Superfluid dipolar Fermi gases
and their excitations

Piotr Deuar, Misha Baranov, Gora Shlyapnikov

X

e Université Paris-sud Xl ll
Universiteit van Amsterdam x
CFT, 9 Stycznia 2008

— Typeset by FoilTEX —



Overview

1. Motivation
Comparison with standard BCS gas,
clean realisation of solid-state phases

2. Experimental prospects
possible realisations, critical temperature T.

3. Model for the uniform 3D gas
H , assumptions

4. Quasiparticle (pair) excitations
Anisotropic energy gap for pair breaking, gap nodes

5. Collective excitations & superfluid component
Hydrodynamics, anisotropic damping,
unusual superfluid current response
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Uniform gas

e uniform 3D gas

e static external field (E or B)
— full polarisation

e single-species (spin polarised)

(i) e dilute =— Energy dominated by
Fermi sea to leading order

cﬁo e short-range interaction (e.g. p-wave)
negligible (Fermi exclusion)



(1) Motivation



BCS superfluidity

dipole—dipole
potential

LONG range interaction
ANlIsotropic

always partly attractive
BCS pairing if polarised

Needs 1 spin component
Energy gap has nodes

Stability conditions nontrivial

(Goral, Brewczyk, Rzazewski)

standard s-wave
7| potential

SHORT range interaction
|sotropic

arttractive or repulsive
BCS pairing only if ag < O

Needs 2 spin components

Energy gap always # 0



Solid state analogue

e The node structure of the direction-dependent order parameter is
similar to that of solid state and He phases, e.g.:

— Polar phase of *He.
(Never experimentally realized)
— Heavy-fermion superconductors like UPts.
(Difficult to get pure system, many potential phases)

e Qualitatively similar behaviour expected.

e Dipole gas is a much “cleaner” system.

— H well known
— spin degrees of freedom can be removed.

e |t is potentially better controllable.



(2) Prospects for superfluidity



Possible Physical Realisations

e Heteronuclear polar molecules

— Several groups actively aiming to cool to ultracold T.

e.g. Bigelow (Rochester), Grimm (Innsbruck), Doyle (Harvard), ...
— Method 1: Photoassociaton from cold atomic gases
— Method 2: Buffer gas cooling

e Magnetic atomic dipoles

— e.g. >3Cr (6 parallel spins in valence electron shell)
— ultracold gases achieved, but dipole moment too small to be useful
for BCS.

e Induce electric dipoles in atoms with strong E fields



Critical Temperature for BCS
standard 1| gas:
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Dipole gas:

M. Baranov et al, PRA 66, 013606 (2002)
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Candidates for BCS pairing

(large |ap| desirable)

Short-range interactions
e Two spin components. For example °Li: as= —114nm

Dipoles

e Heteronuclear polar molecules
I5ND3: ap = —145nm
HCN:ap = —740nm
NaCs :ap = —500nm

e Magnetic atomic dipoles

>2Cr : ap = —0.5 nm (far too weak)

e Atoms with induced electric dipole

ap ~ —1to —10nm (need ~ 10° V/cm)



(3) Model



Hamiltonian

~ 1 o~y ~ oy~
H = KE. + 3 / d3xd3y{ YT, Vp(x—y) LIJI,LIJy}
o LTJX IS the anihilating Fermi field operator at point X.
BCS Mean field theory: Postulate the quadratic effective Hamiltonian:
f L[ 8,3 P Qt M2Q inati
Her = 5 d°xd y{ = W, O7W,0(x—y) Kinetic

A (x—y) P, — A(x—y) WIW] BCS
+W(x—y) Wi, } Hartree

e With some “appropriate” A(X—Y) and W(X—Y)



Gap eqguation

Choose A(X—Y) and W(X—Y) to minimise the full Free energy
F = (H)et —HN—TS

when calculated with eigenstates of I:I\eff.

Obtain: A
AX—Y) =Vp(X—Y) <LIJXLIJy>eH

W(x—y) = ~Vo(x—y) (P}®y)

A, W and WY must be self-consistent.



Uniform gas
In k—space

AN L AN

21,2 PN o~ o~
/ d3k{ (ﬂ —2u- W(k)) LIJELIkaLA*(k)LIJkLIJk—A(k)LPlLPTk}

e \\/(k) is a minor energy shift of Fermi surface — ignore it

e Order parameter A(k) # O corresponds to BCS pairing of k and —k
atoms.

e Important difference to standard T|gas: A(K) anisotropic and has
nodes



(4) Quasiparticle (pair)
excitations



BCS gap Ar(0) on Fermi surface
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POLE in plane _L to polarisation
Breaking a pair costs 2 x E, where E(k) = \/(K.E. — Ef )2+ A2 > |A|.

e Dipoles: Easy to excite a pair in plane L to polarisation because
energy cost is small.

e | |gas: Appreciable energy cost of excitations always.



Consequences of polein A

i1 sin[ (192) cos8 |
<
—0.5
)
LL
g 0 | |
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71 gas dipoles
dispersion Isotropic anisotropic
damping of sound at T =0 0 nonzero
Specific heat at low T ~ exp(—A/T) ~ T2
normal component atlow T | ~ exp(—A/T) | polynomial in T




(5A) Collective excitations

(technical)



Collective excitations (Sound)

Phase perturbations of the ground state order parameter

Bo(x—y) — A(xY) = Do(x—y) N

Assumptions:

e Lowenergy (hw << AF™)
e Phase perturbations only (amplitude perturbations are higher energy)

e Loww = long wavelength (k< Kkg)
—> insensitive to small-scale of [Xx—y| =— @~ @(xonly)

e \Weak perturbation =— lowest order in @



Consistency equation in  K-space

T ady {(T%—T%) [(E2+8n)(E%—8m)+A2A9n (Er?—en)(Er%+sm)+A2A%]

2EQ,  4E9E? 2 hw—E9+E%+i0  hw+E?—ES+i0

410 (ER+&n)(Em +E&m) —ARAG 0 (ER —&n)(Em —&m) — A4y,
" hw—EY—EQ +10 m hw+EJ+EY +10 '

where n =M +k/2, m= —M +k/2, & = h?k?/2m—Eg, E) = /€2 + (A)2, and 1) = tanh(EY/2T).

e Landau processes (E + w < E’ — 1st line) and
Beliaev processes (E + E’' < w— 2nd line).

e Well, it's kind of long )

e There’s also a practical PROBLEM ...



Practical problem

e For any long wavelength k of @, there are many solutions with
different w, parametrised by the wavenumber M ~ kg from A, .

e Experimentalists can control/perturb/see long wavelengths k, but not
M

e Presumably, if you perturb system externally with wavenumber K the
result will be some weighted average over all M solutions.

e But what are the weights?



The solution — an effective Lagrangian

. In the action integral formulation of quantum mechanics write down
an action S(A, W) so that its saddle point 0S/9{A, ¥} = O gives the
full BCS theory.

. Substitute perturbation A — Age?® to give S(Ag, @, W).

. An effective action S for the small perturbation @ is obtained by
integrating over the irrelevant variables V.

. get Sg(@Ag,Wo), where Wy is the unperturbed ground state
wavefunction.

. Consistency equation for @ is given by the saddle-point solution
0S:/0p=0.

. Weights turn out to be A,



(5B) Collective excitations

(results)



T = 0 Superfluid

Find Bogoliubov sound, same as for the standard T|BCS gas

()"

To lowest order in W << Er /A and k < ke.

Not too surprising from hydrodynamics ...



T = 0 Hydrodynamics

Relies on the hydrodynamic Hamiltonian for superfluid velocity Vs

H~ /d?’{ —mpvs(X)* +U(p)}

and the continuity and current equations

kX _h = oo 0P
Vs = . _mpDcp(x) and  [0-Jy(X) = P

which are found to be the same for dipoles and short-range gases to
order O(A™*/Eg).

Since U (p) arises overwhelmingly from the filled Fermi sphere,
— Interaction details have minor effect locally
(Can be significant in a trap, though [Géral, Brewczyk, Rzazewski, Englert])



Beyond hydrodynamics
T = 0 Anisotropic damping of sound

o (5o () o)

absent for standard 7| gas

Beliaev process:
collective =—- 2xquasipart.
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T ~ T. behaviour
W= — (7551(1)) (h_l\_/f> k? <1+% 1+3cos£6>
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e Purely diffusive (as for standard short-range 1 |gas)

e Anisotropic (differently to T|gas)



Veering superfluid current  0< T < T¢

e Current response Jsto an external phase perturbation of the gap

A(X,Y,t) = Do(x — y)#oxY

e Driving frequency w, wave-vector K, in direction 0.

Veering current
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Direction-dependent superfluid

( preliminary and tentative )
Can define direction-dependent “normal” and “superfluid” components

P=pPn(0) +ps(0)

so that the usual current equation applies:
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Related avenues of research

e Other low energy modes - e.g. perturbation of the polarisation axis.
e \What's going on with the current near 8 = 11/2.
e Are the A-amplitude modulation modes low-energy near 8 = 11/2?

e Are there Interesting low energy perturbations of the discarded
Hartree field W(X,y)?



