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Outline

The model: Quantum Bose gas with local two-
particle collisions.

When might we want first principles calculations?

How to overcome the Hiblert space complexity
problem to simulate a many-body system.

How it is done using the positive P representation
(from quantum optics).

Show some simulation results.



Bose gas model: Field Hamiltonian

Spatial position is x
U(x) destroys Boson at x

UT(x) createsBoson at x
(UT(x¥(x)) is the density at x.
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Kinetic energy
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Bose gas model: Dynamics

State: Density matrix  p.

Master equation (Linblad form):
Op l 4
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e.g. interaction with heat bath. 7 (T") particles per
bath mode:

Li(x) = ¥(x)y/v(x)(1+7( T))
Ly(x) = (x)/7(x) 7 (




What can this model describe?

Cold gas of alkali-metal atoms

— in a trap (3D,2D,1D)
— free

Bose-Einstein Condensate (BEC) when very cold

Interactions with an environment. e.g. loss of
atoms at the edge of the trap.

— Evaporative cooling
— Coherent out-coupling (atom laser)

interacting BECs

Bosons in a lattice potential



When do we want first-principles
calculations?

If system is very hot, can use thermodynamics
non-coherent

If system is very cold, all atoms are in one
coherent orbital (BEC), and can use mean field

theory R
U — 9

If it is a bit hotter can use perturbation theory
around the mean field
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If both coherent and non-coherent processes are
important and coupled to each other, then neither
approach works well, and a first-principles method
is desirable. e.g.

— Formation of BEC under evaporative cooling.
— Collision of BECs
— BEC near critical temperature.



| attice

e For computer simulations need to approximate
space as a lattice with volume Ax at each lattice
point.

e At each point

e Gy and @l are anihilation/creation operators like
In quantum optics.

e For cold alkali metal gases (e.g. BEC) can use

Ux—-y)—=gdx—y)



Hilbert space complexity problem

Brute force does not work for many-body systems,
as everyone knows.

e Supose we have a lattice with 5 points
(not very big!)

e And there are 10 atoms.

e The basis at each lattice point & can consist of
Ing), with ng atoms (n, < 10).

e The full density matrix is

p= > Cnpm, @z |na), (mal,

Ny, Mg

o There are ~ 1.3 x 10!° complex coefficients
Chg,m, to store in memory.

« Number of coefficients grows as
e’ with N lattice points.



A fix: phase space representations

5= / P(T) (D)) (¢(T)] dF
$(D)) = Q) [6(T =),

e Local off-diagonal operator |9)_ (@], at each
lattice point x

e Each local basis state |w(7x))x depends on a
set of continuous variables 73;

e P(V) is a distribution of the variables 7,
which specify the separable off-diagonal operators

[9) (ol



Statistical interpretation

If P is real and positive then it is a distribution of
the variables /. Taking S samples,

ZS:‘ 7<a>>< 7@))‘

when 7 is the jth sample of the distribution

P(?).

e There is a small set number of variables in 7/ (%)
per lattice point (usually two complex ).

« The number of variables in each
sample grows only x NV with NV

lattice points.

e Tractable for calculations.



Correspondences for evolution

For some kernels A, you can make the following exact
correspondences:

1. Master equation to equation for distribution P

8p OP(V)
ot ot

2. to stochastic (i.e. noisy) equations for the kernel
variables

orP oV
ot ot

These last equations for o can be applied separately
to each sample o (9).
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Numerical procedure

Approximate initial state p(0) by taking S samples
9 according to the initial distribution P(¥, 0).

Evolve each sample according to the stochastic
equations which correspond to the exact quantum

evolution.

Calculate observables by

O) = Tr [ﬁ@}

Q

%ig(i) <¢(7(j)>‘ O ‘¢(7(J‘))>

As the number of samples grows, the observables
are estimated with growing accuracy.

Since the number of variables is o« N for N lattice
points, can do first principles calculations of very

large systems.

BUT with limited precision.
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Positive P distribution

Off-diagonal coherent state operators

at each lattice point x, where
) = o—lazl?/2 axaw 0)
is the coherent state well known in quantum optics.

o P(ay, ;) is positive real, so stochastic
interpretation is possible.

e stochastic equations for «, and [, can be
obtained for our interacting Bose gas model.

e e.g. number of particles at lattice point z is

1 S
(61,) ~ — () A ()
Q) ™ SZ: {O‘xj Bz }



Why use coherent states?

Suppose we use instead a number state operator
[n) (m|

at each lattice point, where |n) means there are
precisely n atoms. This does not work because:

e e.g. number of particles at the lattice point is

(a'a) = (m|@'a|n)

e Most density matrix samples are off-diagonal

(m # n)

e So, most samples contribute zero to the
observable calculations.

e Lots of computer time, no result.
Coherent states work because

(B*|a%ala) #0
and each sample contributes.
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Equations

Just as an example:

douy, . . g 9 Va : ‘9
= ~ OzPy — Dz z\/ = Sz(t).
gy Wy, By + i B 5 Pz =+ p 6:1:5 (t)

® w,, contain kinetic interactions

e w,;, contain external potential and kinetic
Interactions

® 7, is loss to a T' = 0 heat bath
e g is the inter-atom collision strength
e Az is the lattice spacing

o £(t) and £(t) are gaussian random noises of
variance 1. Independent at each time step.
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Too good to be true?

The equations for o, and (3, are unstable.

Straightforward simulation does not last long
before precision is lost.

Can develop equivalent but more stable equations
using “stochastic gauge” method.

Phys. Rev. A 66, 033812 (2002)

J. Opt. B. 5, 5281 (2003)

Phys. Rev. Lett. 92, 040405 (2004)

| won't go into this because it becomes rather
technical.

But will show some simulation results.
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Thermodynamics

Environment at temperature T' = 1/kpT and
chemical potential u(7T).

Density matrix:
p(T) = exp [(/,L(T)ﬁ - ﬁ) 7'} :

Particle number

AN AN

N:/@W@ﬁ@y

Master equation:

%ykbwﬁ_mgymﬂﬁ

p(0) is known (T — o0), so can start there,
and integrate master equation to obtain grand
canonical ensemble at finite temperature.
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1D Bose gas: spatial correlations
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1.8 coherent estimate
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with density n(z).

Collision strength v = % =10
(Ideal gas v — 0, hard sphere gas v — 00).

Temperature T' = 107},

2 2
(quantum degeneracy temperature kgTy = W)
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1D Bose gas:
momentum distribution
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1D Bose gas:
three-particle correlations
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1D Bose gas: Simulation Range
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Propagation of correlations in 1D

condensate
y=0.00005
X
@ 1 \ ’ muu “““““““““
o) -\‘.,.‘\\““‘“é.‘ﬁ\‘;‘-“-i-“-‘-‘
\\"' "; ":"‘3\'.‘-\“\““‘-‘“
‘ ‘ \"n “‘1:1:‘:‘:“1‘51:‘:‘:‘:‘\‘
om L .
0.998 “' 3 \\\}\\\‘«7 'l -"',-".'%"; Wﬁ ‘W‘ =
Ty "\‘v}{‘v‘\” “\\ '7 e “"”I "‘\“»"4“1'&4 i
o'\ R ‘v“-“f'«%‘w"‘év‘ i
N 4
: ““ ’I/ ,\é).'"?‘.‘-‘\%’é‘ \0, '
t/u t 10 \//
20 0 -50
50 X/&
e Initially: coherent wavefunction — effectively

Interaction zero.

e Subsequently: rise in intereaction to finite levels
iInduces a correlation on interatomic scales.

e e.g. change in scattering length due to Feschbach

resonance.
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g 9({x, x.})

In two dimensions

(: n({0,0})n({z1, T2}) 2)

(2) L1, X2y) = - =< n
97 ) (n({0,0}))(n({z1,z2}))
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Bose enhancement of scattered
atoms in moving condensates

scattered atoms
2nd condensate

generated by
Original toptlcc'_altl_ Bragg
condensate ransition
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e Collaboration with Marek Trippenbach, and Jan
Chwedenczuk, Warszawa.

e [ hree-dimensional simulation

o 23Na.

e Parameters as in Vogels,Xu&Ketterle[PRL 89,
020401], but with less atoms (150 000 rather

than 30 000 000).
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