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• A many body simulation with no

semiclassical approximations can allow or

improve the investigation of quantum-

mechanical effects involving many modes.

e.g. correlations, quantum phase

changes, fluctuations, non-equilibrium

behaviour.

• Many body-simulations are notoriously

difficult because of the rapid growth of

Hilbert space with number of bodies.

• “Can a quantum system be

probabilistically simulated by a classical

universal computer? . . . If you take the

computer to be the classical kind . . . the

answer is certainly, No!” (Richard

P. Feynman Simulating Physics with

Computers)
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Quantum model of a BEC

Neutral atoms in d = 1, 2,or3 dimensions:

Ĥ =

∫

dd
x

[

h̄2

2m
∇Ψ̂†(x)∇Ψ̂(x)

Kinetic Energy, mass m

+V (x)Ψ̂†(x)Ψ̂(x)

Trapping Potential V (x)

+Ψ̂†(x)R̂(x) + Ψ̂(x)R̂†(x)

Loss at Boundaries at rate ∝Tr[R(x)]

+
1

2

∫

dd
yU(x − y)Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)

Boson-Boson Interaction U(x − y).

]
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Efficiency of Numerical
Methods

For M modes, E significant eigenstates

per mode.

Number of

Method Complex Stochastic?

Equations

Direct

Solution of (EM)2 No

Denity Matrix

Quantum EM Yes

Trajectories

Positive P 2M Yes

representation

Hermitian P 2M + 1 Yes

representation

The stochastic methods require averaging

over a number of realisations to obtain

physical quantities.

The P distribution methods are clearly

the only practical methods for many modes.
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P representations

• Expand density matrix as a weighted sum

of coherent-state-like kernels

ρ̂ =

∫

P (~α, ~β)Λ̂(~α, ~β) d2M~α d2M ~β

with the weights P .

• Using identities like

â†||α >< β|| =
∂

∂α
||α >< β||

We convert Master equation (in â, â†) to

equation in ( ∂
∂α

||α > type of terms)

• Integrate by parts, discarding boundary

effects to obain an equivalent Fokker-

Planck equation for P (α, β,Ω).

• The evolution of P can be simulated

efficiently by converting the Fokker-

Planck equation to stochastic (i.e. noisy)

equations in the variables like α.
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Positive P representation

• Off-diagonal coherent state kernel.

Λ̂ = ||~α >< ~β∗||e−~α·~β

• Observeables? e.g. Nm: Number of

particles in mode m

< Nm >=< Re[αβ] >trajectories

• Widely used.

• Can run into technical problems for low

occupation numbers (see below).
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Hermitian P representation

• In-built weight and phase factor Ω.

Λ̂ = ||~α >< ~β∗||eΩ−~α·~β+||~β >< ~α∗||eΩ
∗−~α∗·~β∗

• Fixes existing problems in
positive P distribution. (see
below)

• Can also be used to calculate

temperature-dependent equilibrium

states.

• Observeables? e.g. Nm: Number of

particles in mode m

< Nm >=
< Re[αβeΩ] >trajectories

< Re[eΩ] >trajectories
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Stochastic Gauges

• Hermitian P representation allows

introduction of arbitrary functions

(GAUGES)into the equations for ~α, ~β.

• To introduce gauges, note that there are

some identities like

[

∂

∂Ω
− 1

]

||α >< β||eΩ−αβ = 0

So we can add any multiple of them

to the master equation without changing

anything.

• The multiple can be an arbitrary function,

and will appear in the resulting stochastic

equations as a quantity we can tailor to

our needs.
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Positive P simulations

• Evaporative Cooling of a BEC was
successfully simulated

[P. D. Drummond and J. F. Corney,

Phys. Rev. A 60, R2661 (1999)]

• up to 10,000 atoms simulated.

• Centre-of -mass motion seen. This is in

contradiction with usual assumptions in

much of semi-classical BEC theory, but is

seen in experiments.

• Evidence of vortices seen.

• Positive P method encounters signal-to-

noise ratio problems after the time of

condensation.
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Problems with Previous
calculations

• Most modes have a small ooccupation

number, therefore very nonclassical

behaviour.

• Positive P equations have the same form

as semiclassical equations, but with noise

added.

• At small occupations signal-to-noise

ratio becomes smalll, requiring many

trajectories.

• For small occupations, systematic errors

may occur for very underdamped systems

(As it happens, BECs have very low

damping).

• Hermitian P representation can be used

to fix these matters.
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One-mode analogues

• The problems at small occupation

numbers are already present in a one-

mode calculation.

• Fiding a way to overcome the large noise

and discrepancy problems for one mode,

readily generalises to the many mode

case.

• Problems in both cases due to only the

boson-boson interaction.
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DYNAMICAL
SIMULATIONS

Master Equation:

∂ρ̂

∂t
= − i

h̄

[

Ĥ, ρ̂
]

+ L̂ {ρ̂}

Form of nonlinear terms (one mode):

∂ρ̂

∂t
= −iU

h̄

[

(â†(x)â(x))2, ρ̂
]

+ . . .

Form of Positive P equations:

∂α

∂t
= −2iαUαβ + (1 − i)

√
Uαξ(t) + . . .
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Problem at low occupation numbers:

Extremely inefficient sampling
of distribution by the simulated
trajectories.

After a time, some trajectories develop

unstable exponential behaviour. The largest

of these is so much larger than all others,

that it dominates any averages performed to

evaluate observeables, leading to an average

over effectively only that one trajectory.

The rest of the trajectories are wasted.

The nature of the problem is such that

increasing the number of trajectories does

not help, only changes which particular one

is dominant.

Solution:

Introduce appropriate gauges into the α,

β, (and the new Ω) equations, which remove

the instability responsible for sampling

breakdown.
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Comparison of the spread of the variable

α for the positive P, and a low sampling error

gauge in the hermitian P representation.

The scale is logarithmic.

Initial coherent state, U = 1, t = 0.6. Note

the small number of very large α values in

the Positive P simulation which dominate

any calculated averages, making the bulk of

the trajectories a waste of time to calculate.

10, 000 trajectories shown.
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Comparison of the variable α for the positive

P and gauge hermitian P calculation after

t = 0.6. 10, 000 trajectories shown.
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Mean field   
  Theory 

Comparison of simulations of the quadrature

Ŷ = 1

2i
(â − â†) for an initial coherent state

| 3 > acted on by Ĥ = h̄
2
(â†â)2. 10, 000

trajectories. Dotted lines indicate the size

of the errors due to finite sampling.

17



0 0.1 0.2 0.3 0.4 0.5 0.6

10
0

10
5

10
10

10
15

10
20

t

V
a
r(

Y
)

µ=1 

Best Gauge  

  µ=0.001 

Positive P 

     µ=0 

Comparison of sampling errors for various

stochastic simulations. Shown is the

variance in quadrature Ŷ . Size of actual

sampling uncertainty in calculated moment

for N trajectories is

√

Var(Ŷ )/N , hence

number of trajectories needed for an a

accurate result grows as Var(Y ). Note

the logarithmic scale.

(n.b. µ is here is just a constant gauge parameter, not

chemical potential.)
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TEMPERATURE-
DEPENDENT
EQUILIBRIUM

STATES
• A similar Master equation approach

can be used to find the temperature-

dependent equilibrium states under a

Hamiltonian and chemical potential µ.

• Here the “time” variable τ represents an

inverse temperature.

τ =
h̄

kBT

• Equilibrium states for a high enough

temperature (τ → 0) are usually the

same as for no interaction, so can be

used as initial conditions, which are

then advanced with τ to obtain lower

temperature equilibrium properties.

19



• Must use the Hermitian P representation

because now the Master equation is for

an un-normalised ρ̂u, and provison must

be made for a changing weight.

Master Equation:

∂ρ̂u

∂τ
= −1

2

[

Ĥ

h̄
− µ(τ)N̂ , ρ̂u

]

+

Same form as for combination of Two-

photon and one-photon absorption process

in real time.

Form of nonlinear terms (one mode):

∂ρ̂

∂t
= −U

2h̄

[

(â†(x)â(x))2, ρ̂
]

+
+ . . .

Form of Hermitian P equations:

∂α

∂t
= −αUαβ + i

√
Uαξ(t) +

µ

2
α + . . .

∂Ω

∂t
= µαβ + . . .
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Problem at low occupation numbers:

Systematic errors due to
“phantom” trajectories

A countable number of trajectories can

escape to infinity in a finite time! Since

their number is infinitesimal in comparison

with the well-behaved trajectories they

are never seen in an actual simulation.

Unfortunately, because some variables may

then take on infinite values, the trajectorie’s

effect can be significant or even dominant

in a calculation of observeables even though

its probability is zero. However, because

they are never simulated, this part of the

observeable’s value is never accumulated

when averaging over trajectories. This leads

to systematic error.

Solution:

Introduce appropriate gauges into the α,

β, Ω equations, which prevent trajectories

escaping to infinity in a finite time.
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Zero chemical potential µ = 0
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Circles: positive P simulation

blue line: hermitian P gauge simulation.

green line: exact calculation (truncated

number-state basis).

Simulation parameters: 40 000 trajectories;

step size = 0.005;
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Non-zero chemical potential
µ = −γU .
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Circles: positive P simulation, γ = 0.1;

blue line: hermitian P gauge simulations;

green line: exact calculations (truncated

number-state basis).

Simulation parameters: 100 000

trajectories; step size = 0.005;
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Conclusions

• For quantum many-body simulations, the

number of equations to be solved can be

made to grow only linearly with N (the

number of significant subsystems) using

P representation methods.

• This is far superior to direct density-

matrix methods which scale exponentially.

• The problems which can occur when

using the positive P representation at low

occupation numbers can be overcome by

using a modified version - the hermitian

P representation.

• Direct first-principles simulations of Bose-

Einstein condensates are currently in the

process of being implemented.
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