First-principles simulations of interacting Bose gases

P. Deuar, P. D. Drummond and K. V. Kheruntsyan

Department of Physics, University of Queensland Brisbane, Australia

May 10, 2004

Outline

- The model: Quantum Bose gas with local twoparticle collisions.
- When might we want first principles calculations?
- How to overcome the Hiblert space complexity problem to simulate a many-body system.
- How it is done using the positive P representation (from quantum optics).
- Show some simulation results.

Bose gas model: Field Hamiltonian

Spatial position is \mathbf{x} $\widehat{\Psi}(\mathbf{x})$ destroys Boson at \mathbf{x} $\widehat{\Psi}^{\dagger}(\mathbf{x})$ createsBoson at \mathbf{x} $\langle \widehat{\Psi}^{\dagger}(\mathbf{x}\widehat{\Psi}(\mathbf{x}) \rangle$ is the density at \mathbf{x} .

$$\widehat{H} = \int d\mathbf{x} \bigg\{$$

Kinetic energy

$$\frac{\hbar^2}{2m} \frac{\partial \widehat{\Psi}^{\dagger}(\mathbf{x})}{\partial \mathbf{x}} \frac{\partial \widehat{\Psi}(\mathbf{x})}{\partial \mathbf{x}}$$

Two-body interactions

+
$$\frac{1}{2} \int d\mathbf{y} U(\mathbf{x} - \mathbf{y}) \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}^{\dagger}(\mathbf{y}) \widehat{\Psi}(\mathbf{x}) \widehat{\Psi}(\mathbf{y})$$

External potential (e.g. trap)

$$+ V_{
m ext}({f x}) \widehat{\Psi}^{\dagger}({f x}) \widehat{\Psi}({f x}) \left.
ight\}$$

Bose gas model: Dynamics

State: Density matrix $\widehat{\rho}$.

Master equation (Linblad form):

$$\frac{\partial \widehat{\rho}}{\partial t} = \frac{1}{i\hbar} \left[\widehat{H}, \widehat{\rho} \right]
-\frac{1}{2} \int d\mathbf{x} \sum_{j} \left\{ \widehat{L}_{j}^{\dagger} \widehat{L}_{j} \widehat{\rho} + \widehat{\rho} \widehat{L}_{j}^{\dagger} \widehat{L}_{j} - 2 \widehat{L}_{j} \widehat{\rho} \widehat{L}_{j}^{\dagger} \right\}$$

e.g. interaction with heat bath. $\overline{n}\left(T\right)$ particles per bath mode:

$$\widehat{L}_{1}(\mathbf{x}) = \widehat{\Psi}(\mathbf{x})\sqrt{\gamma(\mathbf{x})(1+\overline{n}(T))}
\widehat{L}_{2}(\mathbf{x}) = \widehat{\Psi}^{\dagger}(\mathbf{x})\sqrt{\gamma(\mathbf{x})\overline{n}(T)}.$$

What can this model describe?

- Cold gas of alkali-metal atoms
 - in a trap (3D,2D,1D)
 - free
- Bose-Einstein Condensate (BEC) when very cold
- Interactions with an environment. e.g. loss of atoms at the edge of the trap.
 - Evaporative cooling
 - Coherent out-coupling (atom laser)
- interacting BECs
- Bosons in a lattice potential

When do we want first-principles calculations?

- If system is very hot, can use thermodynamics non-coherent
- If system is very cold, all atoms are in one coherent orbital (BEC), and can use mean field theory

$$\widehat{\Psi} \to \psi$$

 If it is a bit hotter can use perturbation theory around the mean field

$$\widehat{\Psi} \to \psi(1 + \epsilon \widehat{c} + \dots)$$

- If both coherent and non-coherent processes are important and coupled to each other, then neither approach works well, and a first-principles method is desirable. e.g.
 - Formation of BEC under evaporative cooling.
 - Collision of BECs
 - BEC near critical temperature.

Lattice

- ullet For computer simulations need to approximate space as a lattice with volume Δx at each lattice point.
- At each point

$$\widehat{\Psi}(\mathbf{x}) \to \frac{\widehat{a}_{\mathbf{x}}}{\sqrt{\Delta \mathbf{x}}}.$$

- ullet $\widehat{a}_{\mathbf{x}}$ and $\widehat{a}_{\mathbf{x}}^{\dagger}$ are anihilation/creation operators like in quantum optics.
- For cold alkali metal gases (e.g. BEC) can use

$$U(\mathbf{x} - \mathbf{y}) \to g \, \delta(\mathbf{x} - \mathbf{y})$$

Hilbert space complexity problem

Brute force does not work for many-body systems, as everyone knows.

- Supose we have a lattice with 5 points (not very big!)
- And there are 10 atoms.
- The basis at each lattice point x can consist of $|n_x\rangle_x$ with n_x atoms $(n_x \le 10)$.
- The full density matrix is

$$\widehat{
ho} = \sum_{n_x, m_x} C_{n_x, m_x} \otimes_x |n_x\rangle_x \langle m_x|_x$$

- ullet There are $pprox 1.3 imes 10^{10}$ complex coefficients C_{n_x,m_y} to store in memory.
- Number of coefficients grows as e^N with N lattice points.

A fix: phase space representations

$$\widehat{\rho} = \int P(\overrightarrow{v}) |\psi(\overrightarrow{v})\rangle \langle \phi(\overrightarrow{v})| d\overrightarrow{v}$$
$$|\psi(\overrightarrow{v})\rangle = \bigotimes_{x} |\psi(\overrightarrow{v}_{x})\rangle_{x}.$$

- \bullet Local off-diagonal operator $|\,\psi\,\rangle_x\,\langle\,\phi\,|_x$ at each lattice point x
- ullet Each local basis state $|\psi(\overrightarrow{v}_x)\rangle_x$ depends on a set of continuous variables \overrightarrow{v}_x
- ullet $P(\overrightarrow{v})$ is a distribution of the variables \overrightarrow{v}_x which specify the separable off-diagonal operators $|\psi\rangle\langle\phi|$.

Statistical interpretation

If P is real and positive then it is a distribution of the variables \overrightarrow{v} . Taking S samples,

$$\widehat{\rho} \approx \frac{1}{S} \sum_{j=1}^{S} \left| \psi(\overrightarrow{v}^{(j)}) \right\rangle \left\langle \phi(\overrightarrow{v}^{(j)}) \right|.$$

when $\overrightarrow{v}^{(j)}$ is the jth sample of the distribution $P(\overrightarrow{v})$.

- There is a small set number of variables in $\overrightarrow{v}^{(j)}$ per lattice point (usually two complex).
- The number of variables in each sample grows only $\propto N$ with N lattice points.
- Tractable for calculations.

Correspondences for evolution

For some kernels $\widehat{\Lambda}$, you can make the following exact correspondences:

1. Master equation to equation for distribution ${\cal P}$

$$\frac{\partial \widehat{\rho}}{\partial t} \leftrightarrow \frac{\partial P(\overrightarrow{v})}{\partial t}$$

2. to stochastic (i.e. noisy) equations for the kernel variables

$$\frac{\partial P}{\partial t} \leftrightarrow \frac{\partial \overrightarrow{v}}{\partial t}$$

These last equations for \overrightarrow{v} can be applied separately to each sample $\overrightarrow{v}^{(j)}$.

Numerical procedure

- Approximate initial state $\widehat{\rho}(0)$ by taking S samples $\overrightarrow{v}^{(j)}$ according to the initial distribution $P(\overrightarrow{v},0)$.
- Evolve each sample according to the stochastic equations which correspond to the exact quantum evolution.
- Calculate observables by

$$\langle \widehat{O} \rangle = \operatorname{Tr} \left[\widehat{\rho} \widehat{O} \right]$$

$$\approx \frac{1}{S} \sum_{j=1}^{S} \Omega^{(j)} \left\langle \phi(\overrightarrow{v}^{(j)}) \middle| \widehat{O} \middle| \psi(\overrightarrow{v}^{(j)}) \right\rangle$$

- As the number of samples grows, the observables are estimated with growing accuracy.
- ullet Since the number of variables is $\propto N$ for N lattice points, can do first principles calculations of very large systems.
- BUT with limited precision.

Positive P distribution

Off-diagonal coherent state operators

$$\left|\alpha_x\right\rangle_x \left\langle \beta_x^*\right|_x$$

at each lattice point x, where

$$|\alpha_x\rangle = e^{-|\alpha_x|^2/2} e^{\widehat{a}_x^{\dagger} \alpha_x} |0\rangle$$

is the coherent state well known in quantum optics.

- $P(\alpha_x, \beta_x)$ is positive real, so stochastic interpretation is possible.
- ullet stochastic equations for α_x and β_x can be obtained for our interacting Bose gas model.
- ullet e.g. number of particles at lattice point x is

$$\langle \hat{a}_x^{\dagger} \hat{a}_x \rangle \approx \frac{1}{S} \sum_{j=1}^{S} \operatorname{Re} \left\{ \alpha_x^{(j)} \beta_x^{(j)} \right\}$$

Why use coherent states?

Suppose we use instead a number state operator

$$|n\rangle \langle m|$$

at each lattice point, where $|n\rangle$ means there are precisely n atoms. This does not work because:

• e.g. number of particles at the lattice point is

$$\langle \widehat{a}^{\dagger} \widehat{a} \rangle = \langle m | \widehat{a}^{\dagger} \widehat{a} | n \rangle$$

- Most density matrix samples are off-diagonal $(m \neq n)$
- So, most samples contribute *zero* to the observable calculations.
- Lots of computer time, no result.

Coherent states work because

$$\langle \beta^* | \, \widehat{a}^\dagger \widehat{a} \, | \alpha \rangle \neq 0$$

and each sample contributes.

Equations

Just as an example:

$$\begin{split} \frac{d\alpha_x}{dt} &= -i\omega_{xy}\alpha_y - i\frac{g}{\Delta x}\alpha_x^2\beta_x - \frac{\gamma_x}{2}\alpha_x + i\alpha_x\sqrt{\frac{ig}{\delta x}}\,\xi_x(t) \\ \frac{d\beta_x}{dt} &= i\omega_{xy}^*\beta_y + i\frac{g}{\Delta x}\alpha_x\beta_x^2 - \frac{\gamma_x}{2}\beta_x + \beta_x\sqrt{\frac{ig}{\delta x}}\,\tilde{\xi}_x(t). \end{split}$$

- ullet ω_{xy} contain kinetic interactions
- ullet ω_{xx} contain external potential and kinetic interactions
- \bullet γ_x is loss to a T=0 heat bath
- g is the inter-atom collision strength
- ullet Δx is the lattice spacing
- ullet $\xi(t)$ and $\tilde{\xi}(t)$ are gaussian random noises of variance 1. Independent at each time step.

Too good to be true?

- The equations for α_x and β_x are unstable.
- Straightforward simulation does not last long before precision is lost.
- Can develop equivalent but more stable equations using "stochastic gauge" method.

Phys. Rev. A **66**, 033812 (2002)

J. Opt. B. **5**, S281 (2003)

Phys. Rev. Lett. 92, 040405 (2004)

- I won't go into this because it becomes rather technical.
- But will show some simulation results.

Thermodynamics

- ullet Environment at temperature $T=1/k_B au$ and chemical potential $\mu(T)$.
- Density matrix:

$$\widehat{\rho}(\tau) = \exp\left[\left(\mu(\tau)\widehat{N} - \widehat{H}\right)\tau\right].$$

Particle number

$$\widehat{N} = \int d\mathbf{x} \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}(\mathbf{x}).$$

Master equation:

$$\frac{\partial \widehat{\rho}(\tau)}{\partial \tau} = -\left[\widehat{H} - \frac{\partial (\tau \mu(\tau))}{\partial \tau} \widehat{N}\right] \widehat{\rho}.$$

• $\widehat{\rho}(0)$ is known $(T \to \infty)$, so can start there, and integrate master equation to obtain grand canonical ensemble at finite temperature.

1D Bose gas: spatial correlations

$$g^{(2)}(x) = \frac{\langle : \widehat{n}(0)\widehat{n}(x) : \rangle}{\langle \widehat{n}(0) \rangle \langle \widehat{n}(x) \rangle}$$

with density $\widehat{n}(x)$.

Collision strength $\gamma=\frac{mg}{n\hbar^2}=10$ (Ideal gas $\gamma\to 0$, hard sphere gas $\gamma\to \infty$).

Temperature $T=10T_d$, (quantum degeneracy temperature $k_BT_d=\frac{2\pi\hbar^2n^2}{m}$).

1D Bose gas: momentum distribution

$$\gamma = T_d = 1$$

1D Bose gas: three-particle correlations

$$g^{(3)}(x,y) = \frac{\langle : \widehat{n}(0)\widehat{n}(x)\widehat{n}(y) : \rangle}{\langle \widehat{n}(0) \rangle \langle \widehat{n}(x) \rangle \langle \widehat{n}(y) \rangle}$$

1D Bose gas: Simulation Range

Propagation of correlations in 1D condensate

- Initially: coherent wavefunction effectively interaction zero.
- Subsequently: rise in intereaction to finite levels induces a correlation on interatomic scales.
- e.g. change in scattering length due to Feschbach resonance.

In two dimensions

$$g^{(2)}(\{x_1, x_2\}) = \frac{\langle : \widehat{n}(\{0, 0\}) \widehat{n}(\{x_1, x_2\}) : \rangle}{\langle \widehat{n}(\{0, 0\}) \rangle \langle \widehat{n}(\{x_1, x_2\}) \rangle}$$

Bose enhancement of scattered atoms in moving condensates

- Collaboration with Marek Trippenbach, and Jan Chwedeńczuk, Warszawa.
- Three-dimensional simulation
- ²³Na.
- Parameters as in Vogels, Xu&Ketterle[PRL 89, 020401], but with less atoms (150 000 rather than 30 000 000).