Superfluid dipolar Fermi gases and their excitations

Piotr Deuar, Misha Baranov, Gora Shlyapnikov

Université Paris-sud XI
Universiteit van Amsterdam

CFT, 9 Stycznia 2008

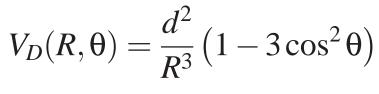
Overview

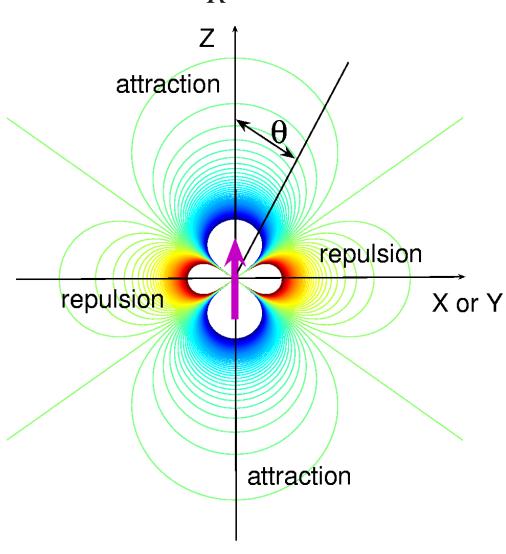
1. Motivation

Comparison with standard BCS gas, clean realisation of solid-state phases

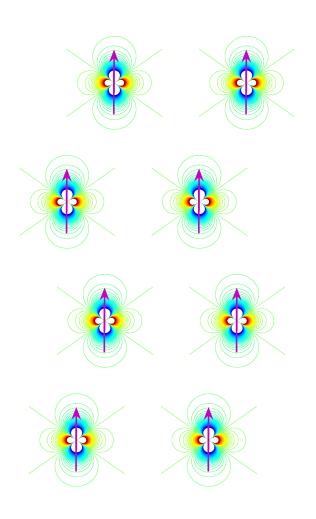
- 2. Experimental prospects possible realisations, critical temperature T_c
- 3. Model for the uniform 3D gas \widehat{H} , assumptions
- Quasiparticle (pair) excitations
 Anisotropic energy gap for pair breaking, gap nodes
- Collective excitations & superfluid component
 Hydrodynamics, anisotropic damping,
 unusual superfluid current response

Interparticle Potential





Uniform gas



- uniform 3D gas
- static external field (E or B)
 full polarisation
- single-species (spin polarised)
- short-range interaction (e.g. p-wave)
 negligible (Fermi exclusion)

(1) Motivation

BCS superfluidity

dipole-dipole potential

- LONG range interaction
- ANIsotropic
- always partly attractive
 BCS pairing if polarised
- Needs 1 spin component
- Energy gap has nodes
- Stability conditions nontrivial (Góral, Brewczyk, Rzążewski)

standard s-wave ↑↓ potential

- *SHORT* range interaction
- Isotropic
- arttractive or repulsive BCS pairing only if $a_s < 0$
- Needs 2 spin components
- Energy gap always $\neq 0$

Solid state analogue

- The node structure of the direction-dependent order parameter is similar to that of solid state and He phases, e.g.:
 - Polar phase of ³He.
 (Never experimentally realized)
 - Heavy-fermion superconductors like UPt₃.
 (Difficult to get pure system, many potential phases)
- Qualitatively similar behaviour expected.
- Dipole gas is a much "cleaner" system.
 - $-\widehat{H}$ well known
 - spin degrees of freedom can be removed.
- It is potentially better controllable.

(2) Prospects for superfluidity

Possible Physical Realisations

- Heteronuclear polar molecules
 - Several groups actively aiming to cool to ultracold T.
 e.g. Bigelow (Rochester), Grimm (Innsbruck), Doyle (Harvard),
 - Method 1: Photoassociaton from cold atomic gases
 - Method 2: Buffer gas cooling
- Magnetic atomic dipoles
 - e.g. ⁵³Cr (6 parallel spins in valence electron shell)
 - ultracold gases achieved, but dipole moment too small to be useful for BCS.
- Induce electric dipoles in atoms with strong E fields

Critical Temperature for BCS

standard ↑↓ gas:

$$T_c = 0.28 E_F \exp\left(-\frac{\pi}{2|a_s|k_F}\right)$$

Dipole gas:

M. Baranov et al, PRA 66, 013606 (2002)

$$T_c = 1.44 E_F \exp\left(-\frac{\pi}{2|a_D|k_F}\right)$$

 \implies *Effective* scattering length a_D :

$$a_D = -2m \left(\frac{d}{\pi \hbar}\right)^2$$

 T_c rises strongly with $a_D \propto md^2$

Candidates for BCS pairing

(large $|a_D|$ desirable)

Short-range interactions

• Two spin components. For example ^6Li : $a_s = -114 \text{ nm}$

Dipoles

Heteronuclear polar molecules

 $^{15}ND^3$: $a_D = -145$ nm

 $HCN : a_D = -740 \text{ nm}$

NaCs : $a_D \gtrsim -500$ nm

Magnetic atomic dipoles

⁵²Cr :
$$a_D = -0.5 \text{ nm}$$
 (far too weak)

Atoms with induced electric dipole

$$a_D \approx -1 \text{ to } -10 \text{ nm} \text{ (need } \approx 10^6 \text{ V/cm)}$$

(3) Model

Hamiltonian

$$\widehat{H} = \text{K.E.} + \frac{1}{2} \int d^3x d^3y \left\{ \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_x V_D(x-y) \widehat{\Psi}_y^{\dagger} \widehat{\Psi}_y \right\}$$

• $\widehat{\Psi}_x$ is the anihilating Fermi field operator at point x.

BCS Mean field theory: Postulate the quadratic effective Hamiltonian:

$$\begin{split} \widehat{H}_{\mathrm{eff}} &= \frac{1}{2} \int d^3x \, d^3y \, \Big\{ & \qquad \qquad \frac{\hbar^2}{m} \, \widehat{\Psi}_x^\dagger \, \nabla^2 \widehat{\Psi}_x \, \delta(x-y) & \qquad \textit{Kinetic} \\ & \qquad \qquad \Delta^*(x-y) \, \widehat{\Psi}_x \widehat{\Psi}_y - \Delta(x-y) \, \widehat{\Psi}_x^\dagger \widehat{\Psi}_y^\dagger & \qquad \textit{BCS} \\ & \qquad \qquad + W(x-y) \widehat{\Psi}_x^\dagger \widehat{\Psi}_y & \qquad \Big\} & \qquad \textit{Hartree} \end{split}$$

• With some "appropriate" $\Delta(x-y)$ and W(x-y)

Gap equation

Choose $\Delta(x-y)$ and W(x-y) to minimise the full Free energy

$$F = \langle \widehat{H} \rangle_{\mathrm{eff}} - \mu N - TS$$

when calculated with eigenstates of $\widehat{H}_{ ext{eff}}$.

Obtain:

$$\Delta(x - y) = V_D(x - y) \left\langle \widehat{\Psi}_x \widehat{\Psi}_y \right\rangle_{\text{eff}}$$

$$W(x - y) = -V_D(x - y) \left\langle \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_y \right\rangle_{\text{eff}}$$

 Δ , W and Ψ must be self-consistent.

Uniform gas

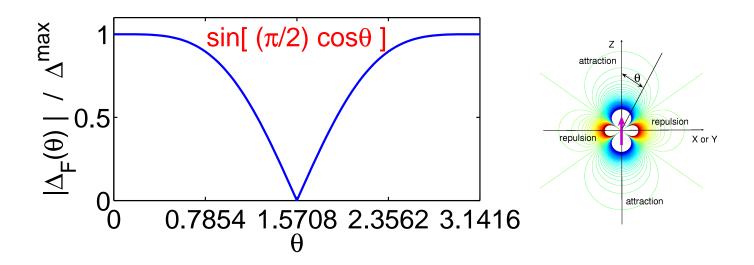
In k-space

$$\widehat{H}_{\text{eff}} = \frac{1}{2} \int d^3k \left\{ \left(\frac{\hbar^2 k^2}{m} - 2\mu - W(k) \right) \widehat{\Psi}_k^{\dagger} \widehat{\Psi}_k + \Delta^*(k) \widehat{\Psi}_k \widehat{\Psi}_{-k} - \Delta(k) \widehat{\Psi}_k^{\dagger} \widehat{\Psi}_{-k}^{\dagger} \right\}$$

- \bullet W(k) is a minor energy shift of Fermi surface \implies ignore it
- Order parameter $\Delta(k) \neq 0$ corresponds to BCS pairing of k and -k atoms.
- ullet Important difference to standard $\uparrow\downarrow$ gas: $\Delta(k)$ anisotropic and has nodes

(4) Quasiparticle (pair) excitations

BCS gap $\Delta_F(\theta)$ on Fermi surface

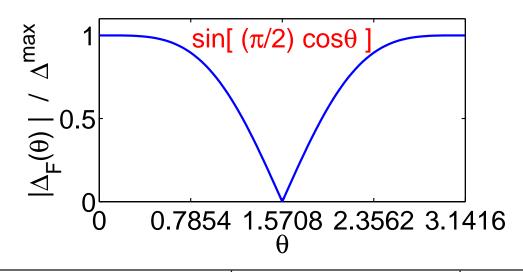


POLE in plane \perp to polarisation

Breaking a pair costs $2 \times E$, where $E(k) = \sqrt{(K.E. - E_F)^2 + \Delta^2} \ge |\Delta|$.

- ullet Dipoles: Easy to excite a pair in plane ot to polarisation because energy cost is small.
- † gas: Appreciable energy cost of excitations always.

Consequences of pole in Δ



	↑↓ gas	dipoles
dispersion	isotropic	anisotropic
damping of sound at $T=0$	0	nonzero
Specific heat at low T	$\sim \exp(-\Delta/T)$	$\sim T^2$
normal component at low T	$\sim \exp(-\Delta/T)$	polynomial in T

(5A) Collective excitations (technical)

Collective excitations (Sound)

Phase perturbations of the ground state order parameter

$$\Delta_0(x-y) \longrightarrow \Delta(x,y) = \Delta_0(x-y) e^{2i\phi(x,t)}$$

Assumptions:

- ullet Low energy ($\hbar\omega \ll \Delta_0^{
 m max}$)
- Phase perturbations only (amplitude perturbations are higher energy)
- Low $\omega \implies \text{long wavelength } (k \ll k_F)$ $\implies \text{insensitive to small-scale of } |x-y| \implies \phi \approx \phi(x \text{ only })$

• Weak perturbation \implies lowest order in ϕ

Consistency equation in k-space

$$-\frac{\phi_{\mathbf{k}}\Delta_{\mathbf{M}}^{0}\tau_{\mathbf{M}}^{0}}{2E_{\mathbf{M}}^{0}} = \frac{\phi_{\mathbf{k}}\Delta_{\mathbf{M}}^{0}}{4E_{\mathbf{m}}^{0}E_{\mathbf{n}}^{0}} \left\{ \left(\frac{\tau_{\mathbf{n}}^{0} - \tau_{\mathbf{m}}^{0}}{2}\right) \left[\frac{(E_{\mathbf{n}}^{0} + \varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0} - \varepsilon_{\mathbf{m}}) + \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega - E_{\mathbf{n}}^{0} + E_{\mathbf{m}}^{0} + i0} - \frac{(E_{\mathbf{n}}^{0} - \varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0} + \varepsilon_{\mathbf{m}}) + \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega + E_{\mathbf{n}}^{0} - E_{\mathbf{m}}^{0} + i0} \right] + \tau_{\mathbf{n}}^{0} \left[\frac{(E_{\mathbf{n}}^{0} + \varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0} + \varepsilon_{\mathbf{m}}) - \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega - E_{\mathbf{n}}^{0} - E_{\mathbf{m}}^{0} + i0}\right] - \tau_{\mathbf{m}}^{0} \left[\frac{(E_{\mathbf{n}}^{0} - \varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0} - \varepsilon_{\mathbf{m}}) - \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega + E_{\mathbf{n}}^{0} + E_{\mathbf{m}}^{0} + i0}\right] \right\}.$$

where
$$\mathbf{n} = \mathbf{M} + \mathbf{k}/2$$
, $\mathbf{m} = -\mathbf{M} + \mathbf{k}/2$, $\varepsilon_{\mathbf{k}} = \hbar^2 k^2/2m - E_F$, $E_{\mathbf{k}}^0 = \sqrt{\varepsilon_{\mathbf{k}}^2 + (\Delta_{\mathbf{k}}^0)^2}$, and $\tau_{\mathbf{k}}^0 = \tanh(E_{\mathbf{k}}^0/2T)$.

- Landau processes ($E + \omega \leftrightarrow E'$ 1st line) and Beliaev processes ($E + E' \leftrightarrow \omega$ 2nd line).
- Well, it's kind of long:)
- There's also a practical PROBLEM . . .

Practical problem

- For any long wavelength \mathbf{k} of $\phi_{\mathbf{k}}$, there are many solutions with different ω , parametrised by the wavenumber $\mathbf{M} \sim k_F$ from $\Delta_{\mathbf{M}}^0$.
- ullet Experimentalists can control/perturb/see long wavelengths ${f k}$, but not ${f M}$
- Presumably, if you perturb system externally with wavenumber k the result will be some weighted average over all M solutions.
- But what are the weights?

The solution — an effective Lagrangian

- 1. In the action integral formulation of quantum mechanics write down an action $S(\Delta, \Psi)$ so that its saddle point $\partial S/\partial \{\Delta, \Psi\} = 0$ gives the full BCS theory.
- 2. Substitute perturbation $\Delta \to \Delta_0 e^{2i\phi}$ to give $S(\Delta_0, \phi, \Psi)$.
- 3. An effective action $S_{\rm eff}$ for the small perturbation ϕ is obtained by integrating over the irrelevant variables Ψ .
- 4. get $S_{\rm eff}(\phi, \Delta_0, \Psi_0)$, where Ψ_0 is the unperturbed ground state wavefunction.
- 5. Consistency equation for ϕ is given by the saddle-point solution $\partial S_{\rm eff}/\partial \phi = 0$.
- 6. Weights turn out to be $\Delta_{\mathbf{M}}^{0}$.

(5B) Collective excitations (results)

T=0 Superfluid

Find Bogoliubov sound, same as for the standard ↑↓BCS gas

$$\omega = \left(\frac{v_F}{\sqrt{3}}\right) k$$

To lowest order in $\omega \ll E_F/\hbar$ and $k \ll k_F$.

Not too surprising from hydrodynamics ...

T=0 Hydrodynamics

Relies on the hydrodynamic Hamiltonian for superfluid velocity v_s

$$H \approx \int d^3x \left\{ \frac{1}{2} m \rho v_s(x)^2 + U(\rho) \right\}$$

and the continuity and current equations

$$\vec{v}_s = \frac{\vec{J}_s(x)}{\rho} = \frac{\hbar}{m} \rho \ \vec{\nabla} \phi(x)$$
 and $\vec{\nabla} \cdot \vec{J}_s(x) = -\frac{\partial \rho}{\partial t}$

which are found to be the same for dipoles and short-range gases to order $\mathcal{O}(\Delta^{\max}/E_F)$.

Since $U(\rho)$ arises overwhelmingly from the filled Fermi sphere,

→ interaction details have minor effect locally

(Can be significant in a trap, though [Góral, Brewczyk, Rzążewski, Englert])

Beyond hydrodynamics

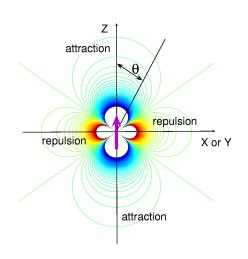
T=0 Anisotropic damping of sound

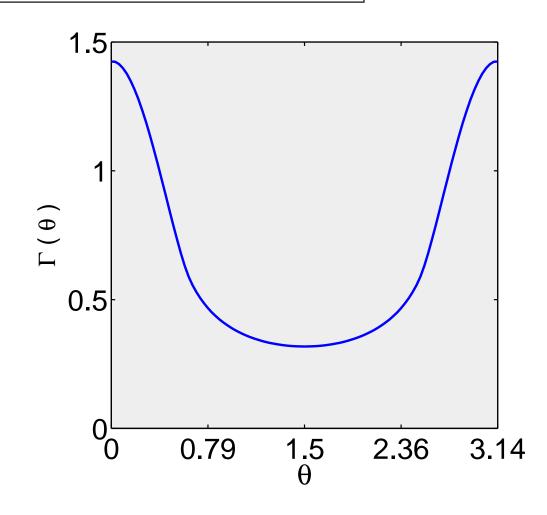
$$\omega = \left(\frac{v_F}{\sqrt{3}}\right) k \left\{ 1 - i k \left(\frac{\hbar v_F}{\sqrt{3} \Delta_{\text{max}}}\right) \Gamma(\theta) \right\}$$

absent for standard ↑↓ gas

Beliaev process:

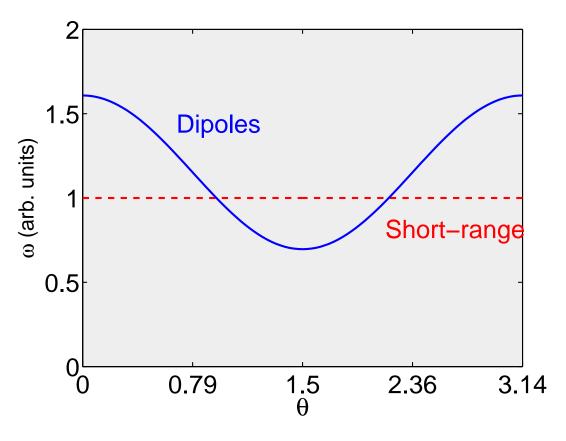
collective \implies 2×quasipart.

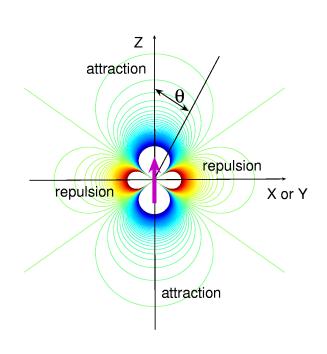




$T \approx T_c$ behaviour

$$\omega = -i\left(\frac{7\zeta(3)}{6\pi^3}\right)\left(\frac{\hbar v_F^2}{T_c}\right) k^2\left(1 + \frac{3}{2\pi^2}(1 + 3\cos 2\theta)\right)$$





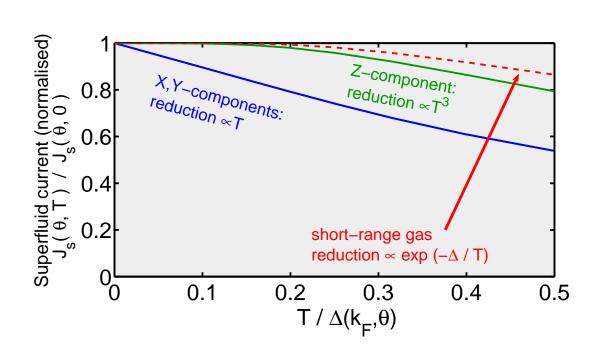
- Purely diffusive (as for standard short-range ↑↓gas)
- Anisotropic (differently to ↑↓gas)

Veering superfluid current $0 < T < T_c$

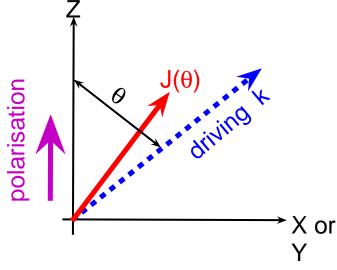
ullet Current response J_s to an external phase perturbation of the gap

$$\Delta(x, y, t) = \Delta_0(x - y)e^{2i\phi(x, t)}$$

• Driving frequency ω , wave-vector k, in direction θ .



Veering current



Direction-dependent superfluid

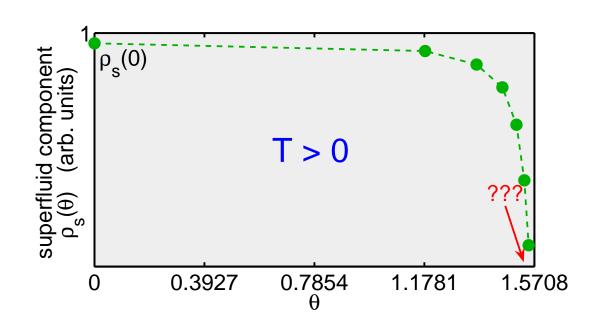
(preliminary and tentative)

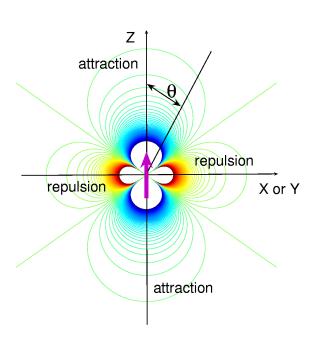
Can define direction-dependent "normal" and "superfluid" components

$$\rho = \rho_n(\theta) + \rho_s(\theta)$$

so that the usual current equation applies:

$$\vec{J}_s = \frac{\hbar}{m} \rho_s \vec{\nabla} \phi$$





Related avenues of research

- Other low energy modes e.g. perturbation of the polarisation axis.
- What's going on with the current near $\theta = \pi/2$.
- Are the Δ -amplitude modulation modes low-energy near $\theta = \pi/2$?
- Are there interesting low energy perturbations of the discarded Hartree field W(x,y)?