
Stochastic Gauges

Piotr Deuar

Attempts to improve on the Positive

P-distribution, and ideas on what you might

be able to do with such improvements.

(Work in progress with P. Drummond)
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Outline

• What’s so interesting about

P-distributions, and why look for

improvements.

• A quick review of using P-distributions to

look at the evolution of quantum states.

(With example)

• Relevance to BEC’s

• A variant P-distribution, and its applica-

tion for

Ĥ = â†â†â â.

• Stochastic Gauges.

• if time permits: A P-like distribution in

squeezed states.
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Why?

• P-distributions (and similar distributions,

e.g. Wigner) are widely used to look at

quantum evolution of states via stochas-

tic equations.

• Stochastic equation methods are the

ONLY known practical way to do a full

quantum treatment of many-many body

systems. (e.g. BEC’s).

• So. . . improving their behaviour can lead

to solution of new problems.

• Hours of fun! ??
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Many-Many Body Problems

It has been (and is) claimed (e.g. famously

by Feynman) that full quantum evolution of

systems involving a large number of bodies is

impossible to model on classical computers.

The idea being that if you have N bodies,

each with D energy levels (say), then Hilbert

space has

DN

dimensions.

e.g. for just 20 10-energy-level particles,

that’s

100,000,000,000,000,000,000

simultaneous differential equations to solve.

(piece of cake!)

But. . .
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But. . . you can simulate the state evolution

using stochastic equations. In many cases

you only have

some constant × N

stochastic equations!

E.g: Drummond and Corney treated the

evaporative cooling of ions, and formation

of a BEC using the positive P-distribution.

[P. D. Drummond and J. F. Corney,

Phys. Rev. A 60, R2661 (1999)]

There were 10,000 atoms!

Clearly stochastic methods are useful here!
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A quick review, or

“How does it all work?”

Lets consider a squeezing hamiltonian as an

example:

Ĥ = ih̄
[

â†2 − â2
]

So the Master equation (no damping) is

ρ̇ = â†2ρ− â2ρ− ρâ†2 + ρâ2
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We can write

ρ̂ =
∫

P (α, β)
||α >< β∗||

< β∗||α >
d2α d2β

Where

||α >= eαâ
†
|0 >

are unnormalised (Bargmann) Coherent

states of complex amplitude α.

and

P (α, β)

is the positive P-distribution for a state ρ.

So, for example a Coherent state |αo > has

a positive P-distribution of

P (α, β) = δ(α− αo)δ(β − α∗
o)

8



The nice thing about the states ||α > is that

they obey relations like:

â||α >= α||α >

which leads to

â2||α >= α2||α >

and so,

â2ρ̂ =
∫

[

α2 P (α, β)
] ||α >< β∗||

< β∗||α >
d2α d2β

compare this to

ρ̂ =
∫

[ P (α, β) ]
||α >< β∗||

< β∗||α >
d2α d2β

You can see the correspondences that

ρ̂ ↔ P (α, β)

â2ρ̂ ↔ α2P (α, β)
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You can obtain similar such relations for the

other terms in the Master equation. For ex-

ample:

â†||α >=
∂

∂α
||α >

which leads to

â†2||α >=
∂2

∂α2
||α >

Which after some calculus, leads to

â†2ρ̂ ↔

[

β2 −
∂

∂α
2β +

∂2

∂α2

]

P (α, β)
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In any case, making the correspondence for

the whole Master equation:

Master Equation ↔

∂P

∂t
=

[

−2
∂

∂α
β − 2

∂

∂β
α+

∂2

∂α2
+

∂2

∂β2

]

P

Which is a Fokker-Planck Equation for the

(positive) distribution function P (α, β) over

two complex variables.

By standard methods this can be rewritten

in equivalent form as a set of two complex

stochastic equations.

The first derivative terms lead to determin-

istic terms in these equations,

while the second derivative terms lead to

noise terms in those equations.
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For the example discussed, the stochastic

equations are just

α̇ = 2β + ξ(t)

β̇ = 2α+ ξ′(t)

Where the ξ and ξ′ are independent real gaus-

sian noises of mean zero and variance dt. i.e.

< ξ(t) >= 0

< ξ(t)ξ(t) >=< ξ′(t)ξ′(t) >= dt

< ξ(t)ξ′(t) >= 0
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So what can you do with these equations?

α̇ = 2β + ξ(t)

β̇ = 2α+ ξ′(t)

One finds that to calculate expectation val-

ues of moments, you need only take averages

over the complex variables α and β. For ex-

ample:

< â†â >=< αβ >

< â+ a† >=< α+ β >

−i < â− a† >= −i < α− β >

So you do N (e.g. 100) runs of the stochas-

tic differential equations, starting with the

initial conditions distributed according to

P (α, β, t = 0).

Then to get (say) the expectation value of

the x quadrature < â + â† >, you average

< α+ β > over your N runs.
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Individual paths, and the mean:
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Averages over different numbers of paths:
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Applications to BEC’s,
and problems

A good model for a single-species neutral

atom BEC in a trap has

Ĥ =
∫

d3x

[

h̄2

2m∇Ψ̂†(x)∇Ψ̂(x) + V (x)Ψ̂†(x)Ψ̂(x)

+Ψ̂†(x)R̂(x) + Ψ̂(x)R̂†(x)

+1
2

∫

d3yU(x− y)Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y)
]

with Ψ̂(x) boson operators at position x.

Upon conversion to free-field modes, you get

the following sort of terms in the hamilto-

nian:

â†â

absorption

â†2â2

The first two terms lead only to drift in

the stochastic equations for the positive P-

distribution, but unfortunately the last (quar-

tic) term is not as stable as one would hope.
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Consider what happens for the one-mode

Hamiltonian. . .

Ĥ = h̄â†2â2

The stochastic equations are

α̇ = −iα(1 + 2αβ) + (1− i)αξ(t)

β̇ = iβ(1 + 2αβ) + (1+ i)βξ′(t)

Where the variables and noises are the same

as in the example:

α and β correspond to the coherent ampli-

tude, and its conjugate (at least initially).

ξ(t) and ξ′(t) are gaussian noises of variance

dt.

Note that the noise is multiplicative!

18



For the single-mode case, you can solve for

the quadrature < x > exactly.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

<
X

>

1000 Paths

step=∆ 

step=10∆ 

step=100∆ 

step=800∆ 

Exact 

The positive P-distribution does well up to

a certain time, but unfortunately after about

t ≈ 0.3, the < x > errors are resistant to step

size.
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This problem comes about because around

this time, the sampling error (i.e. the spread

of the distribution) increases dramatically

due to instabilities in the stochastic equa-

tions.

But there is hope. . .
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Perhaps we can expand ρ̂ in terms of a dif-

ferent family of states, than |α >.

The Positive P-distribution expands in terms

of the kernel

Λ = |α >< β∗|

where

ρ̂ =
∫

P (α, β)

(

Λ

Tr[Λ]

)

d2αd2β

This is identical in form to a mixture of states

Λ, however, the Λ are neither Hermitian nor

positive.

A Conjecture:

Perhaps it might be better to narrow down

the possible kernels Λ, and force them to be

Hermitian?
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Proposed Hermitian Kernel

ΛH = eiθ|α >< β∗|+ e−iθ|β >< α∗|

ρ̂ =
∫

P (α, β, θ)

(

ΛH

Tr[ΛH]

)

d2α d2β dθ

Now we have five real variables.
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Basic Identities

Hermitian kernel:

âΛH =

[

α+ β∗

2
− i

(

α− β∗

2

)

∂

∂θ

]

ΛH

â†ΛH =

[

∂

∂α
+

∂

∂β∗

]

ΛH

Positive-P kernel:

âΛ = αΛ

â†Λ =
∂

∂α
Λ
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Basic Correspondences

Hermitian kernel:

â†âρ̂ ↔

[

Re[αβ]− T Im[αβ]−
∂

∂α
α−

∂

∂β∗
β∗

]

P

âρ̂ ↔

[

α+ β∗

2
+ iT

α− β∗

2
+

i

2

∂

∂θ
(α− β∗)

]

P

where

T = tan
(

θ + Im[αβ∗]
)

Positive-P kernel:

â†âρ̂ ↔

[

αβ −
∂

∂α
α

]

P

â†ρ̂ ↔
∂

∂α
P
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Stochastic Gauge

In the positive P-representation there were

only four real variables. (And the Glauber

P-representation has only two, for example),

but the Hermitian distribution has an extra

real variable.

This gives a degree of freedom.

One finds the identities:
[

1+
∂2

∂θ2

]

ΛH = 0

[

∂2

∂θ∂α
− i

∂

∂α

]

ΛH = 0

[

∂2

∂θ∂β
− i

∂

∂β

]

ΛH = 0

So these identities multiplied by

Any ARBITRARY function

must also equal zero!
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This means that (taking the first identity)

0 ↔ F (α, α∗, β, β∗, θ)

[

∂2

∂θ2
+2

∂

∂θ
T

]

P

For ANY arbitrary function F . And since

it corresponds to zero, it can be added at will

to the Fokker- Planck Equation.

Choosing F is similar to choosing a gauge

in field theory, in that it is a function which

has no effect on physical quantities, but can

be chosen at will to make calculations more

convenient.

Clearly, Any identity of the form

[some operator] Λ = 0

gives rise to such a stochastic gauge.

For this Hamiltonian, and kernel ΛH we have

three such.
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For calculations (due to convenience) we

have chosen somewhat different (real) vari-

ables, which give the following stochastic

equations.

ẋ =
1

2
[(n1 + n2) + T (n1 − n2) + 2FT ] + ξ

˙̄x =
1

2

[

(n1 − n2 − T (n1 + n2)− 2F̄ T
]

+ ξ̄

ẏ = F

˙̄y = F̄

θ̇ = −F

{

1

2
[n1 + n2 + T (n1 − n2) + 2TF ] + Fξ

}

+F̄

{

1

2

[

n1 − n2 − T (n1 + n2)− 2T F̄
]

+ F̄ ξ̄

}

Note how all the terms in θ̇ have F or F̄

factors!

where

n1 = exp [(x+ x̄+ y + ȳ)/2] cos [(y − ȳ − x+ x̄)/2]

n2 = exp [(x+ x̄+ y + ȳ)/2] sin [(y − ȳ − x+ x̄)/2]

T = tan(θ + n2)
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From preliminary calculations, a promising

choice of gauge seems to be

F = F̄ = −
1

2
(n1 − Tn2) = −

< â†â >

2
= −

n̄

2

which gives equations

ẋ =
1

2

[

n̄+ n2(1 + T2)
]

+ ξ

˙̄x =
1

2

[

n̄− n2(1 + T2)
]

+ ξ̄

ẏ = −
1

2
n̄

˙̄y = −
1

2
n̄

θ̇ =
1

2
n̄n2(1 + T2) +

n̄

2
(ξ − ξ̄)
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This research is ongoing at the moment.

We’ll see what we get!

One of the he ultimate aims is to make first-

principles calculations to investigate the be-

haviour of a BEC after it has condensed,

but these methods may have broader appli-

cations.

Apart from making calculation easier, new

types of P-like distributions may allow sim-

ulations of Hamiltonians which cannot be

treated using the usual P-distributions.
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We have investigated a P-like distribution in

squeezed states. This one has the kernel

ΛS = |α, ζ >< ᾱ∗, ζ̄∗|

where |α, ζ > is a squeezed state, having

mean quadratures the same as the coherent

state |α >.

This distribution allows both the α’s and ζ’s

to vary.

Features seen include:

• Squeezing Hamiltonian produces only

drift in the DE’s. This allows exact

solutions for the evolution of arbitrary

squeezed states under arbitrary damped,

multimode pumped squeezing.

• Terms like â3, â†3â or â4 in the Hamil-

tonian can be treated fully, whereas pre-

vious distributions always produced third

order derivatives in the FPE.
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Exact Two-mode Squeezing

Ĥ = ih̄[â†̂b† − â̂b]

Stochastic equations:

α̇1 = −α1β12 − α2β1

α̇2 = −α2β12 − α1β2

β̇1 = −2β1β12

β̇2 = −2β2β12

β̇12 = 1− β2
12 − β1β2

αi : coherent amplitude of mode i

βi : squeezing of mode i

β12 : two-mode squeezing

N.B. if

|z, ξ >= ezâ
†−z∗âeξâ

†2/2−ξ∗â2/2|0 >

α = z − z∗β

β = arg(ξ) tanh |ξ|
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Solutions for squeezing:

βi(t) =
2βi(0)

D(t)

β12(t) =
2β12(0)

D(t)
cosh(2t)

+
(1− det[B(0)])

D(t)
sinh(2t)

D(t) = 1+ det[B(0)] + (1− det[B(0)]) cosh(2t)

+ 2β12(0) sinh(2t)

B(0) =

[

β1(0) β12(0)
β12(0) β2(0)

]
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Thank You
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