Excitations of ultracold Fermi dipolar gases

Piotr Deuar, Misha Baranov, Gora Shlyapnikov

LPTMS

Université Paris-sud XI

Universiteit van Amsterdam

U. Paris XIII, 25 June 2008

Overview

- Motivation
 - Comparison with standard BCS gas
 - Condensed matter analogue
 - Recent experimental values with KRb
- The uniform 3D gas
- Quasiparticle spectrum
 - Gap zero
- Collective excitations
 - $T \sim T_c$
 - $T \rightarrow 0$
 - New regime: $\hbar\omega \ll T \ll T_c$
 - Deflected superfluid current

BCS superfluidity

dipole-dipole potential

long range interaction
 → Needs 1 spin component

- Anisotropic
- always partly attractive
 BCS pairing if *polarised*
- Energy gap has nodes

contact s-wave ↑↓ potential

- short range interaction

 → Needs 2 spin components
 (Pauli blocking)
- Isotropic
- arttractive or repulsive BCS pairing only if $a_s < 0$
- Energy gap always $\neq 0$

Condensed matter analogue

- The node structure of the order parameter is similar to that of solid state and liquid He phases, e.g.:
 - Polar phase of ³He.
 (Never experimentally realized)
 Aoyama & Ikeda PRB 73, 060504 (2006), Elbs etal. arXiv:0707.3544
 - Heavy-fermion superconductors like UPt₃.
 (Difficult to get pure system, many potential phases)
- Dipole gas is a much "cleaner" system.
 - \widehat{H} well known
 - spin degrees of freedom can be removed.
- Potentially well controllable [:-)]

Critical Temperature for BCS s-wave $\uparrow \downarrow$ gas:

$$T_c = \mathbf{0.28} E_F \exp\left(-\frac{\pi}{2|a_s|k_F}\right)$$

Dipole gas:

Baranov, Mar'enko, Rychkov, Shlyapnikov, PRA 66, 013606 (2002)

$$T_c = 1.44 E_F \exp\left(-\frac{\pi}{2|a_D|k_F}\right)$$

 \Rightarrow *Effective* scattering length a_D :

$$a_D = -2m\left(\frac{d}{\pi\hbar}\right)^2$$

 T_c rises strongly with $a_D \propto md^2$

Experimental values with ${ m ^{40}K^{87}Rb}$

D. Jin group, JILA, based on talk by K.-K. Ni at DAMOP

- Molecules formed via STIRAP (65% efficiency) in deeply bound (7 THz) triplet vibrational state.
- Density $\sim 10^{12}/{\rm cm}^3$

•
$$T = 3T_F$$
 (300 nK) :-)

- Dipole moment $d \approx 0.1D$. (Hence $a_D \approx -500$ nm)
- Lifetime: several 100 μ s. : -(
- They expect to be able to go deeper to $d \approx 1D$ Then, one would have $T_c \sim T_F$

Our physical system uniform 3D gas

• Cold:
$$T < T_c^{BCS}$$

$$V_D(R,\theta) = \frac{d^2}{R^3} \left(1 - 3\cos^2\theta\right)$$

● static external field (E or B)
 ⇒ full polarisation

- single-species (spin polarised)
- dilute ⇒ Energy dominated by Fermi sea to leading order
- short-range interaction assumed negligible (Fermi exclusion, no *p*-wave resonances)

Uniform gas: Motivation

• Global shape of trapped cloud dominated by Hartree energy:

$$E_d \approx \int d^3x \, d^3y \, V_d(x-y) \, \langle n(x) \rangle \, \langle n(y) \rangle$$

- Not very sensitive to temperature
- Statics and dynamics of the shape of a trapped cloud Theory: Góral, Englert, Rzążewski PRA 63, 033606 (2001)
 Góral, Brewczyk, Rzążewski PRA 67, 025601 (2003)

Baranov, Dobrek, Lewenstein PRL 92, 250403 (2004)

Experiment: TBA?

• Essential features of superfluid physics seen best in uniform system (local density approximation).

Hamiltonian

$$\widehat{H} = \text{K.E.} + \frac{1}{2} \int d^3x d^3y \left\{ \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_x V_D(x-y) \widehat{\Psi}_y^{\dagger} \widehat{\Psi}_y \right\}$$

• $\widehat{\Psi}_x$ is the anihilating Fermi field operator at point *x*.

BCS Mean field theory: Postulate the quadratic effective Hamiltonian:

$$\begin{split} \widehat{H}_{\text{eff}} &= \frac{1}{2} \int d^3 x \, d^3 y \, \Big\{ \begin{array}{cc} \frac{\hbar^2}{m} \, \widehat{\Psi}_x^{\dagger} \, \nabla^2 \widehat{\Psi}_x \, \delta(x-y) & \text{Kinetic} \\ \Delta^*(x-y) \, \widehat{\Psi}_x \widehat{\Psi}_y - \Delta(x-y) \, \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_y^{\dagger} & \text{BCS} \\ + W(x-y) \, \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_y & \Big\} & \text{Hartree} \end{split}$$

• With some "appropriate" $\Delta(x-y)$ and W(x-y)

Gap equation

Choose $\Delta(x-y)$ and W(x-y) to minimise the full Free energy

$$F = \langle \widehat{H} \rangle_{\text{eff}} - \mu N - TS$$

when calculated with eigenstates of $\widehat{H}_{ ext{eff}}$.

Obtain:

$$\Delta(x-y) = V_D(x-y) \left\langle \widehat{\Psi}_x \widehat{\Psi}_y \right\rangle_{\text{eff}} \quad GAP$$

$$W(x-y) = -V_D(x-y) \left\langle \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_y \right\rangle_{\text{eff}} \quad \text{``Hartree'' field}$$

 Δ , W and Ψ must be self-consistent.

Uniform gas

In *k*–space

$$\widehat{H}_{\text{eff}} = \frac{1}{2} \int d^3k \left\{ \left(\frac{\hbar^2 k^2}{m} - 2\mu - W(k) \right) \widehat{\Psi}_k^{\dagger} \widehat{\Psi}_k + \Delta^*(k) \widehat{\Psi}_k \widehat{\Psi}_{-k} - \Delta(k) \widehat{\Psi}_k^{\dagger} \widehat{\Psi}_{-k}^{\dagger} \right\}$$

- Order parameter $\Delta(k) \neq 0$ corresponds to BCS pairing of k and -k atoms.
- $\Delta(k)$ is anisotropic and has nodes on the Fermi surface (unlike s-wave $\uparrow \downarrow$ gas)
- W(k) is a minor energy shift of Fermi surface

 \implies ignore it in leading order

BCS gap $\Delta_F(\theta)$ on Fermi surface

- \bullet NODE in plane \perp to polarisation
- Breaking a pair costs $\geq 2|\Delta(\theta)|$.
- Dipoles: Easy to excite a pair in plane \perp to polarisation because energy cost is small.
- **† gas**: Appreciable energy cost of excitations always.

Consequences of pole in Δ

	↑↓ gas	dipoles
damping of sound at $T = 0$	0	nonzero
Specific heat at low T	$\sim \exp(-\Delta/T)$	$\sim T^2$
normal component at low T	$\sim \exp(-\Delta/T)$	polynomial in T

Low energy collective modes

Phase perturbations of the ground state order parameter (Goldstone mode)

$$\Delta_0(x-y) \longrightarrow \Delta(x,y) = \Delta_0(x-y) e^{2i\phi(x,t)}$$

Assumptions:

- \bullet Low energy ~ ($\hbar\omega \ll \Delta_0^{\rm max}$)
- Phase perturbations only (amplitude perturbations are gapped)
- Low $\omega \implies$ long wavelength ($k \ll k_F$)

 \implies insensitive to small-scale of $|x - y| \implies \phi \approx \phi(x \text{ only })$

• Weak perturbation \implies lowest order in ϕ

Purely diffusive (as for standard short-range ↑↓gas)

Anisotropic (differently to ↑↓gas)

$T \rightarrow 0$ Anisotropic damping of sound

$$\omega = \left(\frac{v_F}{\sqrt{3}}\right) k \left\{ 1 - i \left(\frac{\hbar \omega_{\text{Bog}}}{\Delta_{\text{max}}}\right) \Gamma(\theta) \right\}$$

Bogoliubov sound

damping absent for $\uparrow\downarrow$ gas

Beliaev process:

collective \implies 2×quasipart.

- Beliaev damping $\Gamma \varpropto \omega$
- Landau damping $\Gamma \propto \frac{1}{\omega}$ when $\sin^2 \theta > \frac{1}{3}$

Aligned superfluid $h\omega \ll T \ll T_c$

(No s-wave *\J* gas analogue)

- Directions close enough to polarisation: good quality superfluid
- Directions perpendicular: Landau damping kills superfluidity

Veering superfluid current $0 < T < T_c$

• Current response J_s to an external phase perturbation of the gap

$$\Delta(x, y, t) = \Delta_0(x - y)e^{2i\phi(x, t)}$$

• Strable driving frequency ω , wave-vector k, in direction θ .

