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Two basic types of simulations:

Dynamics:

˙̂ρ = −
i

h̄

[

Ĥ , ρ̂
]

Thermal equilibrium:

˙̂ρu = −
1

2

[

Ĥ − h̄µN̂ , ρ̂u

]

+

with t = 1/(h̄kBT )

Suppose we have up to

N particles/energy levels
in M orbitals/modes.

Direct approach intractable for any substantial
number of particles/modes: Have to solve

∝ NM or ∝ MN

equations.
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Gauge P representation

Expand state in coherent state basis

ρ̂u =

∫

P (−→α ,
−→
β , θ)

|−→α ><
−→
β ∗|

<
−→
β ∗|−→α >

eθ
d2M−→α d2M−→

β d2θ

• Occupation of each mode is distributed like in a
coherent state.

• Each mode has two coherent state amplitudes α
and β.

• Also an overall phase and weight θ

• Density matrix with NM complex elements maps
to a distribution over just 2M + 1 complex

variables θ,−→α ,
−→
β .

• In principle, state is described to desired accuracy
by generating a sufficient number of samples
(each only of size 2M + 1) from this distribution.
(PRIMARY MOTIVATION!)
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All observables can be calculated

< Â >= Tr
[

ρ̂uÂ
]

/ Tr [ρ̂u]

=

∫

Peθ <
−→
β ∗|Â|−→α >

<
−→
β ∗|−→α >

/
∫

Peθ

=
∑

i

eθ
FA(−→α i,

−→
β i)

/

∑

i

eθ

• Each observable has corresponding function FA of
the coherent amplitudes.

• Expectation values are weighted (eθ) averages of
FA over trajectories.

• One simulation gives information about all
observables
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How to sample the variables

• Start with easy-to-sample state.
e.g. in thermodynamics, state at T → ∞
(i.e. t = 1/(kBh̄T ) → 0) is simple.

ρ̂u = exp
{

−N̂ lim
T→∞

[µ(T )/kBT ]
}

• convert master equation for ρ̂ (involving â, â†),
to Fokker-Planck equation for distribution P

(involving variables −→α ,
−→
β , θ and their derivatives.)

Use

â†|α > =
∂

∂α
|α >

â|α > = α|α >

0 =

[

∂

∂θ
− 1

]

eθ

• Then convert to stochastic equations for variables
−→α ,

−→
β , θ.

• Randomly sample initial state

• evolve variables.
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1D Interacting Bose gas

• Consider a thermal calculation — temperature
drops as simulation ”time” advances.

• Let the particle number be variable — needed for
a continuously loaded system e.g. atom laser.

• Only a few exact results known, and only in the
homogenous (un-trapped) case:
Density, total and potential energy, pressure, g2(0).

• Would like to obtain others:
Momentum distribution, second order correlation
g2(x), and anything at all for trapped gas.

• Expand state on a lattice (size M) of free
momentum modes k.

• Variables: coherent state amplitudes α̃(k)
and their inverse fourier transforms α(x).

• Variables: off-diagonal partners β̃(k).
Mean number of particles ñ(k) = α̃β̃∗

• Variable: complex phase θ.



Kinetic Energy

Ĥ+=
h̄2

2m

∫

dx ∇2Ψ̂†(x)Ψ̂(x)

Ψ̂†(x) creates a boson at x.

˙̃α(k) += −k2α̃(k)/2

˙̃
β(k) += −k2β̃(k)/2

θ̇ += −k2ñ(k)
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Interactions

Ĥ+= χ

∫

dx Ψ̂†2(x)Ψ̂2(x)

• Local interactions of strength χ.

• Correct as long as scattering length ao ≪ max[k].

α̇(x) += −α(x)
[

χn(x) − i
√

χ/ ξ1(t)
]

/∆

β̇(x) += −β(x)
[

χn(x)∗ + i
√

χ/ ξ2(t)
]

/∆

θ̇ += −χn(x)2/∆

• Gröss-Pitaevskii equations with added noise.

• Lattice spacing ∆ in x.

• Gaussian noises ξ1,2(t) of variance
√

1/δt∆

• There is an instability when Re[n] < 0, which
must be removed by using gauges
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Stochastic Gauges

Ĥ+= 0 ×

∫

dxG1(α(x), β(x)) + G2(α(x), β(x))

• Due to [∂/∂θ − 1]eθ, certain modifications of the
equations do not change the physical system that
is being simulated!

• Infinite family of ARBITRARY functions
G1,2(α, β) which can be inserted into equations
in this way.

α̇(x) += −iα(x)G1

α̇(x) += −iβ(x)G2

θ̇ +=
√

χ/∆
∑

i={1,2}

−G2
i/2 + Giξi(t)

• Appropriate choice of gauge functions G
stabilizes the equations. e.g. G1 = G2 =
i [n(x) − |n(x)]χ/δ

• The price you pay is additional variation in the
weight eθ.
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Chemical Potential

−h̄µ(T )N̂ =

∫

dx Ψ̂†(x)Ψ̂(x)

α̇(x) += µeα(x)/2

α̇(x) += µeβ(x)/2

θ̇ += µen(x)

”Effective” chemical potential µe = ∂
∂t

(tµ).

External Trap Potential

Ĥ+=

∫

dx V (x)Ψ̂†(x)Ψ̂(x)

Strength V (x)

α̇(x) += −V (x)α(x)/2

α̇(x) += −V (x)β(x)/2

θ̇ += −V (x)n(x)
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Parameters

An un-trapped interacting 1D bose gas has two
important parameters.

Interaction strength

γ = χ/ρ

When γ → 0 Non-interacting gas
When γ → ∞ Tonks (hard sphere) gas

Relative temperature

τ =
T

Td

=
T

4πρ2

Td is the quantum degeneracy temperature.
When τ = 1,
Interparticle separation ≈ de Broglie wavelength.
In 3D, critical temperature Tc ≈ Td.
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momentum density
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momentum density at γ = τ = 1
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Comparison to exact results
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Potential energy fraction
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second order correlation function
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second order correlation function
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Some difficulties

• Weights eRe[θ] evolve deterministically and
exponentially, as a function of n.
This can lead to the most significant trajectories
not being sampled properly.

Weight

Ω = e
θ
 

Probablilty
     P(n) 

Importance 
 in moment 
calculation

   Ω P(n)

This is particularly acute when System size
(actual length) or interaction is big.

• Partial solution: Can try to a-priori analytically
predict the weight evolution
— with varying success.

• One would like more of a ”black box”.
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(Basic) Simulation Range
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Metropolis Algorithm Sampling

• Previously sampled distribution P (−→α ,
−→
β , θ) using

the the noises ξi(x, t), random choice of initial
state ξ0(x), and time evolution.

• Now try to sample the distribution

Π = eRe[θ]P (−→α ,
−→
β , θ)

using the noises, time evolution and Metropolis
rejection algorithm at a chosen temperature T .

• The value of Π can actually be worked out
knowing only:

1. the value of all the noises (hence their
probability),

2. and the value of the weight which is
calculatedby using those noises to evolve the
initial state and obtain θ.
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The algorithm

• initialize noises to some value ξ0(x, t)

• choose a transition rule for the noises between
iterations T = Prob((ξn → ξ′).

• sample one new noise ξ′(x, t) according to
transition rule, leave rest as is (ξ′ = ξn).

• calculate ratio of probabilities

q =
Π(ξ′))T (ξ′ → ξn(x, t))

Π(ξn)T (ξn(x, t) → ξ′)

• chance of accepting the new noise (ξn+1 = ξ′) is
min[1, q].

• iterate through all noises in simulation.

• after iterating through all noises, save current
variables as a sample of the density matrix (at a
range of temperatures). Repeat.

• calculate correlation time κ between samples.

• throw away first κ states, as being out of
equilibrium.



Cold weakly-interacting gas
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Lattice of potential wells of
middling strength
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Energy fractions
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comparison to basic gauge calculation

• metropolis method takes O(MS) longer to get a
sample - have to perform evolution for each noise
tried. [S is the number of time steps].

• However, Metropolis method is much more of a
”black box”.

• Excessive noise in Im[θ] can still be a problem,
especially for a Tonks gas. May be solvable by
judicious choice of gauge.
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Possible advantages compared to a
path-integral monte-carlo calculation

• Standard monte-carlo approach, varying particle
positions, does not allow for varying particle
number.

• A path Integral, varying coherent amplitudes
would have calculation time for one sample
∝ (SM)M log M , but correlation time between
samples τ often O(S2).

• Gauge calculation with Metropolis rejection:
calculation time for one sample ∝ S(SM)M log M
but correlation time between samples τ appears
to be typically O(1).

• Gauge calculations give a sample of the actual
density matrix — Allows subsequent dynamical
evolution, and calculation of all desired moments.

• Gauge calculations give results for a range of
temperatures (often the entire range from T
upwards).
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Some conclusions

• Can calculate a wide variety of properties of
nonlinear Bose gases at thermal equilibrium, from
first principles.

• Simulation scales polynomially with number of
modes.

• For a wide variety of parameters, simulation does
not require a lot of additional analytic work or
optimisation.

• Method readily scalable to 2 or 3 dimensions.

• A Metropolis sampling procedure gives improved
accuracy in some situations.

• Further improvement might be obtained by a more
cunning choice of gauge, or sampling procedure.
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Thankyou
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