First-principles simulations of Bose gasses using stochastic gauges

P. Deuar, P. D. Drummond and K. V. Kheruntsyan
Department of Physics, University of Queensland

March 10, 2009

- Typeset by FoilTEX -

Two basic types of simulations:
Dynamics:

$$
\dot{\hat{\rho}}=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}]
$$

Thermal equilibrium:

$$
\dot{\hat{\rho}}_{u}=-\frac{1}{2}\left[\hat{H}-\hbar \mu \hat{N} \quad, \quad \hat{\rho}_{u}\right]_{+}
$$

$$
\text { with } t=1 /\left(\hbar k_{B} T\right)
$$

Suppose we have up to
N particles/energy levels in M orbitals/modes.

Direct approach intractable for any substantial number of particles/modes: Have to solve

$$
\propto N^{M} \quad \text { or } \quad \propto M^{N}
$$

equations.

Gauge P representation

Expand state in coherent state basis
$\hat{\rho}_{u}=\int P(\vec{\alpha}, \vec{\beta}, \theta) \frac{\left|\overrightarrow{\boldsymbol{\alpha}}><\overrightarrow{\boldsymbol{\beta}}^{*}\right|}{<\overrightarrow{\boldsymbol{\beta}} * \mid \overrightarrow{\boldsymbol{\alpha}}>} \boldsymbol{e}^{\boldsymbol{\theta}}{d^{2 M} \vec{\alpha} d^{2 M} \vec{\beta} d^{2} \theta}$

- Occupation of each mode is distributed like in a coherent state.
- Each mode has two coherent state amplitudes α and β.
- Also an overall phase and weight θ
- Density matrix with N^{M} complex elements maps to a distribution over just $2 M+1$ complex variables $\theta, \vec{\alpha}, \vec{\beta}$.
- In principle, state is described to desired accuracy by generating a sufficient number of samples (each only of size $2 M+1$) from this distribution. (PRIMARY MOTIVATION!)

All observables can be calculated

$$
\begin{aligned}
\langle\hat{A}\rangle= & \operatorname{Tr}\left[\hat{\rho}_{u} \hat{A}\right] \\
& =\int P e^{\theta} \frac{\operatorname{Tr}\left[\hat{\rho}_{u}\right]}{\left\langle\vec{\beta}^{*}\right| \hat{A}|\vec{\alpha}\rangle} \\
\left\langle\vec{\beta}^{*} \mid \vec{\alpha}\right\rangle & / \int P e^{\theta} \\
& =\sum_{i} e^{\theta} F_{A}\left(\vec{\alpha}_{i}, \vec{\beta}_{i}\right)
\end{aligned} / \sum_{i} e^{\theta}
$$

- Each observable has corresponding function F_{A} of the coherent amplitudes.
- Expectation values are weighted $\left(e^{\theta}\right)$ averages of F_{A} over trajectories.
- One simulation gives information about all observables

How to sample the variables

- Start with easy-to-sample state.
e.g. in thermodynamics, state at $T \rightarrow \infty$ (i.e. $t=1 /\left(k_{B} \hbar T\right) \rightarrow 0$) is simple.

$$
\hat{\rho}_{u}=\exp \left\{-\hat{N} \lim _{T \rightarrow \infty}\left[\mu(T) / k_{B} T\right]\right\}
$$

- convert master equation for $\hat{\rho}$ (involving $\hat{a}, \hat{a}^{\dagger}$), to Fokker-Planck equation for distribution P (involving variables $\vec{\alpha}, \vec{\beta}, \theta$ and their derivatives.) Use

$$
\begin{aligned}
\hat{a}^{\dagger} \mid \alpha> & \left.=\frac{\partial}{\partial \alpha} \right\rvert\, \alpha> \\
\hat{a} \mid \alpha> & =\alpha \mid \alpha> \\
0 & =\left[\frac{\partial}{\partial \theta}-1\right] e^{\theta}
\end{aligned}
$$

- Then convert to stochastic equations for variables $\vec{\alpha}, \vec{\beta}, \theta$.
- Randomly sample initial state
- evolve variables.

1D Interacting Bose gas

- Consider a thermal calculation - temperature drops as simulation "time" advances.
- Let the particle number be variable - needed for a continuously loaded system e.g. atom laser.
- Only a few exact results known, and only in the homogenous (un-trapped) case:
Density, total and potential energy, pressure, $g_{2}(0)$.
- Would like to obtain others:

Momentum distribution, second order correlation $g_{2}(x)$, and anything at all for trapped gas.

- Expand state on a lattice (size M) of free momentum modes k.
- Variables: coherent state amplitudes $\tilde{\alpha}(k)$ and their inverse fourier transforms $\alpha(x)$.
- Variables: off-diagonal partners $\tilde{\beta}(k)$. Mean number of particles $\tilde{n}(k)=\tilde{\alpha} \tilde{\beta}^{*}$
- Variable: complex phase θ.

Kinetic Energy

$$
\hat{H}+=\frac{\hbar^{2}}{2 m} \int d x \nabla^{2} \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x)
$$

$\hat{\Psi}^{\dagger}(x)$ creates a boson at x.

$$
\begin{aligned}
\dot{\tilde{\alpha}}(k) & +=-k^{2} \tilde{\alpha}(k) / 2 \\
\dot{\tilde{\beta}}(k) & +=-k^{2} \tilde{\beta}(k) / 2 \\
\dot{\theta} & +=-k^{2} \tilde{n}(k)
\end{aligned}
$$

Interactions

$$
\hat{H}+=\chi \int d x \hat{\Psi}^{\dagger 2}(x) \hat{\Psi}^{2}(x)
$$

- Local interactions of strength χ.
- Correct as long as scattering length $a_{o} \ll \max [k]$.

$$
\begin{aligned}
\dot{\alpha}(x) & +=-\alpha(x)\left[\chi n(x)-i \sqrt{\chi /} \xi_{1}(t)\right] / \Delta \\
\dot{\beta}(x) & +=-\beta(x)\left[\chi n(x)^{*}+i \sqrt{\chi /} \xi_{2}(t)\right] / \Delta \\
\dot{\theta} & +=-\chi n(x)^{2} / \Delta
\end{aligned}
$$

- Gröss-Pitaevskii equations with added noise.
- Lattice spacing Δ in x.
- Gaussian noises $\xi_{1,2}(t)$ of variance $\sqrt{1 / \delta t \Delta}$
- There is an instability when $\operatorname{Re}[\mathrm{n}]<0$, which must be removed by using gauges

Stochastic Gauges

$$
\hat{H}+=0 \times \int d x G_{1}(\alpha(x), \beta(x))+G_{2}(\alpha(x), \beta(x))
$$

- Due to $[\partial / \partial \theta-1] e^{\theta}$, certain modifications of the equations do not change the physical system that is being simulated!
- Infinite family of ARBITRARY functions $G_{1,2}(\alpha, \beta)$ which can be inserted into equations in this way.

$$
\begin{aligned}
\dot{\alpha}(x) & +=-i \alpha(x) G_{1} \\
\dot{\alpha}(x) & +=-i \beta(x) G_{2} \\
\dot{\theta} & +=\sqrt{\chi / \Delta} \sum_{i=\{1,2\}}-G_{i}^{2} / 2+G_{i} \xi_{i}(t)
\end{aligned}
$$

- Appropriate choice of gauge functions G stabilizes the equations. e.g. $G_{1}=G_{2}=$ $i[n(x)-\mid n(x)] \chi / \delta$
- The price you pay is additional variation in the weight e^{θ}.

Chemical Potential

$$
-\hbar \mu(T) \hat{N}=\int d x \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x)
$$

$$
\begin{aligned}
\dot{\alpha}(x) & +=\mu_{e} \alpha(x) / 2 \\
\dot{\alpha}(x) & +=\mu_{e} \beta(x) / 2 \\
\dot{\theta} & +=\mu_{e} n(x)
\end{aligned}
$$

"Effective" chemical potential $\mu_{e}=\frac{\partial}{\partial t}(t \mu)$.

External Trap Potential

$$
\hat{H}+=\int d x V(x) \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x)
$$

Strength $V(x)$

$$
\begin{aligned}
\dot{\alpha}(x) & +=-V(x) \alpha(x) / 2 \\
\dot{\alpha}(x) & +=-V(x) \beta(x) / 2 \\
\dot{\theta} & +=-V(x) n(x)
\end{aligned}
$$

Parameters

An un-trapped interacting 1D bose gas has two important parameters.

Interaction strength

$$
\gamma=\chi / \rho
$$

When $\gamma \rightarrow 0$ Non-interacting gas
When $\gamma \rightarrow \infty$ Tonks (hard sphere) gas

Relative temperature

$$
\tau=\frac{T}{T_{d}}=\frac{T}{4 \pi \rho^{2}}
$$

T_{d} is the quantum degeneracy temperature. When $\tau=1$,
Interparticle separation \approx de Broglie wavelength.
In 3D, critical temperature $T_{c} \approx T_{d}$.

momentum density

$\gamma=\tau=1$ at $t=1$
for $t<0.25, \tau \approx 10^{6}, \gamma$ rises from 0 to ≈ 600

$$
\text { for } 0.25<t<1, \tau \text { and } \gamma \text { decrease to } 1
$$

for $t>1, \tau$ is \approx constant, γ increases to ≈ 1.12

momentum density at $\gamma=\tau=1$

for $t<0.25, \tau \approx 10^{6}, \gamma$ rises from 0 to ≈ 600

$$
\text { for } 0.25<t<1, \tau \text { and } \gamma \text { decrease to } 1
$$

for $t>1, \tau$ is \approx constant, γ increases to ≈ 1.12 12

Comparison to exact results

Crosses indicate Yang\&yang solution for $t<0.25, \tau \approx 10^{6}, \gamma$ rises from 0 to ≈ 600 for $0.25<t<1, \tau$ and γ decrease to 1
for $t>1, \tau$ is \approx constant, γ increases to ≈ 1.12 13

Potential energy fraction

for $t<0.25, \tau \approx 10^{6}, \gamma$ rises from 0 to ≈ 600

$$
\text { for } 0.25<t<1, \tau \text { and } \gamma \text { decrease to } 1
$$

for $t>1, \tau$ is \approx constant, γ increases to ≈ 1.12 14

second order correlation function

At $t=0.375, \gamma \approx 165, \tau \approx 5800$.
At $t=1, \gamma \approx 42, \tau \approx 139$.
Dashed lines indicate non-interacting gas.
$g_{2}(0)=2$: Thermal state
$g_{2}(0)=1:$ Coherent state
$g_{2}(0)<1$: Anti-bunching5

second order correlation function

for $t<0.25, \tau \approx 10^{7}, \gamma$ rises from 0 to ≈ 5000 for $0.25<t<1, \tau$ and γ decrease to 10
for $t>1, \tau$ is \approx constant, γ increases to ≈ 11 16

Some difficulties

- Weights $e^{\operatorname{Re}[\theta]}$ evolve deterministically and exponentially, as a function of n.
This can lead to the most significant trajectories not being sampled properly.

This is particularly acute when System size (actual length) or interaction is big.

- Partial solution: Can try to a-priori analytically predict the weight evolution - with varying success.
- One would like more of a "black box".

(Basic) Simulation Range

Metropolis Algorithm Sampling

- Previously sampled distribution $P(\vec{\alpha}, \vec{\beta}, \theta)$ using the the noises $\xi_{i}(x, t)$, random choice of initial state $\xi^{0}(x)$, and time evolution.
- Now try to sample the distribution

$$
\Pi=e^{\operatorname{Re}[\theta]} P(\vec{\alpha}, \vec{\beta}, \theta)
$$

using the noises, time evolution and Metropolis rejection algorithm at a chosen temperature T.

- The value of Π can actually be worked out knowing only:

1. the value of all the noises (hence their probability),
2. and the value of the weight which is calculatedby using those noises to evolve the initial state and obtain θ.

The algorithm

- initialize noises to some value $\xi_{0}(x, t)$
- choose a transition rule for the noises between iterations $T=\operatorname{Prob}\left(\left(\xi_{n} \rightarrow \xi^{\prime}\right)\right.$.
- sample one new noise $\xi^{\prime}(x, t)$ according to transition rule, leave rest as is $\left(\xi^{\prime}=\xi_{n}\right)$.
- calculate ratio of probabilities

$$
q=\frac{\left.\Pi\left(\xi^{\prime}\right)\right) T\left(\xi^{\prime} \rightarrow \xi_{n}(x, t)\right)}{\Pi\left(\xi_{n}\right) T\left(\xi_{n}(x, t) \rightarrow \xi^{\prime}\right)}
$$

- chance of accepting the new noise $\left(\xi_{n+1}=\xi^{\prime}\right)$ is $\min [1, q]$.
- iterate through all noises in simulation.
- after iterating through all noises, save current variables as a sample of the density matrix (at a range of temperatures). Repeat.
- calculate correlation time κ between samples.
- throw away first κ states, as being out of equilibrium.

Cold weakly-interacting gas

Number of samples required for a given accuracy

$$
\begin{gathered}
\propto \sigma^{2} \\
\gamma=\tau=0.1 \text { at } t=0.1
\end{gathered}
$$

Lattice of potential wells of middling strength

Same Temperature and chemical potential as for previous $\gamma=\tau=1$ calculations.

Energy fractions

Same Temperature and chemical potential as for previous $\gamma=\tau=1$ calculations. Same external potential lattice as on previous plot.

comparison to basic gauge calculation

- metropolis method takes $O(M S)$ longer to get a sample - have to perform evolution for each noise tried. [S is the number of time steps].
- However, Metropolis method is much more of a "black box".
- Excessive noise in $\operatorname{Im}[\theta]$ can still be a problem, especially for a Tonks gas. May be solvable by judicious choice of gauge.

Possible advantages compared to a path-integral monte-carlo calculation

- Standard monte-carlo approach, varying particle positions, does not allow for varying particle number.
- A path Integral, varying coherent amplitudes would have calculation time for one sample $\propto(S M) M \log M$, but correlation time between samples τ often $O\left(S^{2}\right)$.
- Gauge calculation with Metropolis rejection: calculation time for one sample $\propto S(S M) M \log M$ but correlation time between samples τ appears to be typically $O(1)$.
- Gauge calculations give a sample of the actual density matrix - Allows subsequent dynamical evolution, and calculation of all desired moments.
- Gauge calculations give results for a range of temperatures (often the entire range from T upwards).

Some conclusions

- Can calculate a wide variety of properties of nonlinear Bose gases at thermal equilibrium, from first principles.
- Simulation scales polynomially with number of modes.
- For a wide variety of parameters, simulation does not require a lot of additional analytic work or optimisation.
- Method readily scalable to 2 or 3 dimensions.
- A Metropolis sampling procedure gives improved accuracy in some situations.
- Further improvement might be obtained by a more cunning choice of gauge, or sampling procedure.

Thankyou

