to  kBT )

● But – not equal in condensate, despite very many Rabi oscillations

*  This appears to rely on properties of spinor ground states?  

● Expect cooling when groundstate fraction of mF=0 is > 1/3 

(since 1/3 of thermal cloud remains in each spin state)

* best when groundstate fraction of mF=0 is close to 1.

* Many cooling rounds lead to zero magnetisation.

● In that case, a groundstate fraction of mF=0 close to 1 seems to desire 

opposite sign on q and c2

(different than what we simulated so far....)

Matuszewski, Alexander, Kivshar, PRA 80, 023602 (2009)

magnetisation

q 
/ 

c 2n

we’re here

( drat ! )   
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Mechanisms

● There seem to be two variants

* 52Cr:     T-dependent B  > Bth

● Only thermal atoms are scattered, mostly to nearest state
● No spin changes in condensate
● scattering due to dipolar interactions
● magnetic threshold large compared to spin-dependent interaction 

energy. 
● Temperature limitation but low.

* 23Na:   n-dependent B < Bmax

● Thermal atoms spread evenly
● condensate atoms also spread, but unevenly
● effectiveness presumably depends on spinor ground state
● insensitive to temperature

●  Both cool quite effectively  
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Conclusions

• Repeated cooling cycles check out in realistic simulations

 Best to adapt B after each cooling cycle

• Looks like two mechanisms  with common similarities

• Chromium:  

scattering of only thermal atoms into higher states 

thanks to dipolar interaction

B(T)

B > threshold

• Sodium:

thermal atoms scatter evenly

condensate atoms distribute unevenly

thanks to contact interaction

B(n) 

B < threshold

• Some further clarifications needed: 

scattering rates in Chromium, best conditions for Sodium
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