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Abstract

Quantum mechanical predictions for two states are checked for compatibility with hidden-variable

theories dealing only with macroscopic “elements of reality” via the Bell inequalities. The states

are: 1) A pair of spin-correlated high-spin particles or a pair of multiphoton states with corre-

lated polarisation. 2) A particular quantum mechanical superposition of pairs of phase-correlated,

spatially-separated coherent states whose properties are measured using a homodyne detection

scheme. Both states are found to be incompatible with hidden-variable theories dealing with

microscopic “elements of reality”, but the second state is also found to be incompatible with

macroscopic hidden-variable theories for appropriate values of its parameters. Here a macroscopic

quantity is considered to be one whose physical value is undetermined to within an error which is

itself macroscopic.
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Introduction

Realism is a premise associated with the philosophical view that there exists a reality with definite

properties irrespective of whether they are observed by someone or not. This is an underlying

principle of classical physics, and many people have tried to devise interpretations of quantum

mechanics that are manifestly consistent with realism (so-called hidden variable theories).

Another approach was taken by Einstein, Podolsky and Rosen1[1]. Their argument is given

in more detail in section 1.2. EPR gave a reasonable definition of realism, assumed this and no

action-at-a-distance (locality), and showed that with these premises, the results of some measure-

ments on a correlated system of particles are predetermined. This is not given by any quantum

mechanical description of the system, so EPR concluded that the quantum mechanical description

was incomplete. This is the so-called EPR paradox. Experimental results that confirm the paradox

have recently been produced by Ou et al[2].

It was shown by Bell[3] in 1965, that any theory satisfying the above premises of locality and

realism (local realism) gives results at odds with the predictions of quantum mechanics. Many

experiments have been carried out since[4][5][6][7][8] to test this and the results of these generally

vindicate quantum mechanics and reject local realism.

So far all the discrepancies that have been shown between quantum mechanics and local re-

alism have pertained to microscopic measurements, and all experiments performed have been on

microscopic systems (Here we define a macroscopic measurement as a measurement that has an un-

certainty in measured value that is itself macroscopic[9]). The failure of local realism in microscopic

1referred to as EPR from now on.
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Introduction 2

systems or for microscopic measurements is perhaps not so surprising, as classical physics, which

is intimately connected with realism, stops giving accurate predictions in the truly microscopic

regime. The question whether quantum mechanics in the macroscopic limit should satisfy local

realism (i.e. macroscopic local realism) is more contentious. One could argue that quantum me-

chanics should reduce to classical mechanics in the macroscopic limit, thus satisfying macroscopic

local realism, but one could also point out that there seems to be nothing in quantum mechanics

that forbids the formation of quantum superpositions of macroscopically distinct states2 ,and these

would not satisfy macroscopic local realism.

The aim of this project is to look at the quantum-mechanical predictions for some states, and

check their compatibility with macroscopic local realism as the macroscopic limit is approached.

To this end, chapter 1 covers some basic concepts needed for an understanding of the methods

and notation used to test the quantum mechanical predictions against macroscopic local realism.

This includes definitions of local realism and macroscopic measurements, the Bell inequality that

will be used, and how this may be extended to test for compatibility with macroscopic local

realism[9]. The EPR argument is also covered in more detail.

Chapter 2 concerns itsef with a system that can be interpreted as two subsystems contsisting

of photon modes that are correlated in polarisation, or two spin-correlated particles, having spin

higher than 1
2 . (A version of the EPR paradox was given by Bohm[13] for this system, but with

spin 1
2 ). This system is found to be compatible with macroscopic, but not microscopic, local

realism. Appendix A details some additional calculations used in the analysis of this state.

Chapter 3 looks at a system consisting of a superposition of pairs of phase-correlated coherent

states that has been shown[14] to be able to be created by a non-degenerate parametric oscillator

under certain ideal conditions. When quadrature phase measurements are performed on the system,

the quantum mechanical predictions are found to be incompatible with macroscopic local realism

for some parameter values. Appendix B details some additional calculations and proofs used in

this analysis.

2so-called “Schrödinger-cat” states[10][11][12].



Chapter 1

Basic Concepts

1.1 Local Realism and Elements of Reality

The concepts of local realism and element of reality were first introduced by Einstein, Podolsky

and Rosen in their 1935 paper on the EPR paradox[1].

Locality implies that a measurement performed, or event occurring in region A cannot instan-

taneously influence events or measurements in another region B, spatially separated from A, and

conversely events and measurements in B cannot instantaneously influence events or measure-

ments in A. Thus a measurement made in A has no effect on the result of a measurement being

simultaneously performed in B and vice versa.

Realism states that if one can predict with certainity the result of a measurement on a system,

without in any way disturbing that system, then the result of that measurement is a predetermined

property of the system. EPR called these predetermined properties elements of reality.

Thus logically Local Realism is a combination of the above, i.e. no action-at-a-distance (Local-

ity), and Realism.

3



1.2. The EPR Paradox 4

Figure 1.1: Spatially separated particles correlated in position and momentum. Here xn and pn
represent position and momentum of the nth particle

x x¾ -

B A

xB , pB xA, pA

1.2 The EPR Paradox

The famous Einstein-Podolsky-Rosen argument is instructive in understanding the concepts of

local realism, and its compatibility with quantum mechanics, which are central to this paper. The

EPR argument has been formulated in various ways, perhaps the best known formulations are

those of Bohm[13], and the original[1]. Here we will consider the original formulation.

The EPR argument was originally given as an attempt to show that the quantum mechanical

description of a system is incomplete. Three premises, which seemed reasonable at the time, were

given:

1. Locality : There is no action-at-a-disatance in nature.

2. Realism: “If without in any way disturbing a system, we can predict with certainty (i.e.,

with probability equal to unity) the value of a physical quantity, then there exists an element

of physical reality corresponding to this physical quantity”[1].

3. Some of the quantum-mechanical predictions about the results of measurements on the system

under consideration1 are correct.

The system under consideration consists of two particles, spatially separated, but correlated in

position and momentum (Figure 1.1). Systems like this are known to be predicted by quantum

mechanics. As the systems (call them A and B) are perfectly correlated, one can infer the result

1see immediately below.
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of a simultaneous position measurement at B, by measuring the position of A, (and conversely

infer the result of a position measurement on A by measuring the position of B). Similarily if

one performs a momentum measurement on A at time t, one can infer the result of a momentum

measurement at B at this same time t. Now beacuse locality has been postulated, a measurement

of position (say) at A at time t cannot disturb the particle at B until possibly at some later time,

so we can predict the result of a measurement of the position of the particle B at time t without

disturbing that system. These are the conditions required to be able to say that assuming realism,

there exists an element of reality corresponding to the position of particle B at time t. Let us call

this element of reality xB(t). By an equivalent chain of reasoning we can infer the existence of

other elements of reality for the system, such as xA(t) (position of particle A at t) and pA(t), pB(t)

(the momenta of particles A and B at t).

Now by the realism assumption, xA(t) and the other elements of reality, are predetermined

properties of the system, that have an existence irrespective of whether the measurement whose

result we can infer is carried out or not.

Now the crux of the EPR argument is that we have inferred that for a particle (say A), both

position xA and momentum pA have definite predetermined values, something that cannot be

given by any quantum mechanical description of the system, since quantum mechanics cannot give

accuracy beyond that given by the Heisenberg uncertainty relationship ∆x∆p ≥ ~/2. EPR thus

then concluded that, at least for this system, the quantum-mechanical description of the system

must be incomplete.

Paraphrasing the above statements, we could theoretically contrive some apparatus to measure

the position or momentum (not both simultaneously, of course), of one of these particles to a

sufficient accuracy, such that the following situation occurs: We measure the position of particle

A at time t to an accuracy ∆xA, and simultaneously measure the momentum of particle B to an

accuracy ∆pB . But we can now infer the value of the momentum of particle A at t because of

the correlation of the particles. For simplicity lets assume the correlation implies pA = −pB , say.
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Then the momentum of particle A at time t is known to an accuracy ∆pA = ∆pB , and we can,

assuming local realism, theoretically make measuring devices that will give ∆pA∆xA < ~/2.2

So by adopting the seemingly reasonable postulates of locality and realism, we are led to

conclude that quantum mechanics is incomplete. Perhaps a more lucid formulation of this is:

either: locality and realism hold, but quantum mechanics cannot be complete

or: locality or realism are false (or both), and quantum mechanics may be complete.

EPR hoped that a more complete theory would perhaps be of the “hidden variable” variety.

1.3 Tests of Local Realism: Bell’s Theorem

EPR had apparently supposed that the assumptions of local realism were compatible with quan-

tum mechanics. However work by Bell, and others[3][15], starting in 1965, essentially proved this

assumption false. The original version of Bell’s theorem[3] was based on Bohm’s version of the EPR

argument[13], pertaining to a system containing two spatially separated spin - 12 particles, whose

spins are correlated. Bell showed that the assumptions of locality and existence of elements of

reality constrained the results of measurements on the system to obey an inequality. (One of the

so called “Bell inequalities”). The results of certain such measurements are predicted by quantum

mechanics to violate this inequality. Thus quantum mechanics is incompatible with the assumption

of local reality.

A quick overview of the proof of Bell’s theorem by Clauser and Horne[16] follows, as this result

will be used in subsequent sections. A more detailed analysis of this and other Bell inequalities

may be found in a paper by Clauser and Shimony[15]. This proof was originally formulated for

spin - 12 particles going through polarisers, but the proof is more general and can be applied to any

pair of spatially separated systems for which measurements involving an adjustable parameter give

binary outcomes. Consider a pair of spatially separated but mutually correlated systems, A and B

2 This last statement can cause confusion, and it should be noted that there is no claim here that the Heisenberg
uncertainty principle is wrong, as the ∆’s here do not represent measurements of position and momentum on a
single particle, only the inferred values of their corresponding elements of reality. The actual measurements outlined
above are performed on two separate particles, and do not violate the HUP.
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(Figure 1.2). The systems, (e.g. spin - 12 particles) pass through “analysers” on the way to their

detectors. The analyser properties depend on parameter(s)3 aand b which are under the control

of the experimenter.

Now suppose that for one or more values of the analyser parameters, we have perfect correlation

between the systems A and B. We can now follow the argument of section 1.2 through, and by

assuming local realism, deduce the existence of elements of reality corresponding to the values

of the measurements Aa and Bb. As quantum mechanics does not predict the results of single

measurements, the fact that we can supposedly do so here suggests that there is a more complete

specification of the system which can predict these results. Such a description would be a so-called

“hidden variable” theory4. This description is commonly denoted λ5.

Let us now suppose that the detectors can give only one of two outcomes for a measurement:

count /no-count, or yes /no, etc. Denote the probability of obtaining a result of count at detector

A, given analyser parameters a to be PA, and the probability of obtaining a result of count at

detector B, given analyser parameter b to be PB . Also define the joint probability of obtaining a

count at both detectors to be PAB . Now from the locality assumption we can say that PA will be

independent of the parameter b, and correspondingly PB will be independent of a, as the systems,

as well as the detectors and analysers are spatially separated. Thus the probabilities will depend

only on the overall state λ and their local analyser parameters. We have: PA(λ, a), PB(λ, b),

PAB(λ, a, b) as the probabilities for a given a,b, and λ. Furthermore, locality states that we can

write

PAB(λ, a, b) = PA(λ, a)PB(λ, b) (1.1)

Now Clauser and Horne introduce the lemma, which is proved in their paper[16]

If x,x′,y,y′,X,Y are real numbers such that 0 ≤ x,x′ ≤ X and 0 ≤ y,y′ ≤ Y then,

3 a and b may represent a whole set of numbers
4A “deterministic hidden variable theory” is defined to be any physical theory which predicts or postulates the

existence of states in which the observables of quantum mechanics have definite values, as opposed to just giving
probabilities of obtaining certain values upon measurement as in quantum mechanics itself.

5Here λ may represent a whole set of parameters for describing the state, not necessarily just one number.
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Figure 1.2: Two quantum-correlated systems at spatially separated locations A and B. a and b
are analyser parameters, Aa and Bb are values measured by the detectors.
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−XY ≤ xy − xy′ + x′y + x′y′ − Y x′ −Xy ≤ 0 (1.2)

Now (1.1) and (1.2) give.

−1 ≤ PAB(λ, a, b)−PAB(λ, a, b′)+PAB(λ, a′, b)+PAB(λ, a′, b′)−PA(λ, a′)−PB(λ, b) ≤ 0 (1.3)

If we have an ensemble of these correlated two-part systems, and the probability of any one

of these systems of having a hidden variable description of λ is ρ(λ), then we have the ensemble

average probabilities
PA(a) =

∫

PA(λ, a)dρ(λ)

PB(b) =
∫

PB(λ, b)dρ(λ)

PAB(a, b) =
∫

PAB(λ, a, b)dρ(λ)

(1.4)

These ensemble average probabilities are now the properties of the system that correspond to

probabilities calculated via quantum mechanics. So by taking the ensemble average of the right

side of (1.3) and manipulating, we get the final version of the Bell inequality that we’ll be using

in further parts of this paper:

PAB(a, b) + PAB(a
′, b) + PAB(a

′, b′)− PAB(a, b′)
PA(a′) + PB(b)

≤ 1 (1.5)

This inequality must be satisfied by any local hidden variable theory, irrespective of the details of

such a theory, and if any violations of this inequality are found experimentally, all local hidden

variable theories must be rejected. (See section 1.4 below for more on this)
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There is a whole family of inequalities, of which (1.5) is one member, which go collectively

under the name of Bell inequalities, and must be satisfied by systems to be compatible with

hidden variable theories. They are essentially equivalent, with some more general than others, and

more suited to paticular experimental or theoretical systems and configurations. Equation (1.5) is

the most convenient to use in this paper. Clauser and Shimony[15] give many of the best known

versions.

1.4 Experimental Evidence

So far, the the correlated particles considered in the original EPR argument[1] (section 1.2) have not

been demonstrated to exist, but a version of the EPR paradox which is essentially equivalent[17],

but using quadrature phase measurements of photon fields instead of position and momentum

measurements of particles, has been achieved in an experiment by Ou et al[2]. Where before

it could have been argued that the EPR paradox was only an idealised case which cannot be

in fact produced experimentally, this experiment has shown the paradox to be experimentally

realisable, giving new weight to the question of whether quantum mechanics is compatible with

local realism[18].

Over the last twenty or so years, various experiments have been carried out to test for violations

of the Bell inequalities. There are difficulties in performing an experimental test of these inequal-

ities, as they assume perfect correlation, ‘analyser properties’, and detector efficiencies. This is

unrealistic for real experiments. To get around the problem, some auxilliary assumptions have to

be used, but if these are well chosen, they can be expected to hold for all but some pathological

systems[15].

Aspect et al and others[4][5][6][7][8] have also succeeded in demonstrating a violation of Bell

inequalities, supported by some auxilliary assumptions which have been mentioned before. Thus

it is almost inevitable that local realism must be rejected.
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1.5 Microscopic and Macroscopic Local Realism

Based on various versions of Bell’s theorem and experiments that have been carried out (see

section 1.4), it must be concluded that local realism is an untenable premise. It will however be

argued later in this thesis that local realism may be rejected on a macroscopic, not just microscopic

scale. The following discussion follows along the line of the article by Reid and Deuar[9].

Let us first define what we mean by a ‘macroscopic’ experiment. Define a macroscopic experi-

ment to be one in which the uncertainty or error in the measured quantities is itself macroscopic.

In the alternate case, where uncertainty in measurement is microscopic, we have a ‘microscopic’

experiment. Thus we would consider a measurement of position to an accuracy of say ±1nm to

be microscopic, while a measurement with error ±1cm to be macroscopic. Similarily if we were

measuring a component of angular momentum (say), which can only be measured to have discrete

values (with separation ~), to an accuracy of ±~, this would be a microscopic measurement.

A measurement is often said to be ‘macroscopic’ if the system upon which it is performed

contains a large number of particles, or has large spatial dimensions. Upon closer inspection, this

definition of macroscopic seems to be erroneous. For example, one would not consider a detailed

measurement of the position of a paticular atom in a crystal (say to within 1Å) as macroscopic,

simply because the crystal had macroscopic dimensions, or contained a large number of particles.

The definition of macroscopic used here is different, and excludes such cases as the example above.

What do we mean by ‘macroscopic local realism’? Let us consider an experiment in which only

macroscopic measurements are performed. Now in a similar way to section 1.1, we define:

Macroscopic Locality implies that a macroscopic measurement performed in region A can-

not instantaneously influence any macroscopic measurements made in another region B, spatially

separated from A. And conversely, any macroscopic measurements made in region B cannot in-

stantaneously influence the results of macroscopic measurements in region A.

This definition says nothing about any microscopic changes which a measurement at A may

instantaneously cause to the results of measurements at B, but since these are microscopic, they
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do not affect the macroscopic measurements. For example in the original formulation of the EPR

experiment (figure 1.1), if position was being measured to an accuracy of ±1mm, at both A and

B (i.e. we are measuring xA and xB), and we have macroscopic locality, then a measurement of

xA could not instantly affect the measurement of xB by 2mm, however it could easily affect it

by 1µm, as this small microscopic change would be swamped out by the size of the measurement

uncertainty, making no difference to the resulting macroscopic measurement. Thus it can be seen

that: microscopic locality6 ⇒ macroscopic locality

macroscopic locality 6⇒ microscopic locality

(1.6)

Macroscopic Realism implies that if one can predict with certainty the result of a macroscopic

measurement on a system, without physically disturbing that system, then the result of that

macroscopic measurement is a predetermined property of the system: a macroscopic “element of

reality”. Macroscopic elements of reality have an associated indeterminacy associated with them,

e.g. position = 1±0.001m.

Obviously Macroscopic Local realism is a combination of the above, i.e. Macroscopic Locality

and Macroscopic Realism.

1.6 Implications of Macroscopic Local Realism

The failure of microscopic local realism, which we are led to conclude by Bell’s theorem coupled

with recent experimental evidence, is perhaps not so surprising, given that the microscopic realm is

the realm of all sorts of thoroughly non-classical quantum phenomena, and hidden-variable theories

are largely ‘classical’ in nature. In the macroscopic realm, however, it would be remarkable if local

realism failed. Since macroscopic local realism rules out the possibility of superpositions of macro-

scopically distinct states, its failure would be as remarkable as the creation of ‘Schrödinger-cat’

states[10][11][12][19][20][21].

The EPR argument (section 1.2) is still valid and its conclusions still apply if we restrict

6usually referred to as just ‘locality’
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ourselves to considering only the postulate of macroscopic local realism and macroscopic elements

of reality[9]. Thus for some systems, the assumption of macroscopic local realism is sufficient to

imply the incompleteness of quantum mechanics[18]. This has been pointed out by Reid[18] to be a

consequence of the results of the experiment performed by Ou et al[2]. This forces on us the choice

of whether macroscopic local realism or the completeness of quantum mechanics must be rejected,

and gives strong motivation for further investigation.

1.7 Bell Inequality Tests for Macroscopic Local Realism

Given the discussion above (section 1.6), we would like a way to determine whether the quantum

mechanical predictions for a system violate macroscopic local reality, thus giving an avenue for

experimental tests of macroscopic local realism vs. quantum mechanics.

One can use the Bell inequality (1.5) to test for compatibility of measurements with local

realism on a microscopic level. Suppose we are measuring the quantum mechanical operator Â on

system A, spatially separated, but correlated with system B, where we measure the operator B̂.

We can define the result of a measurement A of Â to be labelled ‘count ’ if A is measured in some

range RA, and ‘no-count ’ otherwise. Similarily we define ‘count ’ and ‘no-count ’ for measurements

B of B̂ at B using range RB. Thus using the formalism of section 1.3, the probability of count at

A, PA equals PRA , the probability that A ∈ RA, so PB = PRB is the probability that B ∈ RB,

and PAB = PR is the probability that A⊗B ∈ R = RA ⊗RB. Note that R can be any arbitrary

range, possibly disjoint.

Here, the ranges R are well defined, and microscopic measurements must be performed to

differentiate a result of count and no-count, at least near the boundaries of the range, hence

only microscopic local realism is tested. A method for determining whether quantum mechanical

predictions for a system are compatible with macroscopic local realism has been pointed out by

Reid[9]. Basically, simulated “noise” is added to the predicted measurements. The elements of

reality with which hidden variable theories are concerned, can be deduced from measurements
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done on the system, so if the magnitude of this simulated “noise” is increased sufficiently to cause

macroscopic uncertainties in the values of the elements of reality, and the Bell inequality is still

violated, then one must conclude that the violation is due to the failure of macroscopic local

realism, as all the microscopic predictions have been swamped by the noise.

Thus, by adding simulated noise to the quantummechanical predictions of a system and entering

the probabilities of obtaining these noisy measurements into the Bell inequalities, the compatibility

of quantum mechanics with macroscopic local realism can be investigated.

The remainder of this paper concerns itself with two quantum mechanical systems: the so called

‘higher spin’ states and a superposition of coherent states, and determining whether quantum

predictions for these systems are compatible with macroscopic local realism.



Chapter 2

Higher Spin States

The higher spin states defined in this chapter are the most obvious macroscopic1 generalisation of

the correlated spin- 12 particle state considered originally in Bohm’s gedanken experiment [13]. and

Bell’s theorem[3]. We consider correlated spin-s particles instead, where s→∞. These higher spin

states, first tested for compatibility with local realism by Mermin[22], have already been shown

to violate microscopic local realism[22][23][24][25][26][27][28][29][30][31][32], and thus seem to be good

candidates for a possible violation of macroscopic local realism.

To test for macroscopic violations of the Bell inequality, I started with small simulated noise in

the measurements, and increased the magnitude of the noise until the Bell inequality was no longer

violated. If this noise term could be increased to significant values, with the violation still occurring,

then the quantum mechanical predictions for this system could be said to be incompatible with

macroscopic local realism. This was not the case.

1Here macroscopic refers to “large number of particles”, not anything to do with accuracy of measurement, which
we haven’t considered yet.

14
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2.1 The Higher Spin States

The higher spin state that is being considered is:

|ψ〉 = 1

N !
√
N + 1

[

â†+b̂
†
+ + â†−b̂

†
−

]N

|0〉A |0〉B (2.1)

Here â†± are boson creation operators for a pair of fields in region A, spatially separated from

another region B which has another pair of fields whose creation operators are b̂†±. |0〉A and |0〉B

are vacuum states in regions A and B. In Bohm’s EPR argument and Bell’s original theorem, N

was taken to be equal to 1. Here, higher values of N will be considered.

The state that is being considered here is actually given in terms of boson states, thus there

may be some confusion as to why it has been called a “spin state”. We can define the operators

ŜAx = 1
2

[

â†+â− + â†−â+

]

ŜBx = 1
2

[

b̂†+b̂− + b̂†−b̂+

]

ŜAy = 1
2i

[

â†+â− − â†−â+
]

ŜBy = 1
2i

[

b̂†+b̂− − b̂†−b̂+
]

ŜAz = 1
2

[

â†+â+ − â†−â−
]

ŜBz = 1
2

[

b̂†+b̂+ − b̂†−b̂−
]

(2.2)

These operators can easily be shown, using
[

â, â†
]

= 1 etc. to obey the commutation relations

[

ŜAx , Ŝ
A
y

]

=iŜAz

[

ŜBx , Ŝ
B
y

]

=iŜBz

[

ŜAy , Ŝ
A
z

]

=iŜAx

[

ŜBy , Ŝ
B
z

]

=iŜBx

[

ŜAz , Ŝ
A
x

]

=iŜAy

[

ŜBz , Ŝ
B
x

]

=iŜBy

(2.3)

Thus it can be recognized that the Ŝ operators are spin operators in the Schwinger formulation[33],

and the state (2.1) can represent a pair of correlated spin N
2 particles as well as a system of bosons.

The fields â±, b̂± can be transformed to give ĉ± and d̂± fields by the transformation

ĉ+=â+ cos θ + â− sin θ ĉ−=â− cos θ − â+ sin θ

d̂+=b̂+ cosφ+ b̂− sinφ d̂−=b̂− cosφ− b̂+ sinφ

(2.4)

Physically this corresponds to (for example) â± being orthogonally polarised modes along some

axes x , y, and ĉ± being orthogonally polarised modes along a different set of axes x′, y′ at an

angle of θ to the original x, y. The transformation to ĉ± corresponds to the use of a polariser.
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Figure 2.1: The Higher Spin experiment. Spatially separated, correlated bosonic modes â± and

b̂± are created at the source, pass through polarisers with parameters θ and φ, and are separated

into modes ĉ± and d̂±. The ĉ+ and d̂+ modes are detected.
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This situation is shown in figure 2.1. Alternatively this transformation can be interpreted as the

measurement of spin components, in directions given by the angles θ ,φ , for particles in the A,B

regions respectively. The inverse transformation from the ĉ, d̂ to the â, b̂ fields is

â+= ĉ+ cos θ − ĉ− sin θ â−= ĉ− cos θ + ĉ+ sin θ

b̂+=d̂+ cosφ− d̂− sinφ b̂−=d̂− cosφ+ d̂+ sinφ

(2.5)

so we can rewrite the state as

|ψ〉 =

[(

ĉ†+d̂
†
+ + d̂†−ĉ

†
−

)

cos(θ − φ) +
(

ĉ†+d̂
†
− − ĉ†−d̂†+

)

sin(θ − φ)
]N

N !
√
N + 1

|0〉c+ |0〉c− |0〉d+ |0〉d− (2.6)

Thus when θ = φ, the state is

|ψ〉 = 1

N !
√
N + 1

[

ĉ†+d̂
†
+ + ĉ†−d̂

†
−

]N

|0〉A |0〉B (2.7)

and the fields ĉ+ & d̂+ and ĉ− & d̂− are perfectly correlated, giving an EPR-like situation.

Note also that because the transformation (2.4) conserves boson number, and from the form of

(2.1), the results of measurements on ĉ†+ĉ+ and ĉ†−ĉ− will sum to N and similarily for d̂†+d̂+ and

d̂†−d̂−.
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2.2 Probability Distributions for the Higher Spin States

The measurements that are made on the system are measurements of photon number at the

detectors, measuring ĉ†+ĉ+ and d̂†+d̂+. To evaluate the Bell inequality, one needs the probabilities

of measuring various boson numbers at the detectors. The probability of measuring n bosons at

detector A and m bosons at detector B, given the analyser parameters θ and φ, is

Pnm(θ, φ) =
∣

∣

∣
〈n|c+ 〈N − n|c− 〈m|d+ 〈N −m|d− |ψ〉

∣

∣

∣

2

= Ψ∗nm(θ, φ)Ψnm(θ, φ) (2.8)

where we have also defined Ψnm(θ, φ).

It can be shown2 that

Ψnm(θ, φ) =

√

n!m!(N − n)!(N −m)!

N !
√
N + 1

(N−|n−m|) div 2
∑

i=|n+m−N | div 2

{

KNθφ (n,m, i) if (n+m+N) is even

KNθφ
(

n,m, i+ 1
2

)

if (n+m+N) is odd

(2.9)

where the coefficients K are

KNθφ(n,m, i) =
(

N

2i

)

[cos(θ−φ)]2i [sin(θ−φ)]N−2i
(

2i
1
2 (n+m−N) + i

)(

N − 2i
1
2 (n−m+N)− i

)

(−1) 1
2 (m−n+N)−i

(2.10)

and the function div is defined as

xdiv 2 =

{

x
2 if x is even
x
2 − 1 if x is odd

(2.11)

and n,m can take on any integer values 0, 1, . . . , N . Note that the probability Pnm(θ, φ) only

depends of the difference θ − φ, not the actual values of these parameters by themselves. So one

can write χ = θ − φ and

Pnm(θ, φ) = Pnm(χ) (2.12)

The form of these probability distributions can be seen in figures 2.2. Additionally, Pnm(χ) has

2see Appendix A.1
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Figure 2.2: Probability distributions for the higher spin state. Here the probabilities of measuring
n photons at detector A and m photons at correlated detector B (Pnm(χ)), for various experi-
mental parameters χ, are displayed. All figures are for N = 20, except for figure 2.2f which has
N = 40. Dark shading indicates high probability. Note that the magnitude of the probability Pnm
represented by a given shading, varies between plots, as the sum total of Pnm must add to unity.
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Figure 2.2b: N = 20, χ = π/8
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Figure 2.2c: N = 40, χ = π/4
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Figure 2.2d: N = 20, χ = 3π/8
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Figure 2.2e: N = 20, χ = π/2
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Figure 2.2f: N = 20, χ = π/4
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the properties3:

Pnm(χ+ π) = Pnm(χ)

Pnm(π − χ) = Pnm(χ)

∴ Pnm(
π

2
+ χ) = Pnm(

π

2
− χ)

& Pnm(χ) = Pnm(|χ|)

PN−n,N−m(χ) = Pnm(χ)

Pmn(χ) = Pnm(χ)

PN−n,m(χ− π
2 ) = Pnm(χ)

(2.13)

some of which can be seen in figures 2.2.

The marginal probabilities Pn(θ) , Pm(φ) giving the probability of measuring n , m bosons at

detector A , B given analyser parameters θ ,φ , respectively, are now given by:

Pn(θ) =
N
∑

m=0

Pnm(χ) Pm(φ) =
N
∑

n=0

Pnm(χ) (2.14)

If we define the ranges RA, RB and R using the notation of section 1.7, then the probability

of obtaining a measurment of count is given by

PR(χ) =
∑

(n,m)∈R
Pnm(χ) (2.15)

and the marginal probabilities are given by

PRA(θ) =
∑

m∈RA
Pnm(χ) PRB(φ) =

∑

n∈RA
Pnm(χ) (2.16)

2.3 Adding Noise

Now we wish to introduce simulated noise into the final measurement process. Let the noise be

defined by the function %(∆n,∆m). Thus if the results of noiseless measurements at detectors A

and B were (n,m) then the probability that the noisy measurement will give results in the range

(n+∆n to n+ dn+∆n , m+∆m to m+ dm+∆m) is given by %(∆n,∆m) dn dm.

3See Appendix A.2
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Note that now we are allowing the measurments of n and m to become continuous (in the range

−∞ to ∞). Thus we denote the results of noisy measurements by x and y, for measurements at

the A and B detectors respectively. Let us now denote the probability of the noisy measurements

being in the range (x to x+ dx, y to y + dy) as Qxy(χ)dx dy. This is given by

Qxy(χ) dx dy =
∑

nm

Pnm(χ)%(x− n, y −m) dx dy (2.17)

We still regard a measurement of count to occur if the (x, y) result lies in the range R, but now R

is continuous. The probability of measuring count is now

QR(χ) =

∫∫

(x,y)∈R

Qxy(χ) dx dy (2.18)

Thus it can be seen that

QR(χ) =
N
∑

n,m=0

Pnm(χ)Cnm(R) where Cnm(R) =

∫∫

(x,y)∈R

%(x− n, y −m) dx dy (2.19)

Now we will assume independent noise sources at A and B, so that %(∆n,∆m) can be written as

ρ(∆n)ρ(∆m) in which case it is easier to use the “noise coefficients”

Cnm(R) = Cn(RA)Cm(RB)

Cn(RA) =
∫

x∈RA

ρ(x− n) dx (2.20)

2.4 Violations of the Bell Inequality for the Higher Spin

States

The aim here is to search for violations of the Bell inequality by the higher spin states, as the

measurements get more and more macroscopic. At first glance it seems reasonable that as the

parameter N = “Number of particles” increases, the amount of noise that can be added to the

measurements, while still violating the Bell inequality4 also increases, thereby making the state

violate macroscopic local realism at hign N .

4It is already known that the states will violate the Bell inequality with no noise for all N .
[22][23][24][25][26][27][28][29][30][31][32]
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To this end the following questions were investigated:

1. For what values of the parameters θ, φ, θ′, φ′ is the left hand side of the Bell inequality (1.5)

maximised, giving maximum violation? (Subsection 2.4.1)

2. We must define the range of values R which will correspond to a result of count. What range

R gives the largest violations of the Bell inequality? (Subsection 2.4.2)

3. How large can we make the noise before the Bell inequality is no longer violated for a given

N? (Subsection 2.4.4)

4. Does the form of the noise (gaussian, box, etc.) have any significant impact on the answer

to question 3? (Subsection 2.4.3)

5. Can the quantum mechanical predictions for the higher spin state be said to violate macro-

scopic local realism? (Section 2.5)

The probabilities to be substituted into the Bell inequality (1.5) are the noisy measurements

QR and marginal probabilities QRA , QRB , thus we have:

BR(θ, χ, θ
′, χ′) =

QR(θ, φ) +QR(θ′, φ) +QR(θ′, φ′)−QR(θ, φ′)
QRA(θ

′) +QRB(φ)
≤ 1 (2.21)

The probability Pnm(0), for the case where θ = φ can be easily evaluated (see appendix A.3),

and when it is used to find the marginal probabilities Pn(θ) and Pm(φ), they are found to be

independent of n and m respectively. When these probabilities are evaluated numerically for

varying θ or φ, they are found to be also independent of these parameters, so one obtains (see

appendix A.3)

Pn(θ) = Pm(φ) =
1

N + 1
(2.22)

2.4.1 Optimum Analyser Parameters

As the probabilities depend only on the difference between parameters θ and φ (2.12), we can

define:
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χ = θ − φ

ζ = θ′ − φ

η = θ′ − φ′

(2.23)

then the Bell inequality becomes dependent on only three parameters:

BR(χ, η, ζ) =
QR(χ) +QR(η) +QR(ζ)−QR(χ+ η − ζ)

QRA +QRB
≤ 1 (2.24)

Many authors, for example Mermin[22] and Clauser&Shimony[15], when using this inequality

on this and other systems with similar properties, choose to focus on the case when

χ = η = −ζ

thus having the Bell inequality in the convenient form (using the properties (using (2.24) and the

properties (2.13) )

BR(χ) =
3QR(χ)−QR(3χ)

QRA +QRB
≤ 1 (2.25)

However there seems no obvious reason why this should give the best chances of finding any

violations for the N > 1 case, if they exist.

To find out if these values can be considered optimum, a “brute-force” numerical approach was

tried. The ranges RA,RB of values for which we consider the detectors A,B to record a count,

were taken to be n,m > N/2.5. Using this range for the count result at detectors A and B, the

Bell inequality (2.24) (with no noise present ∴ QR(χ) = PR(χ)) was evaluated at regularly spaced

(spacing of π/60) values of χ, η, ζ in the range

−π
2
≤ χ, η, ζ ≤ π

2
(2.26)

for several values of N .6 giving evaluation at 603 = 216, 000 points for each N in the 3-dimensional

(χ, η, ζ) space.

Note: For larger ranges of χ, η, ζ, BR(χ, η, ζ) repeats itself, due to the properties (2.13).

5This may seem arbitrary, but in later calculations, this is the range which allows violations for the greatest
magnitude of noise. Some calculations for determining the optimum range to be included in the R used here, had
to be made using χ = η = −ζ before this choice of parameters χ, η, ζ was fully justified.

6in four separate cacluations, N was taken to be 5, 10, 15 and 20.
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It was found that the largest violations were in fact along the line χ = η = −ζ (perhaps not

surprisingly), though other local maxima of B(χ, η, ζ) did occur, some only marginally smaller

than those on χ = η = −ζ. These maxima became more common as N increased, but these

subsidiary maxima were always slightly smaller than the main ones.

These results indicate that the search for Bell inequality violation can probably be restricted to

looking along χ = η = −ζ, at least for this paticular system7. If despite the indications here, some

of the subsidiary maxima away from the χ = η = −ζ line do actually give greater violations (which

seems unlikely), these violations would most likely only be marginally greater than those along

this line, thus making them insignificant in a search for violation of macroscopic local realism.

All the remaining discussion on higher spin states will concern itself with the case where

χ = η = −ζ.

2.4.2 Optimum Count Result Range

The next question to be considered concerns the optimum range of n,m values (R) to be treated

as a result of count. We wish to find the optimum range(s) RA such they allow the Bell inequality

(2.25) to be violated for the largest magnitude of noise, i.e. the most macroscopic measurements.

There does not seem to be any compelling reason to have the ranges RA and RB different, and

this would considerably complicate analysis, so from now on, it will be assumed that RA ≡ RB.

Note: It would be easier search for values of RA which give the largest value of BR(χ) with no

noise, but this is not exactly what we are looking for, and does actually give different results.

(The greatest values of noiseless BR(χ) are found as RA,RB : n,m ∈ [LN , N ] as LN → N),

but when this range is used, the violations are destroyed very quickly as noise amplitude

increases.)

The higher spin state was analysed by Munro and Reid[31], looking for violations of the Bell

inequality in the noiseless case. They found that the greatest violations occurred when they took

7The results of Appendix B.2 are also compatible with this view, although they do not apply strictly for higher
spin systems with N > 1.
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the ranges RA,RB to be

RA ≡ lim
LN→0

[N − LN , N ] (2.27)

This is compatible with the work of Drummond[25]. Using the properties (2.13), paticularily

PN−n,N−m(χ) = Pnm(χ), we see that the range

RA ≡ lim
LN→0

[0, LN ] (2.28)

will give the same results as (2.27). This seems to indicate that the regions that give the best

violation of the inequality will contain the region near n = 0 as part of the range RA of n values

to be treated as a result of count.

To check this more thoroughly, three systems with N = 5, 10, 20 respectively were considered.

The range RA was taken to be between the upper and lower limits KN and LN , where allowing

for noise in the measurements, KN , LN can take on any real values from −∞ to ∞.8

RA : x ∈ [KN , LN ]

R ≡ (RA ⊗RA)
(2.29)

Initially, KN was taken to be −∞ as considered by Munro and Reid, and LN was varied between

0 and ∞. For each value of LN considered, the maximum noise (gaussian) σ
MAX

that gave a

violation of the Bell inequality (2.25) (with optimum values of χ, depending on N and LN , for

each calculation) was calculated. In all three cases, the optimum values of LN were found to

be LN = N
2 ± 1

2 . Now that an estimate for the maximum noise magnitude has been obtained,

we check whether a greater noise magnitude can be introduced while still preserving B ≥ 1, by

varying KN . To this end, the quantity B (LHS of Bell inequality (2.25)) is evaluated for varying

values of KN and LN , while keeping σ = σ
MAX

constant. The results of this calculation for

N = 10 are shown in figure 2.3, where it can be seen that B < 1 for all KN , LN values except for

KN = −∞ and LN = N
2 ± 1

2 and the equivalent9 KN = N/2 ± 1
2 and KL = ∞. This indicates

8the case considered by Munro and Reid had KN = 0 for the noiseless case, which is equivalent to KN = −∞

when noise is being considered.
9These ranges are equivalent in terms of the values of B(χ) that are obtained when they are used to calculate

the probabilities of obtaining a measurement of count
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Figure 2.3: Variation of the maximum value of B(χ) (LHS of Bell inequality) for (gaussian) noise
standard deviation σ

MAX
= 0.38675 at N = 10 with range parameters LN ,KN . The range is taken

to be RA ≡ n ∈ [KN , LN ]. B is evaluated for optimum analyser parameter χ which varies
with LN ,KN . Note that B only reaches unity for KN → −∞, LN = 5± 1

2 , and the corresponding
value LN →∞, KN = 5± 1

2 . B is plotted as a contour plot.

Note: Since noiseless measurements can only give values between 0 and N , LN ,KN values of −2
or 12 are effectively −∞ or∞ respectively. This is because to get a noisy measurement of 12
or −2 here, one would have to get gaussian noise of about 5 standard deviations magnitude,
which is very rare — thus KN = −2(say) gives the same results as KN = −∞ would.

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

KN

LN
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Contours in the range
0.995, 0.996, . . . , 0.999, 1

that other KN , LN values do not even allow the noise magnitude to reach σ
MAX

, so they are sub-

optimal, and can be taken out of consideration. In further calculations, the ranges for n,m used
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will be

LN = (N div 2) + 1
2

RA ≡ [−∞, LN ]

R ≡ RA ⊗RA

(2.30)

where the function div has been previously defined in (2.11).

2.4.3 Noise Simulation

Macroscopic noise tends to be gaussian in nature, so this is the type of noise that the analysis

focuses on. To account for the (unlikely) case that gaussian noise is somehow a special case which

just happens to not violate the macroscopic Bell inequality, two other forms of noise were tried in

the calculations that follow.

As the detectors A and B are separated by a spacelike interval at the time of the measurement,

the noise in the n measurement must be independent of the m measurement. Thus we can write

%(∆n,∆m) = ρ(∆n)ρ(∆m) (2.31)

The gaussian noise distribution can be written (using the notation of section (2.3) ) where σ is the

standard deviation of the distribution

ρG(∆) =
1

σ
√
2π

exp

[−∆2

2σ2

]

(2.32)

The other distributions used were a “box” and a “triangular” distribution as given below.

BOX: ρB(∆) =















1

2a
for − a < ∆ < a

0 otherwise

(2.33)

This noise has a box-shape, of width 2a and standard deviation
a√
3
.

TRIANGLE: ρT (∆) =



































b+ x

b2
for − b < ∆ ≤ 0

b− x
b2

for 0 < ∆ < b

0 otherwise

(2.34)
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Figure 2.4: Noise distributions used to simulate macroscopic measurements on the higher spin
state. ρ(∆) is the probability density that any paticular measurement is changed by ∆ from the
noiseless value that would be measured with ideal apparatus. Gaussian, “Box” and “Triangular”
distributions are shown. ∆ is given in units of σ = 1 standard deviation.
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Figure 2.4c: “Triangular”
Noise. b =

√
6σ

ρT

∆in σ units
−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

This noise has a triangle-shape, of width 2b and standard deviation
b√
6

These distributions are displayed in figure 2.4. As mentioned in section 2.4.2, the optimum range

R (≡ RA ⊗ RB) which gives the most “macroscopic” violations for this state (2.6) is the range

x, y ∈ [−∞, LN ]. For this range, the “noise coefficients” mentioned in section 2.3 can be evaluated.

They are found to be

GAUSSIAN: CG
n (σ, LN ) =

1√
π

∫

LN−n
σ
√

2

−∞
exp

[

−z2
]

dz (2.35)

(which is the well known Error function)

BOX: CB
n (a, LN ) =















0 if n > LN + a

1 if n < LN − a
1

2
+

1

2

(

LN − n
a

)

otherwise

(2.36)

TRIANGLE: CT
n (b, LN ) =



















0 if n > LN + b

1 if n < LN − b
1

2
+
LN − n

b
− 1

2
sign[LN − n]

(

LN − n
b

)2

otherwise

(2.37)

2.4.4 Maximum Bell-Inequality-Violating Noise

Finally, we come to the main issue for the higher spin states: how large can we make the noise

before any violations of the Bell inequality are destroyed? It turns out that the maximum noise
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magnitude (corresponding to noise standard deviation σMAX(N)) is slightly above 0.4 bosons for

large N , and less for small N .

The results are summarised in more detail in table 2.1, and the maximum noise parameters

σ
MAX

(N), a
MAX

(N), b
MAX

(N) are shown as a function of N in figure 2.6. A plot of maximum

violation (if any) of the Bell inequality as a function of N , for several values of noise magnitude, is

also given in figure 2.5. It was found that the noise could be made slightly larger for odd N than

for even N (by about 0.006 as N →∞), but this is certainly an unimportant mathematical detail

due to the fact that σMAX < 1. Since the range boundaries LN were placed at half-integral values,

any noise of less than 0.5 standard deviation is basically insignificant. It is in fact found that if

P0.5 is the probability that the noise changes the result of a measurement at a detector from its

noiseless value by more than 1
2 , then when P0.5 > 0.228 (0.221 for even N), any Bell inequality

violations are swamped by the noise. This applies equally to all three forms of noise considered.

The procedure used to obtain these results is discussed below.

Table 2.1: Maximum Bell-inequality-violating noise parameters σ
MAX

, a
MAX

, b
MAX

observed for the
higher spin systems as N →∞.

Noise Type Parameter name Max. value Standard deviation

Gaussian σ
MAX

0.4146 0.4146
“Box” a

MAX
0.6478 0.3740

“Triangular” bMAX 0.9573 0.3908

The measured quantities for the higher spin state are the boson numbers n,m. The probabilities

in the Bell inequality (2.25) — QR(χ) are the probabilities that the results (x, y) of noisy n,m

measurements are within the range R = RA ⊗RA, where

RA ≡
[

−∞, N div 2− 1
2

]

(2.38)

For each value of N considered, the maximum noise magnitudes which give violations of (2.25)

were found to within an error 0.001 for each of the three types of noise considered in section

2.4.3. To calculate the LHS of the Bell inequality, BR(χ), the probability distribution Pnm(χ)

of obtaining a noiseless measurement of n bosons at detector A, and m bosons at detector B
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Figure 2.5:
Maximum violation of the Bell
inequality B

MAX
against num-

ber of bosons N for several sim-
ulated noise magnitudes. The
Bell inequality is violated for
BMAX > 1. In all cases, the
value B

MAX
shown is B evalu-

ated at χ = χ
MAX

which max-
imises B(χ). The uncertainty
in B

MAX
is less than ±0.00005

which is less than the size of
the symbols used to show data.
Noise used is gaussian in form.
Different symbols show data for
different magnitudes(i.e. stan-
dard deviations) of noise. +: no
noise, ◦: σ = 1

2 , ×: σ = 1 .
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was calculated exactly, for 120 values of χ in the range χ, χ + π
480 , . . . ,

π
4 . These values were

then used to approximate Pnm(χ) for arbitrary χ using a cubic polynomial interpolation method,

and the properties (2.13). These approximate noiseless values were used to calculate the noisy

probabilities of measuring a count event QR(χ) for a given noise distribution and arbitrary χ

(using the equations (2.19), (2.20), (2.35)–(2.37) ) . The marginal probabilities QRA and QRB are

given by (2.22) and (2.38) to be

QRA = QRB =
N div 2 + 1

2

N + 1
(2.39)

Thus the Bell inequality (2.25) was evaluated, and maximum noise magnitudes were calculated by

a numerical minimising procedure with error tolerance 0.5×10−4 (minimising |B(χ
MAX

, σ)− 1|).10

The calculated values are shown in figure 2.6.

A question now arises whether sampling 120 values in the range 0 to π
4 is sufficient to obtain

an accuracy of similar order to the minimising procedure (0.5 × 10−4) for the approximation

to Pnm(χ) and eventually for BR(χ). To test the accuracy of such approximations, the same

10χMAX is the χ value at which B is maximised
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Figure 2.6: Maximum simulated noise amplitudes, which still allow the higher spin state to violate
the Bell inequality. Data points have uncertainty ±5 × 10−4 or less. N varies between 1 and 61.
Parameters for odd N are marked as circles (◦), even N as stars (∗). All data points are accurate
to within about ±5× 10−4, which is much less than the size of the symbols used to display them.
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Figure 2.6a: Gaussian noise. Maximum
standard deviation = σ

MAX
(N). AsN →∞

, σ
MAX

(N)→ 0.4145± 0.0005 for odd N
and to 0.4085± 0.0005 for even N .
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Figure 2.6b: “Box” noise. Maximum stan-
dard deviation = aMAX(N)/

√
3. AsN →∞

, a
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(N)→ 0.6480± 0.0005 for odd N
and to 0.6420± 0.0005 for even N .
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Figure 2.6c: “Triangular” noise. Maximum
standard deviation = b

MAX
(N)/

√
6. As

N →∞ , aMAX(N)→ 0.9570± 0.0005 for
odd N and to 0.9440± 0.0005 for even N .

procedure outlined above was repeated for some values of N , using smaller “resolution” in χ, such

as 30 or 60 values between 0 and π
4 . The results were found to agree to within 0.0005 or better

as long as the “resolution”, number of steps was significantly less than N . When number of steps

approached or exceeded N , the lower resolution calculations generally overestimated the maximum

noise parameter. By these results, it is fair to conclude that the maximum standard deviations and

noise parameters σ
MAX

, a
MAX

, b
MAX

for the gaussian, “box” and “triangular” noise distributions,

for any given N are accurate to within at least 0.0005 if number of steps is significantly less than
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N . This is the case for the calculations discussed above for N . 60. For N > 60, the number of

steps must be increased again, making calculations more laborious.

2.5 Conclusions for Higher Spin States

A fairly exhaustive search for Bell inequality violations was carried out on the higher spin states

(2.6) by varying the parameters θ, φ, and the count range (see subsection 2.4.2). It seems unlikely

that any significant11 violations of the Bell inequality were missed, although this admittedly re-

mains a possibility. On the basis of the violations that were found, it seems very unlikely that

any violations of the Bell inequality can happen when the noise in the experiment is ±0.5 pho-

tons or more. As the measured quantities here are particle numbers, noise this small is almost

un-noticeable, and is most certainly of a microscopic nature.

Thus it can be concluded that although the quantum mechanical predictions for the higher

spin states aare incompatible with microscopic local realism, they most probably do not violate

macroscopic local realism.

11i.e. violations of the Bell inequality that would show different behaviour to that seen in figure 2.6, as noise
magnitude was increased



Chapter 3

The “Circular” Superposition of

Coherent States

The state considered here (see section 3.1 below) is a superposition of coherent states shown by

Reid and Krippner[14] to be (potentially) generated in lossless nondegenerate parametric oscillation

above threshold. Here we will be considering two modes â and b̂. The states considered are

eigenstates of the photon number difference b̂†b̂ − â†â.

This state is referred to as “circular” as it consists of a superposition of coherent states of the

same amplitude, but varying phase. When the complex parameters α of the coherent states (|α〉)

in the superposition are plotted in the complex plane, the locus is a circle.

States consisting of superpositions of coherent states seem to be good candidates in which to

look for possible violations of macroscopic local realism for at least two reasons.

• Coherent states can be produced relatively easily using lasers. Thus states containing them

may be easier to produce in practice than many other kinds.

• Quadrature phase measurements are possible on light fields, among them coherent states.

The attraction of quadrature phase measurements is that when they are measured via a

32
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homodyne detection scheme[34], by assuming local realism1, the elements of reality can be

defined[9] to correspond to measured quantities which are proportional to the amplitude of

a so-called “local oscillator field”, which is a high-intensity macroscopic light field. The

amplitude of this field can theoretically be increased at will, until any macroscopic noise

sources present are too small to affect the violation or non-violation of the Bell inequality.2

Thus here, any significant violation of the Bell inequality can probably be made macroscopic.

Violations of the Bell inequality were indeed found (see section 3.3).

3.1 The State

The state being considered is:

|ψ〉 =
er

2 ∫ 2π

0

∣

∣reiµ
〉

A

∣

∣re−iµ
〉

B
dµ

2
√

π
∫ π

0
exp [2r2 cos(ω)] dω

(3.1)

where
∣

∣reiµ
〉

A
is a coherent state of mean photon number r2, and phase µ in spatial region A.

∣

∣re−iµ
〉

B
is defined similarily, as a coherent state with identical photon number r2 and correlated

phase −µ, in a spatially separated region B.

∫ π

0
exp

[

2r2 cos(ω)
]

dω is a constant normalisation factor, dependent only on r, which can be

calculated numerically. It can be shown that

∫ π

0

exp
[

2r2 cos(ω)
]

dω = π
∞
∑

i=0

r4i

(i!)2
(3.2)

This state corresponds to a source producing an entangled quantum superposition of a large

number of different pairs of coherent states.

A homodyne detector with local oscillator field magnitude ε and phase θ is placed in region A

to measure x̂(θ), a quadrature phase operator of the field in region A. Another homodyne detector

with local oscillator phase φ and the same magnitude ε is placed in region B, to measure ŷ(φ)

1see section 1.5
2Assuming of course, that the magnitude of the macroscopic noise present is not proportional to the amplitude

of the local oscillator field.
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Figure 3.1: A schematic diagram of the experimental setup for the “circular” superposition of
coherent states (3.1). Spatially separated superpositions of correlated coherent states are created
at the source and move to regions A,B where the quadrature phase operators x̂, ŷ are measured by
homodyne detectors. The local oscillator phases θ, φ are the adjustable experimental parameters.
Here ε2 is the local oscillator photon number.
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the quadrature phase operator of the second field in region B. θ, φ are parameters which can be

varied by the experimenter at will. These correspond to the parameters a, b in the generalised

Bell inequality (1.5). The operators x̂, ŷ have continuous eigenvalues. This situation is shown in

figure 3.1.

Note: The operators that are actually measured are X̂ε(θ), Ŷε(φ) given by X̂ε(θ) = εx̂(θ) and

Ŷε(φ) = εŷ(φ), where ε is the classical amplitude of the local oscillator field, a constant

(the number of photons in the local oscillator field is ε2). Thus x̂, ŷ can be implied from

measurements of X̂, Ŷ .

The quadrature phase operators that will be considered here are

x̂(θ) = 1√
2

[

eiθâ+ e−iθâ†
]

X̂ε(θ) =εx̂(θ) (3.3)

ŷ(φ) = 1√
2

[

e−iφb̂+ eiφb̂†
]

Ŷε(φ) =εŷ(φ) (3.4)

where â, â† are anihilation and creation operators on the field in region A, and b̂, b̂† are analogous

operators in region B. There is no significance attached to the fact that in the expression above,

θ corresponds to −φ not φ if the operators x̂, ŷ are put into the same form. This is introduced

purely for convenience in changing to the x̂-ŷ representation, (see section 3.2 below).
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3.2 The Measured Quantities

The quantities to be measured and analysed here are the magnified quadrature phase operators

X̂(θ) = εx̂(θ), Ŷ (φ) = εŷ(φ). The x, y representation of |φ〉 can be found by use of the expression[35]

〈x| α〉 = π−
1
4 exp

[

−x
2

2
− |α|

2

2
+
√
2xαeiθ − α2e2iθ

2

]

(3.5)

where |α〉 is a coherent state, and |x〉 is an eigenstate of the operator x̂ = 1√
2
[eiθâ+ e−iθâ†] with

eigenvalue x (â is an anihilation operator on the photon field).

The probability density of measuring the value x for the operator x̂ in region A, and the value

y for the operator ŷ in region B is given by

Pxy(θ, φ) = 〈x|A 〈y|B |ψ〉 〈ψ| |x〉A |y〉B = Ψ∗xy(θ, φ)Ψxy(θ, φ) (3.6)

where |x〉A is an eigenvector of the operator x̂ in region A defined in (3.3), with eigenvalue x.

Via (3.5) it can be shown3 that

Ψxy(χ) =
exp

[

x2+y2

2

]

2π
√

∫ π

0
exp [2r2 cos(ω)] dω

∫ 2π

0

exp

[

−
(

r√
2
eiµ − x

)2

−
(

r√
2
eiχe−iµ − y

)2
]

dµ (3.7)

which is only dependent on χ = θ−φ, the difference between the two instrument parameters, not θ

and φ separately. Thus we also have Pxy(χ), dependent on χ only. This integral can be evaluated

numerically. This probability distribution is shown graphically in figure 3.2.

The marginal probability density of measuring the operator x̂ at A to be x, irrespective of the

measurement of ŷ at B is given by

Px(θ) =

∫ ∞

−∞
Pxy(θ, φ) dy (3.8)

and analogously for ŷ at B.

3see Appendix B.1
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Figure 3.2: Probability distributions for the “circular” superposition of coherent states (3.1). Figures
show variation of probability density Pxy(χ) with parameter χ. The top four figures are for coherent state
amplitudes r = 1.1 near which the maximum Bell inequality violations are observed. The bottom two
figures are for r = 2.5. Dark shading indicates high probability density. Note that the magnitude of the
probability represented by a given shading varies between plots, and that the grid lines are non-significant
artefacts of the plotting process.
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Figure 3.2b: r = 1.1, χ = 3π/8
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Figure 3.2c: r = 1.1, χ = π/2

y

x
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 3.2d: r = 1.1, χ = 5π/8
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Figure 3.2e: r = 2.5, χ = 0
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Figure 3.2f: r = 2.5, χ = π/2
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3.3 Testing of the Bell Inequality

We have the Bell inequality (1.5)

PAB(a, b) + PAB(a
′, b) + PAB(a

′, b′)− PAB(a, b′)
PA(a′) + PB(b)

≤ 1

where now a, b correspond to θ, φ, and PAB corresponds4 to PR, the probability of obtaining a

measurement of count, defined by the range R of x, y values that are considered to be a result of

count. Thus PAB(a, b)→ PR(χ).

It is found numerically that the marginal probability densities Px(θ) and Py(φ) are independent

of the parameters θ, φ respectively.

Thus as in subsection 2.4.1 one can define (2.23)

χ = θ − φ

ζ = θ′ − φ

η = θ′ − φ′

(3.9)

and simplify the Bell inequality to

BR(χ, η, ζ) =
PR(χ) + PR(η) + PR(ζ)− PR(χ+ η − ζ)

PRA + PRB
≤ 1 (3.10)

similarily to (2.21) in chapter 2.

To test the Bell inequality with some chance of success, we must find a reasonable range of

measured values x, y to consider as a result of count, and determine suitable values of the parameters

χ, η, ζ to search for violations, as an exhaustive “brute-force” search would be too time consuming5.

4using the notation of section 1.7
5This applies to this state more than for the higher spin states considered in chapter 2, as the probability densities

(3.7) here are not expressible as analytical functions, and are continuous. This means that to calculate PR(χ) (say),
a triple numerical integration must be performed. This can become very time consuming if resonable accuracy is to
be achieved.
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3.3.1 Choice of Count Range

It was chosen to make the range R of x, y values, to be regarded as a result of count, the positive

quadrant on the x-y plane. i.e. using the notation of section 1.7 we have the range R:

RA = RB ≡ [0,∞] (3.11)

R = RA ⊗RB (3.12)

This range was chosen for a number of reasons. From least to most important:

• An analogous range (2.30) covering a quadrant of the x-y plane of measured quantities, was

found to be the optimum range for the higher spin states considered in chapter 2.

• Inspection of the probability densities for the states (figure 3.2) indicates that Pxy(0), the

probability density at χ = 0 is clumped in two regions in the positive and negative quadrants

of the x-y plane that quickly become better separated as the coherent state amplitude r

increases. This corresponds to an intuitive concept of an “element of reality”.

• Most importantly, this range gives a “local maximum” of the LHS of the Bell inequality B.

i.e. If the range R is varied by

– expanding its lower bound (to negative x, y values),

– shrinking its lower bound (disallowing some small positive x, y values)

– shrinking its upper bound (disallowing some large x, y values)

– making it unsymmetric in x and y (making RA 6≡ RB)

then the magnitude of B decreases. (B > 1 is needed for a violation of the Bell inequality).

This choice of R does in fact produce significant violations of the Bell inequality (see subsec-

tion 3.3.3) given the right choice of parameters χ, η, ζ (see below). Other range choices might also

give violations, prehaps greater than those observed, but this was not investigated due to time

constraints.
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When the marginal probabilities Px(θ), Py(φ) are evaluated numerically, they are found to be

constant (independent of the parameters θ, φ). Additionally, when the ranges given above in (3.11)

are used, the marginal probabilities are equal to half.

PRA = PRB = 1
2 (3.13)

3.3.2 Choice of Parameters

Consider the Bell inequality that will be used here (3.10). To violate the inequality it is required

that (as the marginal probabilities are given by (3.13))

BR(χ, η, ζ) = PR(χ) + PR(η) + PR(ζ)− PR(χ+ η − ζ) > 1 (3.14)

It can be shown (see appendix B.2) that for some functions P (χ) if B = P (χ) + P (η) + P (ζ) −

P (χ+ η − ζ) and

P (χ) is periodic in χ with period L (3.15)

P (χ) has three extrema per period: maxima at χ = 0, L and a minimum at χ =
L

2
(3.16)

P (L− χ) = P (χ) for all χ (3.17)

∂P (χ)

∂χ
= P ′(χ) has only three extrema in the range 0 ≤ χ ≤ L

2 (3.18)

(maxima at χ = 0, L2 and a minimum in between)

then B will attain its greatest value above 2P(0) (if any) on the line in χ, η, ζ space given by

χ = η = −ζ

0 ≤ χ, η ≤ L
2

−L
2 ≤ ζ ≤ 0

(3.19)

Furthermore, if

P ′(L2 − χ) = P ′(χ) (3.20)

then the greatest value of B will be attained at one or both of

χ = η =
L

8
or

3L

8
= −ζ (3.21)
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This is very useful, as an exhaustive search of the various angles χ, η, ζ is not required. When

PR(χ) is calculated numerically, it is found to always satisfy conditions (3.15)-(3.17) and (3.20),

and to satisfy condition (3.18) if r is small (i.e. less than about 1.5). The period is found to be

L = 2π, and PR(0) = 0.5.

Thus for low r, violations of the Bell inequality were checked only for the parameters

χ = η =
π

4
or

3π

4
= −ζ. (3.22)

The case where χ = 3π
4 was found to always be a minimum of B and thus irrelevant for our

purposes here. Thus for violations of the Bell ineqaulity we require

B
MAX

= 3PR
(π

4

)

− PR
(

3π

4

)

> 1 (3.23)

3.3.3 Violations of the Bell Inequality Found

Using the range R given above in (3.11) and the relation (3.23) required for violation of the Bell

inequality, it was found that the Bell inequality was violated by the state 3.1 for r values in the

range

0.96 . r . 1.41 (3.24)

The maximum violation of B
MAX

≈ 1.0157 ± 0.0002 being around r ≈ 1.1. A plot of maximum

violation B
MAX

is shown in figure 3.3. The procedure used to obtain this result is outlined below.

To calculate B
MAX

via (3.23) PR(
π
4 ) and PR(

3π
4 ) must be calculated. These are given by (using

the range in (3.11))

PR(χ) =

∫ ∞

0

∫ ∞

0

Pxy(χ) dx dy (3.25)

which requires a numerical integration to calculate Pxy(χ) and then two more to calculate PR. The

integration method used was the “Adaptive recursive Newton Cotes 8 panel rule”. Each integral

calculation involved about 25 steps, thus aiming to get a tolerance of ±5 × 10−5 = ∆ for PR

calculations, Pxy was calculated to a tolerance of ±0.2 × 10−5 = ∆
25 , and

∫

Pxy dx was calculated

to a tolerance of ±1 × 10−5 = ∆
5 . Now if PR is calculated to an error of ±∆, then B, given by
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Figure 3.3:
Maximum violation of the Bell
inequality B

MAX
against coher-

ent state amplitude r. The Bell
inequality is violated for B >
1. In all cases, maximum vi-
olation occurred for parameter
χ = π

4 where B(χ) = 3PR(χ) −
PR(3χ). The uncertainty in
B

MAX
is about ± 0.0002, which

is much less than the extent of
the “+” used to show data on
the plot.
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(3.23) will be accurate to about ±3∆, so it was concluded that the calculated values of B
MAX

were

accurate to about ±2× 10−4 leaving plenty of room for the accumulation of error through various

steps in the numerical calculations.

Realistically,one cannot integrate to∞ as is given in (3.25), so the integrations in x and y were

done over the range [0, 2 + r
√
2) as it was found that for x, y & 2 + r

√
2, Pxy(χ) is negligible for

all χ.

This procedure was used to calculate B
MAX

for all the r values shown in figure 3.3.

3.3.4 Tolerance of the Violations to Noise

It has already been pointed out that the actual measurements, and elements of reality in the

hidden variable representation, for this system are the X,Y = εx, εy from which the values of the

standard quadrature phase measurements x, y can be implied if one knows the magnitude ε of the

local oscillator field. Thus Bell inequality violations can still occur in the range (3.24) under any

magnitude of noise, because if noise magnitude increases, its effect can be countered by increasing

ε. Nevertheless, it is interesting to see just how much noise is needed to destroy violations of the

Bell inequality for this system.
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The following calculations were all performed on the case where r = 1.1 which is near the r

value which gives the largest inequality violations (i.e. largest B). The noise being considered is

gaussian in form, and given by

ρG(∆) =
1

σ
√
2π

exp

[−∆2

2σ2

]

(3.26)

where the notation of section 2.3 is being used. Here ρG(∆) d∆ is the probability that the result

of a noisy measurement is shifted by the noise by an amount ∆ to ∆+ d∆ from its noiseless value.

The probability of measuring a noisy result in the range R given by QR(χ) can be given by a

version of equation (2.19) from section 2.3 modified for continuous noiseless variables:

QR(χ) =

∫∫ ∞

−∞
Pxy(χ)Cxy(R) dx dy where (3.27)

Cxy(R) = Cx(RA)Cy(RB) and Cx(RA) =
∫∫

z∈RA

ρG(z − x) dz (3.28)

Thus the Cx can be calculated, and QR(χ) is integrated over. The integration was only taken over

the x, y ranges (−4∆, 2 + r
√
2) as the quantity Qxy = PxyCxCy will be negligible outside these

bounds.

Proceeding with the above integration in the manner of section 3.3.3, it is found that for r = 1.1,

Bell inequality violations occur for all noise of magnitude 0.19ε or less. This is shown in figure 3.4.

Figure 3.4:
Maximum violation of the Bell inequality
BMAX for coherent state amplitude r = 1.1
plotted against gaussian experimental noise
magnitude σ. The Bell inequality is violated
for all BMAX > 1. In all cases, maximum vi-
olation occurred for parameter χ = π

4 where
B(χ) = 3PR(χ) − PR(3χ). The uncertainty
in BMAX is about ± 0.0002, which is much
less than the extent of the “+” used to show
data on the plot. the horizontal axis = noise
magnitude, is given in units of local oscillator
field magnitude ε.
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3.4 Conclusions for the “Circular” Superposition of Coher-

ent States

Firstly it should be noted that the hidden variable representation for the state (3.1) considered

here, assigns “elements of reality” (as described in section 1.2) to the results of measurements

of X,Y = εx, εy the amplified quadrature phase measurements. The quantities X,Y are actually

measured as some number of photons in the homodyne detection scheme used here, but usually the

local oscillator field magnitude ε is sufficiently large to treat it as an amplifying constant instead of

a quantum mechanical operator. In other words, ε is large enough to make the measurement ofX =

εx practically a continuous measurement, as opposed to a discrete photon-number measurement.

Therefore we can treat ε as an amplifying constant on x.

Secondly, from the previous sections, it can be seen that the quantum mechanical predictions for

state (3.1) violate the Bell inequalities based on this hidden variable picture for the case where the

simulated noise in measurements is small. (for values of coherent state amplitude 0.96 . r . 1.41)

It can also be seen that the Bell inequality is violated while the noise is of a magnitude less than

about 0.19ε.

Thirdly, if the Bell inequality is violated by measurements with some uncertainty ∆ε in the

number of photons detected by a measurement of X, this uncertainty reflects an uncertainty of ∆ε

photons for the elements of reality described by the hidden variable description of the system.

With these three things in mind, it can be seen that ∆ε can be easily increased to a size where

this uncertainty is macroscopic simply by varying ε 6, but the Bell inequality is still violated.

Since only macroscopic elements of reality can be still distinguished, then the quantum mechanical

predictions seem to be incompatible with macroscopic local realism for this state. (as defined in

section 1.5).

6This is in fact inevitable in real experiments where ε is always macroscopic.



Conclusion

The quantum mechanical predictions for both states considered (The higher-spin states and the

“circular” superposition of coherent states) were found to be incompatible with complete local re-

alism (i.e. microscopic local realism). More importantly, when a macroscopic quantity was defined

as one whose physical value is unknown to within some uncertainty which is itself macroscopic[9],

the quantum mechanical predictions for the second state were found to be incompatible with

macroscopic local realism (see chapter 3).

A common view may be that in the macroscopic limit, quantum mechanics must reduce to a

“classical” theory. This would imply that quantum mechanics would be compatible with macro-

scopic local realism. The results of this investigation seem to cast doubt on this view.

In real experiments, the detectors used will always have some inefficiencies associated with

them, and it would be useful if calculations taking these inefficiencies into account were done for

the states considered here.

More investigation into the question of compatibility of quantum mechanics with macroscopic

local realism should be conducted. It would seem that the state in which incompatibility with

macroscopic local realism was found, would be very difficult or impossible to create experimentally

with current technology. For this reason it would be very useful if an incompatibility between

quantum mechanics and macroscopic local realism were shown for a state which could actually be

produced in the laboratory, thus allowing experimental testing of the validity of macroscopic local

realism. Another direction which should be pursued is to arrive at a consensus on a definition of

“macroscopic”.
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Appendix A

Additional Proofs on the Higher

Spin States

This appendix gives the derivation of the probability distribution of the n,m measurements on the

Higher spin states (2.9)(2.8), and its properties (2.13), and the method of determining that the

marginal probabilities of measuring n are constant.

A.1 The Probability Distribution

We wish to determine the probability of measuring n bosons at detector A, by measuring the

operator ĉ†+ĉ+, and m bosons at detector B, by measuring the operator d̂†+d̂+. This is given by

equation (2.8) as

Pnm(θ, φ) =
∣

∣

∣
〈n|c+ 〈N − n|c− 〈m|d+ 〈N −m|d− |ψ〉

∣

∣

∣

2

= Ψ∗nm(θ, φ)Ψnm(θ, φ)

here |ψ〉 can be written (in most general form) as (equation (2.6))

|ψ〉 =

[(

ĉ†+d̂
†
+ + d̂†−ĉ

†
−

)

cos(θ − φ) +
(

ĉ†+d̂
†
− − ĉ†−d̂†+

)

sin(θ − φ)
]N

N !
√
N + 1

|0〉c+ |0〉c− |0〉d+ |0〉d−
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as mentioned before, this depends only on χ = θ − φ. The state can be rewritten by expanding

via binomial series

|ψ〉 = 1

N !
√
N + 1

N
∑

r=0

(

N

r

)

[cos(χ)]
r
[sin(χ)]

N−r
r
∑

i=0

(

r

i

)

(

ĉ†+d̂
†
+

)i (

ĉ†−d̂
†
−

)r−i
· · ·

· · ·
N−r
∑

j=0

(

N − r
j

)

(

ĉ†+d̂
†
−

)j (

ĉ†−d̂
†
+

)N−r−j
(−1)N−r−j |0〉c+ |0〉c− |0〉d+ |0〉d− (A.1)

|ψ〉 = 1√
N + 1

N
∑

r=0

r
∑

i=0

N−r
∑

j=0

√

(i+ j)!(N − j − i)!(N − r − j + i)!(r − i+ j)!

j!i!(r − i)!(N − r − j)! · · ·

· · · [cos(χ)]r [sin(χ)]N−r (−1)N−r−j |i+ j〉c+ |N − j − i〉c− |N − r − j + i〉d+ |r − i+ j〉d− (A.2)

now, since number states are orthogonal,

〈n| p〉 = δnp = δ(n, p) (A.3)

we get

Ψnm(χ) =
1√

N + 1

N
∑

r=0

r
∑

i=0

N−r
∑

j=0

√

(i+ j)!(N − j − i)!(N − r − j + i)!(r − i+ j)!

j!i!(r − i)!(N − r − j)! · · ·

· · · [cos(χ)]r [sin(χ)]N−r (−1)N−r−jδ(n, i+ j)δ(m,N − r − j + i) (A.4)

now one can make the substitution

i→ 1
2 (n+m−N + r) j → 1

2 (n−m− r +N) (A.5)

where we require

0 ≤ i ≤ r 0 ≤ j ≤ N − r

i, j are integers

(A.6)

so that we reduce the sum over three variables r, i, j to a sum over just one (r), and in fact some

terms in r may drop out also, due to condition (A.6). the conditions (A.6) are required so that the

i, j which we are substituting for are actually valid indices for the sums that are being removed by

the delta functions.
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(A.4) becomes

Ψnm(χ) =

√

n!(N − n)!(m)!(N −m)!

N + 1

∑

r∈A
[cos(χ)]

r
[sin(χ)]

N−r
(−1) 1

2 (N−r+m−n) · · ·

· · · 1

[ 12 (n+m−N + r)]![ 12 (n−m− r +N)]![ 12 (r +N − n−m)]![ 12 (N − r +m− n)]! (A.7)

where A is some range of values to be determined. The index r must satisfy the inequalities (A.6),

otherwise, the term belonging to r is set to zero by the delta functions in (A.4). (A.6) is equaivalent

to r satisfying all of

r ≤ N + n−m r ≥ n+m−N

r ≤ N +m− n r ≥ N −m−m
(A.8)

or in conscise form

r ∈ A ≡ |n+m+N | ≤ r ≤ N − |n−m| (A.9)

also, the requirement that i, j be integers, means that from (A.5), r has the same parity as n+m+N .

Since n+m+N is constant for any paticular Pnm(χ), only every second r-value in the range given

by (A.9) is going to give non-zero terms. thus r can be replaced by 2s, and so, finally, it can be

written

Ψnm(χ) =

√

n!(N − n)!(m)!(N −m)!

N + 1

1
2 (N−|n−m|)

∑

s= 1
2 |n+m−N |

[cos(χ)]
2s
[sin(χ)]

N−2s
(−1) 1

2 (N+m−n)−s · · ·

· · · 1

[ 12 (n+m−N) + s]![ 12 (n−m+N)− s]![ 12 (N − n−m) + s]![ 12 (N +m− n)− s]! (A.10)

and of course,

Pnm(χ) = |Ψnm(χ)|2 (A.11)

which is equivalent to (2.9) and (2.10).

A.2 Properties of the Probability Distribution

In this section, some properties of the probability distribution, given in (2.13) are derived.
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Firstly, from (A.10)

Pnm(χ+ π) =
∣

∣

∣
· · ·

∑

[cos(χ+ π)]
2s
[sin(χ+ π)]

N−2s · · ·
∣

∣

∣

2

=
∣

∣

∣
· · ·

∑

[− cos(χ)]
2s
[− sin(χ)]

N−2s · · ·
∣

∣

∣

2

=
∣

∣

∣
· · · (−1)N

∑

[cos(χ)]
2s
[sin(χ)]

N−2s · · ·
∣

∣

∣

2

=
∣

∣

∣
· · ·

∑

[cos(χ)]
2s
[sin(χ)]

N−2s · · ·
∣

∣

∣

2

Pnm(χ+ π) =Pnm(χ) (A.12)

Also,

Pnm(π − χ) =
∣

∣

∣
· · ·

∑

[cos(π − χ)]2s [sin(π − χ)]N−2s · · ·
∣

∣

∣

2

=
∣

∣

∣
· · ·

∑

[− cos(χ)]
2s
[sin(χ)]

N−2s · · ·
∣

∣

∣

2

=
∣

∣

∣
· · ·

∑

(−1)2s [cos(χ)]2s [sin(χ)]N−2s · · ·
∣

∣

∣

2

=
∣

∣

∣
· · ·

∑

[cos(χ)]
2s
[sin(χ)]

N−2s · · ·
∣

∣

∣

2

Pnm(π − χ) =Pnm(χ) (A.13)

so now if we let µ = π
2 − χ, then by (A.13)

Pnm(π2 + µ) = Pnm(π2 − µ) (A.14)

and it can also be easily seen by using (A.12) on (A.13) that

Pnm(χ) = Pnm(|χ|) (A.15)

If the indices n and m are switched, it can be seen from inspection of (A.10) that

Pmn(χ) = Pnm(χ) (A.16)

Also, it can be seen from (A.10) that

PN−n,N−m(χ) =

∣

∣

∣

∣

∣

∣

· · ·
N−|N−n−N+m|

∑

s= 1
2 |N−n+N−m−N |

···(−1)
1
2
(N+N−m−N+n)−s

[ 12 (N−n+N−m−N)+s]![ 12 (N−n−N+m+N)−s]![ 12 (N−N+n−N+m)+s]![ 12 (N+N−m−N+n)−s]!

∣

∣

∣

∣

∣

∣

2
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=

∣

∣

∣

∣

∣

∣

· · ·
N−|m−n|

∑

s= 1
2 |N−n−m|

···(−1)
1
2
(N−m+n)−s

[ 12 (N−n−m)+s]![ 12 (N−n+m)−s]![ 12 (n+m−N)+s]![ 12 (N−m+n)−s]!

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

· · ·
N−|m−n|

∑

s= 1
2 |N−n−m|

···(−1)
1
2
(N−m+n)−s

[ 12 (N−n−m)+s]![ 12 (N−n+m)−s]![ 12 (n+m−N)+s]![ 12 (N−m+n)−s]!

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

· · ·
N−|n−m|

∑

s= 1
2 |n+m−N |

···(−1)
1
2
(N−n+m)−s

[ 12 (N−n−m)+s]![ 12 (N−n+m)−s]![ 12 (n+m−N)+s]![ 12 (N−m+n)−s]!

∣

∣

∣

∣

∣

∣

2

PN−n,N−m(χ) =Pnm(χ) (A.17)

And, finally

PN−n,m(χ− π
2 ) =

∣

∣

∣

∣

∣

∣

· · ·
1
2 (N−|N−n−m|)

∑

s= 1
2 |N−n+m−N |

[cos(χ−π2 )]
2s
[sin(χ−π2 )]

N−2s
(−1)

1
2
(m−N−n+N)−s

[ 12 (N−N+n−m)+s]![ 12 (N−N+n+m)−s]![ 12 (N−n+m−N)+s]![ 12 (N−m+N−n)−s]!

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

· · ·
1
2 (N−|m+n−N |)

∑

s= 1
2 |n−m|

[− sin(χ)]2s[cos(χ)]N−2s(−1)
1
2
(m−n)−s

[ 12 (n−m)+s]![ 12 (n+m)−s]![ 12 (m−n)+s]![ 12 (2N−m−n)−s]!

∣

∣

∣

∣

∣

∣

2

now let s = N
2 − t therefore t = N

2 − s

=

∣

∣

∣

∣

∣

∣

· · ·
1
2 (N−|n−m|)

∑

t= 1
2 |m+n−N |

[cos(χ)]2t[sin(χ)]N−2t(−1)
1
2
(m−n+N)−t

[ 12 (N−n−m)+t]![ 12 (N−n+m)−t]![ 12 (n+m−N)+t]![ 12 (N−m+n)−t]!

∣

∣

∣

∣

∣

∣

2

PN−n,m(χ− π
2 ) =Pnm(χ) (A.18)

thus the properties (2.13) are proven

A.3 Properties of the Marginal Probabilities

At the beginning of section 2.4, mention is made of the fact that when the marginal probabilities

Pn(θ), Pm(φ) are evaluated numerically, they are found to be independent of their parameters θ

and φ respectively. It can also be shown that

Pnm(0) =







1

N + 1
if n = m

0 otherwise
(A.19)
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Proof :

when χ = 0, the state is given by equation (2.7) to be

|ψ〉 = 1

N !
√
N + 1

[

ĉ†+d̂
†
+ + ĉ†−d̂

†
−

]N

|0〉A |0〉B

which can be written

|ψ〉 =
N
∑

r=0

|r〉c+ |N − r〉c− |r〉d+ |N − r〉d−√
N + 1

(A.20)

so by equation (2.8),

Pnm(0) =

∣

∣

∣

∣

∣

N
∑

r=0

δ(n, r)δ(N − n,N − r)δ(m, r)δ(N −m,N − r)√
N + 1

∣

∣

∣

∣

∣

2

Pnm(0) =
δ(n,m)

N + 1
(A.21)

so the marginal probabilities are

Pn(θ)|χ=0 =

N
∑

m=0

Pnm(0) =

N
∑

m=0

δ(n,m)

N + 1
=

1

N + 1
(A.22)

and because it has been found that Pn(θ) is independent of θ then the equation (A.22) above holds

for all θ.



Appendix B

Proofs for the “Circular”

Superposition of Coherent States

This appendix gives the derivation of the x-y representation (3.7) of the state (3.1), and the

derivation of the theorem used in section 3.3.2 to find the optimum χ, η, ζ parameter range for Bell

inequality violations.

B.1 The x-y Representation

Following the discussion in sections 3.1 and 3.2, The state (3.1) is given by

|ψ〉 = N
∫ 2π

0

∣

∣reiµ
〉

A

∣

∣re−iµ
〉

B
dµ

where the normalising factor N is given by

N =
er

2

2
√

π
∫ π

0
exp [2r2 cos(ω)] dω

(B.1)

The x-y representation is given by

Ψxy(θ, φ) = 〈x|A 〈y|B |ψ〉 (B.2)
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where |x〉A is the eigenstate with corresponding eigenvalue x of the operator x̂ on the light field in

region A. The operators x̂, ŷ are defined as in (3.3):

x̂(θ) = 1√
2

[

eiθâ+ e−iθâ†
]

ŷ(φ) = 1√
2

[

e−iφb̂+ eiφb̂†
]

To obtain Ψxy we need the expression (3.5)[35].

〈x| α〉 = π−
1
4 exp

[

−x
2

2
− |α|

2

2
+
√
2xαeiθ − α2e2iθ

2

]

Thus now using (3.1), (B.2) and (3.5) one obtains

Ψxy(θ, φ) =
N√
π

∫ 2π

0

dµ · · ·

· · · exp
[

−x
2

2
− r2

2
+
√
2xrei(µ+θ) − r2

2
e2i(µ+θ) − y2

2
− r2

2
+
√
2yre−i(µ+φ) − r2

2
e−2i(µ+φ)

]

(B.3)

Ψxy(θ, φ) =
N√
π
exp

[

x2

2
+
y2

2
− r2

]

· · ·

· · ·
∫ 2π

0

dµ exp

[

−
(

r√
2
ei(θ+µ) − x

)2

−
(

r√
2
e−i(φ+µ) − y

)2
]

(B.4)

Now make the substitution

θ + µ = λ and θ − φ = χ

therefore dµ = dλ and − (φ+ µ) = χ− λ
(B.5)

to get

Ψxy(χ) =
N√
π
exp

[

x2 + y2

2
− r2

]
∫ 2π

0

exp

[

−
(

r√
2
eiλ − x

)2

−
(

r√
2
eiχe−iλ − y

)2
]

dλ (B.6)

which is equivalent to (3.7), our aim.

B.2 Proof of Equations (3.15)-(3.21)

Initially, we assume we have some function P (χ) dependent on χ. Now define

P ′(χ) =
∂P (χ)

∂χ
and B(χ, η, ζ) = P (χ) + P (η) + P (ζ) + P (χ+ η − ζ) (B.7)

The function P (χ) is assumed to obey the conditions (3.15)- (3.18), i.e.
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Figure B.1: Schematic diagram of the properties of the function P (χ) used in section B.2

6

-

P
(χ

)

χ
0 L

2
L

6

-

P
′ (
χ
)

χ

0

0 λ χo λ̄ L
2

L

1. P (χ+ L) = P (χ)

2. P (χ) has maxima at χ = 0, L and a minimum at χ = L
2 and no other extrema on the

interval χ ∈ [0, L].

3. P (L− χ) = P (χ)

4. P ′(χ) has maxima at χ = 0, L2 , a minimum in between at χ = χo, and no other extrema

on the interval χ ∈ [0, L2 ].

It can be immediately seen that due to condition 3,

P ′(L− χ) = −P ′(χ) (B.8)

Also define χ̄ by

P ′(χ) = P ′(χ̄) and χ̄ 6= χ (B.9)

It can be seen that due to condition 4 and (B.8), χ̄ can take on at most one value, and is undefined

for χ = χo and for χ = L− χo (by (B.8)). Furthermore define the χ values

0̄ = L
2 and ¯(L

2

)

= 0 (B.10)

This situation is represented schematically in figure B.1.
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B has some symmetry properties, which can be easily shown using conditions 1 & 3

B(L− χ, η, ζ) = B(χ, ζ, η) = B(η, L− ζ, χ) (B.11)

These conditions imply that over the parameter range 0 ≤ χ, η, ζ ≤ L B is duplicated. It turns

out that B exhibits unique behaviour only over the range

0 ≤ χ, η ≤ L
2 and 0 ≤ ζ < L (B.12)

and this is the whole range that will be considered, as any extrema outside this range will have

the same magnitude as one or more within (B.12). The range (B.12) also implies that χ̄, η̄, ζ̄ will

satisfy

0 ≤ χ̄, η̄ ≤ L
2 and 0 < ζ̄ < L (B.13)

Now we wish to find the extrema of B. B will have extrema when

∂B

∂χ
=
∂B

∂η
=
∂B

∂ζ
(B.14)

i.e.

P ′(χ+ η − ζ) = P ′(χ) = P ′(η) = −P ′(ζ) (B.15)

Given the ranges (B.12) above, χ + η − ζ can be in the range (−L,L). Thus it can be seen (just

look at figure B.1) that P ′(χ+ η − ζ = α) = ±P ′(β) for some β implies that

P ′(α) = ±P ′(β) ⇒ one of



















α = ±β
α = ±β̄
α = ±(β − L)
α = ±(β̄ − L)

(B.16)

So combining (B.15) with (B.16) we conclude that extrema of B will occur when

χ+ η − ζ = one of



















χ

χ̄

χ− L
χ̄− L

ANDχ+ η − ζ = one of



















η

η̄

η − L
η̄ − L

ANDχ+ η − ζ = one of



















−ζ
−ζ̄
L− ζ
L− ζ̄

(B.17)
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The cases χ+ η − ζ = χ−L or η −L are impossible for χ, η satisfying (B.12). thus (B.17) can be

simplified via (B.12)&(B.13) to

one of











ζ = η

χ+ η − ζ = χ̄

χ+ η − ζ = χ̄− L
AND one of











χ = ζ

χ+ η − ζ = η̄

χ+ η − ζ = η̄ − L
AND one of



















χ = η = 0

χ+ η = ζ − ζ̄
χ = η = L

2

χ+ η = L− ζ − ζ̄
(B.18)

This gives 36 possibilities. By utilising the fact that the variables lie in the ranges (B.12),(B.13),

all but 9 of these can be eliminated from consideration. Firstly, extrema may be found at the

points shown in figure B.2

Figure B.2: Extrema of B(χ, eta, ζ) at boundaries of χ, η, ζ ranges. (see text)

χ η ζ χ η ζ

1) 0 0 0 5) 0 0 L
2

2) L
2

L
2

L
2 6) 0 L

2 0
3) L

2 0 L
2 7) L

2 0 0
4) 0 L

2
L
2

Extrema 1) and 5) give B = 2P (0), while the other five extrema above give B = 2P (L2 ), which

are smaller than 2P (0) by condition 2.

The other two possibilities are that extrema are found at parameters given by

χ = η, ζ̄ = L− χ̄, ζ = 2χ+

{

ζ̄ or

−χ̄ (B.19)

Now, because χ̄ < L
2 by (B.13), and ζ̄ = L − χ̄, then ζ̄ > L

2 , so ζ̄ and ζ are in the range [L2 , L],

which will give equivalent results if we subtract L from it, now constraining ζ, ζ̄ to

−L
2 ≤ ζ, ζ̄ ≤ 0 (B.20)

This causes the conditions for extrema (B.19) to become

χ = η, ζ̄ = −χ̄, ζ = 2χ+

{

ζ̄ or

−χ̄ (B.21)
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which can be used to deduce that extrema will occur on the line

χ = η = −ζ

0 ≤ χ, η,−ζ ≤ L
2

(B.22)

This is the result used in section 3.3.2.

If P ′(χ) satisfies the additional symmetry postulate

P ′(L2 − χ) = P ′(χ) (B.23)

then the exact position of these extrema can be located easily. Looking at the conditions (B.21),

they indicate that extrema will be found when

χ =
χ̄

3
or

L

3
+
χ̄

3
(B.24)

The additional postulate (B.23) can be seen to imply (via (B.9)) that

χ̄ = L
2 − χ and χo =

L
4 (B.25)

so using this and (B.24) we obtain the desired result that extrema will be found at

χ =
L

8
or

3L

8
(B.26)

QED
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