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Overview
• Motivation

– Comparison with standard BCS gas
– Condensed matter analogue
– Recent experimental values with KRb

• The uniform 3D gas

• Quasiparticle spectrum

– Gap zero

• Collective excitations

– T ∼ Tc

– T → 0
– New regime: ~ω ≪ T ≪ Tc

– Deflected superfluid current



BCS superfluidity

dipole–dipole
potential

• long range interaction
→ Needs 1 spin component

• Anisotropic

• always partly attractive
BCS pairing if polarised

• Energy gap has nodes

contact s-wave
↑↓ potential

• short range interaction
→ Needs 2 spin components

(Pauli blocking)

• Isotropic

• arttractive or repulsive
BCS pairing only if as < 0

• Energy gap always 6= 0



Condensed matter analogue

• The node structure of the order parameter is similar to that of solid
state and liquid He phases, e.g.:

– Polar phase of 3He.

(Never experimentally realized)
Aoyama & Ikeda PRB 73, 060504 (2006),
Elbs etal. arXiv:0707.3544

– Heavy-fermion superconductors like UPt3.
(Difficult to get pure system, many potential phases)

• Dipole gas is a much “cleaner” system.

– Ĥ well known
– spin degrees of freedom can be removed.

• Potentially well controllable [ : −) ]



Critical Temperature for BCS
s-wave ↑↓ gas:

Tc = 0.28EF exp

(
− π

2|as|kF

)

Dipole gas:
Baranov, Mar’enko, Rychkov, Shlyapnikov, PRA 66, 013606 (2002)

Tc = 1.44EF exp

(
− π

2|aD|kF

)

=⇒ Effective scattering length aD:

aD = −2m

(
d

π~

)2

Tc rises strongly with aD ∝ md2



Experimental values with 40K87Rb
D. Jin group, JILA, based on talk by K.-K. Ni at DAMOP

• Molecules formed via STIRAP (65% efficiency) in deeply bound
(7 THz) triplet vibrational state.

• Density ∼ 1012/cm3

• T = 3TF (300 nK) : −)

• Dipole moment d ≈ 0.1D . (Hence aD ≈−500nm)

• Lifetime: several 100µs. : −(

• They expect to be able to go deeper to d ≈ 1D
Then, one would have Tc ∼ TF



Our physical system
uniform 3D gas

VD(R,θ)=
d2

R3

(
1−3cos2θ

)
• Cold: T < TBCS

c

• static external field (E or B)
=⇒ full polarisation

• single-species (spin polarised)

• dilute =⇒ Energy dominated by
Fermi sea to leading order

• short-range interaction assumed
negligible (Fermi exclusion, no
p-wave resonances)



Uniform gas: Motivation

• Global shape of trapped cloud dominated by Hartree energy:

Ed ≈
Z

d3x d3y Vd(x−y) 〈n(x)〉 〈n(y)〉

• Not very sensitive to temperature

• Statics and dynamics of the shape of a trapped cloud
Theory: Góral, Englert, Rzążewski PRA 63, 033606 (2001)

Góral, Brewczyk, Rzążewski PRA 67, 025601 (2003)

Baranov, Dobrek, Lewenstein PRL 92, 250403 (2004)

Experiment: TBA?

• Essential features of superfluid physics seen best in uniform system
(local density approximation).



Hamiltonian

Ĥ = K.E. +
1
2

Z

d3xd3y
{

Ψ̂†
xΨ̂x VD(x−y) Ψ̂†

yΨ̂y

}

• Ψ̂x is the anihilating Fermi field operator at point x.

BCS Mean field theory: Postulate the quadratic effective Hamiltonian:

Ĥeff =
1
2

Z

d3xd3y
{

Ψ̂† ~
2

m Ψ̂†
x ∇2Ψ̂xδ(x−y) Kinetic

∆∗(x−y)Ψ̂xΨ̂y−∆(x−y)Ψ̂†
xΨ̂†

y BCS

+W(x−y)Ψ̂†
xΨ̂y

}
Hartree

• With some “appropriate” ∆(x−y) and W(x−y)



Gap equation

Choose ∆(x−y) and W(x−y) to minimise the full Free energy

F = 〈Ĥ〉eff −µN−TS

when calculated with eigenstates of Ĥeff.

Obtain:

∆(x−y) = VD(x−y)
〈

Ψ̂xΨ̂y

〉

eff
GAP

W(x−y) = −VD(x−y)
〈

Ψ̂†
xΨ̂y

〉

eff
“Hartree” field

∆, W and Ψ must be self-consistent.



Uniform gas
In k–space

Ĥeff =
1
2

Z

d3k

{(
~

2k2

m
−2µ−W(k)

)
Ψ̂†

kΨ̂k +∆∗(k)Ψ̂kΨ̂−k−∆(k)Ψ̂†
kΨ̂†

−k

}

• Order parameter ∆(k) 6= 0 corresponds to BCS pairing of k and −k
atoms.

• ∆(k) is anisotropic and has nodes on the Fermi surface (unlike s-wave
↑↓gas)

• W(k) is a minor energy shift of Fermi surface
=⇒ ignore it in leading order



BCS gap ∆F(θ) on Fermi surface
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• NODE in plane ⊥ to polarisation

• Breaking a pair costs ≥ 2|∆(θ)|.

• Dipoles: Easy to excite a pair in plane ⊥ to polarisation because
energy cost is small.

• ↑↓gas: Appreciable energy cost of excitations always.



Consequences of pole in ∆
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↑↓ gas dipoles

damping of sound at T = 0 0 nonzero

Specific heat at low T ∼ exp(−∆/T) ∼ T2

normal component at low T ∼ exp(−∆/T) polynomial in T



Low energy collective modes
Phase perturbations of the ground state order parameter (Goldstone

mode)

∆0(x−y) → ∆(x,y) = ∆0(x−y) e2iφ(x,t)

Assumptions:

• Low energy ( ~ω ≪ ∆max
0 )

• Phase perturbations only (amplitude perturbations are gapped)

• Low ω =⇒ long wavelength (k≪ kF)
=⇒ insensitive to small-scale of |x−y| =⇒ φ ≈ φ(x only )

• Weak perturbation =⇒ lowest order in φ



T ≈ Tc

ω = −i

(
7ζ(3)

6π3

)(
~v2

F

Tc

)
k2

(
1+

3
2π2

(1+3cos2θ)

)
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• Purely diffusive (as for standard short-range ↑↓gas)

• Anisotropic (differently to ↑↓gas)



T → 0 Anisotropic damping of sound

ω =

(
vF√

3

)
k

{
1− i

(
~ωBog

∆max

)
Γ(θ)

}
Bogoliubov sound

damping absent for ↑↓ gas

Beliaev process:
collective =⇒ 2×quasipart.
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Low energy regime hω ≪ T ≪ Tc
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• Beliaev damping Γ ∝ ω

• Landau damping Γ ∝ 1
ω when sin2θ > 1
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Aligned superfluid hω ≪ T ≪ Tc

(No s-wave ↑↓gas analogue)
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• Directions close enough to polarisation: good quality superfluid

• Directions perpendicular: Landau damping kills superfluidity



Veering superfluid current 0 < T < Tc

• Current response Js to an external phase perturbation of the gap

∆(x,y, t) = ∆0(x−y)e2iφ(x,t)

• Strable driving frequency ω, wave-vector k, in direction θ.
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X,Y−components:
reduction ∝T

Z−component:reduction ∝T3

short−range gas
reduction ∝ exp (−∆ / T)

Veering current
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