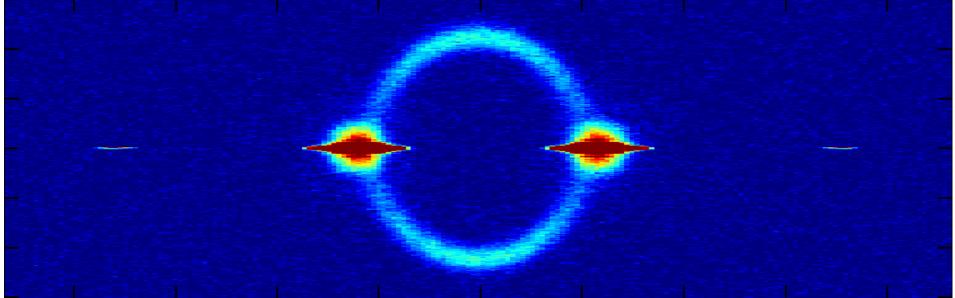
Quantum dynamics of correlated atom pairs

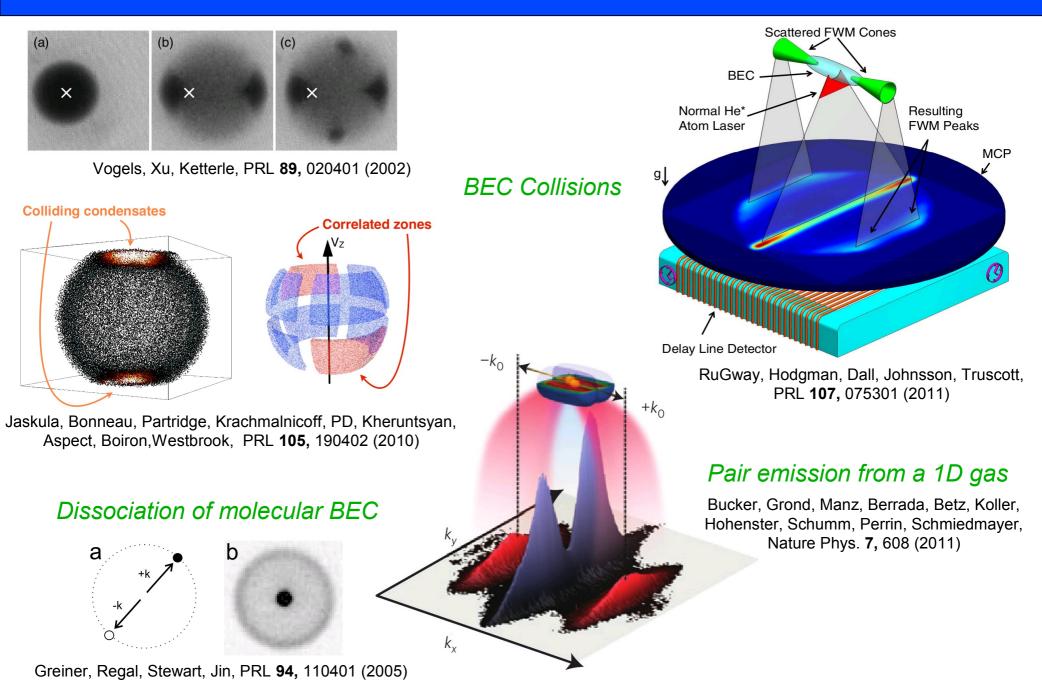
Piotr Deuar

Institute of Physics, Polish Academy of Sciences, Warsaw



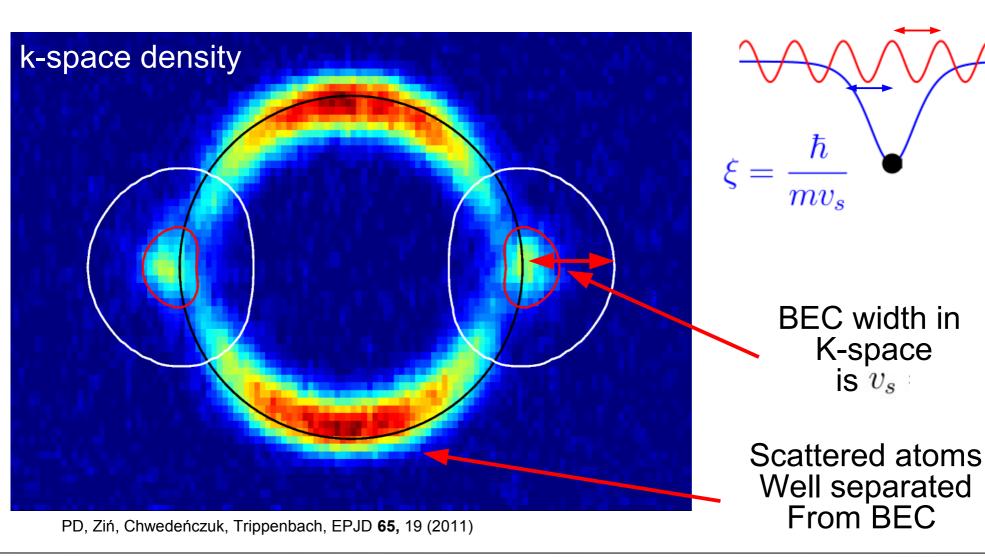
- 1. Supersonic pair creation
- 2. Positive-P/Bogoliubov method
- 3. He* pair scattering at T=0
- 4. Quasicondensate 0 < T < ~Tc

Supersonic pair creation



Supersonic scattering

• Above the speed of sound $v_s = \sqrt{\mu/m}$ a condensate no longer behaves as a superfluid



mv

Bogoliubov pair creation

$$\begin{split} \hat{H} &= \int dx \left\{ \hat{\Psi}^{\dagger}(x) \left[V(x) - \frac{\hbar^2}{2m} \nabla^2 \right] \hat{\Psi}(x) + \frac{g}{2} \hat{\Psi}^{\dagger}(x)^2 \hat{\Psi}(x)^2 \right\} \\ \hat{\Psi}(\mathbf{x}, t) &= \phi(\mathbf{x}, t) + \hat{\delta}(\mathbf{x}, t) \\ &\text{BEC} \quad \text{incoherent part} \\ \quad \text{"scattered" atoms"} \\ \hat{H}_{\text{eff}} &= \int d^3 \mathbf{x} \, \hat{\delta}^{\dagger}(\mathbf{x}) H_0(\mathbf{x}) \hat{\delta}(\mathbf{x}) \\ &+ 2g \int d^3 \mathbf{x} \, |\phi(\mathbf{x})|^2 \hat{\delta}^{\dagger}(\mathbf{x}) \hat{\delta}(\mathbf{x}) \\ &+ \frac{g}{2} \int d^3 \mathbf{x} \, \phi(\mathbf{x})^2 \hat{\delta}^{\dagger}(\mathbf{x}) \hat{\delta}^{\dagger}(\mathbf{x}) + \text{h.c.} \quad \begin{array}{l} \text{Pair creation} \\ \text{Pair creation} \end{array} \end{split}$$

Bogoliubov hurdles

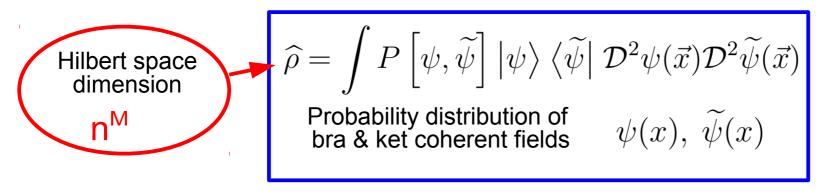
- Looks like a linear problem, so why not just diagonalize $\hat{H}_{\rm eff}~$ and have everything, but.....
 - 1. The numerical lattice might be too large $(10^6 10^7 \text{ points in a 3D calculation})$

(note also the *"human time"* bottleneck!)

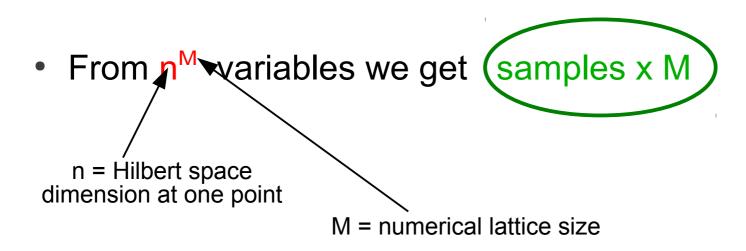
- 2. BEC evolves "under" the Bogoliubov field \rightarrow would have to re-diagonalize at each time step 3. Assumption of small $\widehat{\delta}(\mathbf{x}, t)$ may fail
- Diagonalization can be avoided by using the positive-P representation

Positive-P representation

Drummond, Gardiner J. Phys. A **13**, 2353 (1980)



- The distribution P is positive & real
- Density matrix $\widehat{\rho} \leftrightarrow$ distribution P for the fields $\psi(x), \psi(x) \leftrightarrow$ random samples of the fields



Schrodinger → Langevin equations

Evolution of $\widehat{\rho} \rightarrow$ diffusive evolution of P (Fokker-Planck equation)

 \rightarrow random walk of samples of $\,\psi(x),\psi(x)$

 $\begin{array}{l} \mathbf{Observables} \\ \langle \hat{O} \rangle = \mathrm{Tr} \left[\hat{\rho} \, \hat{O} \right] \end{array}$

Expectation values of observables \rightarrow moments of P

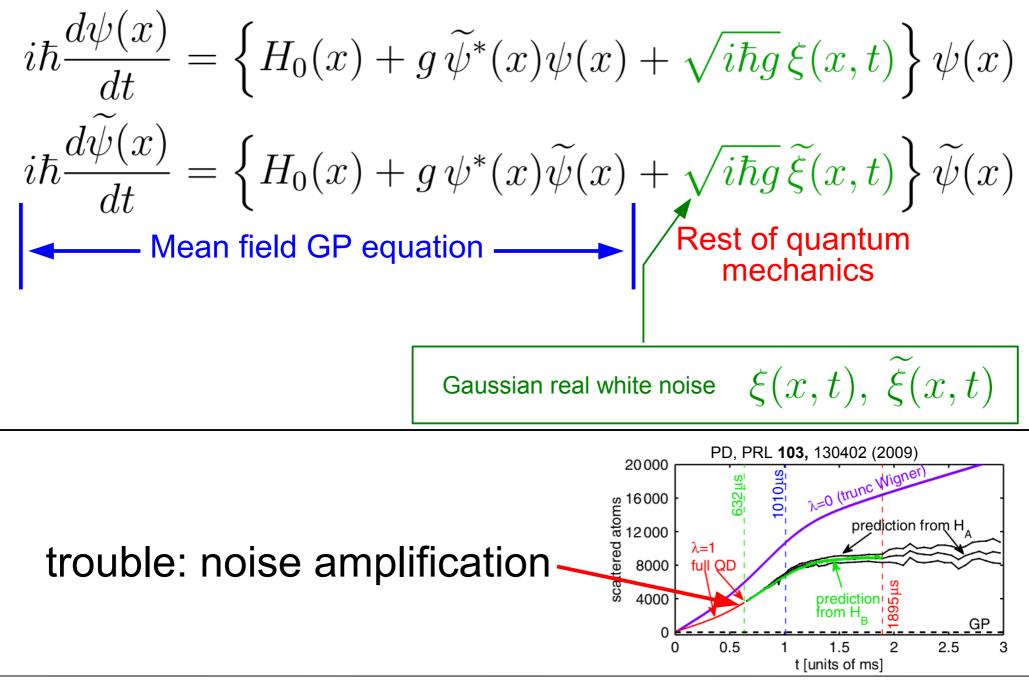
 \rightarrow stochastic averages of samples $\psi(x), \widetilde{\psi}(x)$

<u>As samples $\rightarrow \infty$ we get better precision</u>

$$\rho_1(\mathbf{x}, \mathbf{x}') = \left\langle \hat{\Psi}^{\dagger}(\mathbf{x}) \hat{\Psi}(\mathbf{x}') \right\rangle = \operatorname{Re} \langle \widetilde{\psi}(\mathbf{x})^* \psi(\mathbf{x}') \rangle_{st}$$

Bare positive-P equations

PD, Drummond PRL 98, 120402 (2007)



18.04.2012 Swinburne University of Technology, Melbourne, Australia

9/17

Bogoliubov positive-P equations

, Chwedeńcz<mark>uk, Ziń, Trippenbach, PRA **83,** 063625 (2011)</mark>

Krachmalnicoff *et al*, PRL **104,** 150402 (2010)

condensate Bogoliubov fluctuation field – *MUST BE "small"*

Treat only $\widehat{\delta}(\mathbf{x},t)$ using positive-P representation

$$i\hbar \frac{d\phi(x)}{dt} = \left[H_0(x) + g|\phi(x)|^2\right]\phi(x) \qquad \text{Mean field}$$

$$i\hbar \frac{d\psi(x)}{dt} = \left\{H_0(x) + 2g|\phi(x)|^2\right\}\psi(x) + g\phi(x)^2\widetilde{\psi}(x)^* + \sqrt{i\hbar g}\,\phi(x)\xi(x,t)$$

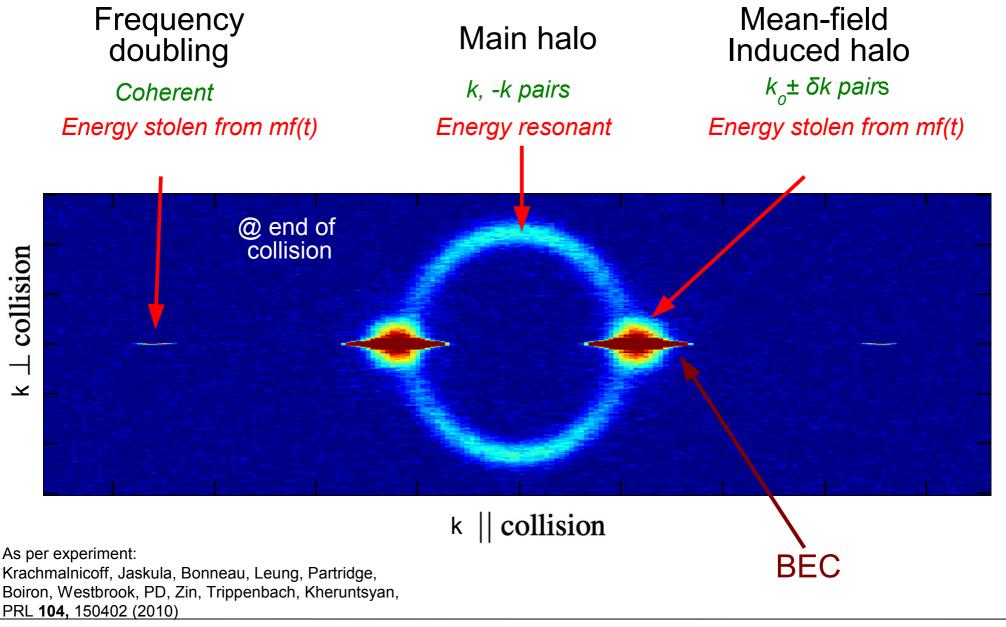
$$i\hbar \frac{d\widetilde{\psi}(x)}{dt} = \left\{H_0(x) + 2g|\phi(x)|^2\right\}\widetilde{\psi}(x) + g\phi(x)^2\psi(x)^* + \sqrt{i\hbar g}\,\phi(x)\widetilde{\xi}(x,t)$$

Now equations are linear ----> no blow-up of noise :)

Can use plane wave basis ---> no diagonalizing of 10⁶ X 10⁶ matrices :) ---> less human time used! :)

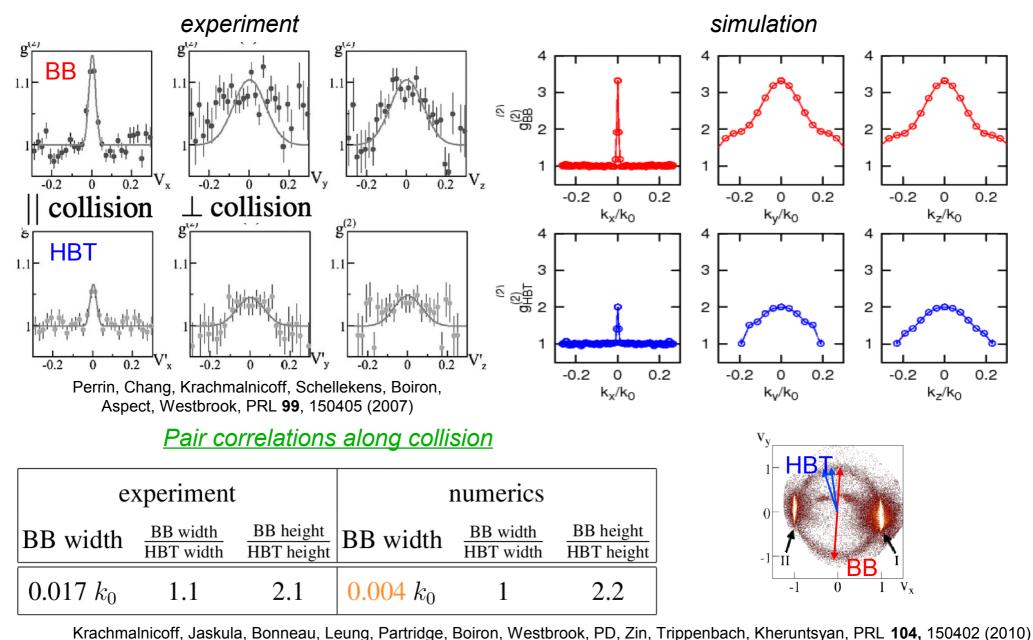
 $\widehat{\Psi}(\mathbf{x},t) = \phi(\mathbf{x},t) + \widehat{\delta}(\mathbf{x},t)$

He* BEC collisions (T=0)



18.04.2012 Swinburne University of Technology, Melbourne, Australia

Halo correlations



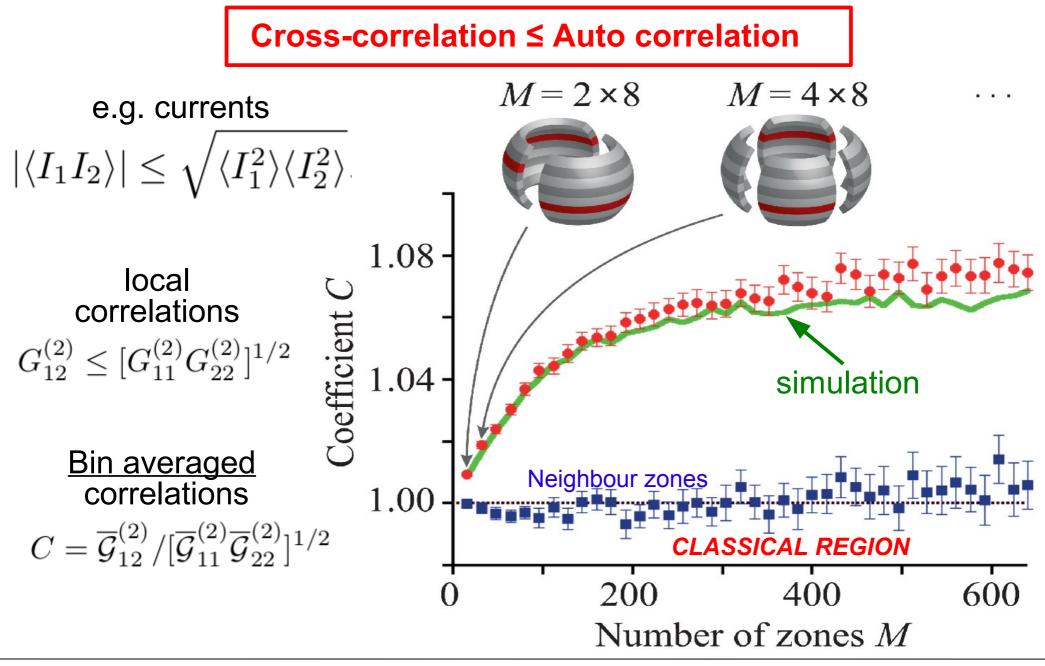
Krachmainicon, Jaskula, Bohneau, Leung, Parthuge, Bohon, Westbrook, PD, Zin, Thppenbach, Kherunisyan, PRL 104, T

18.04.2012 Swinburne University of Technology, Melbourne, Australia

12/17

Cauchy-Schwartz inequality violation

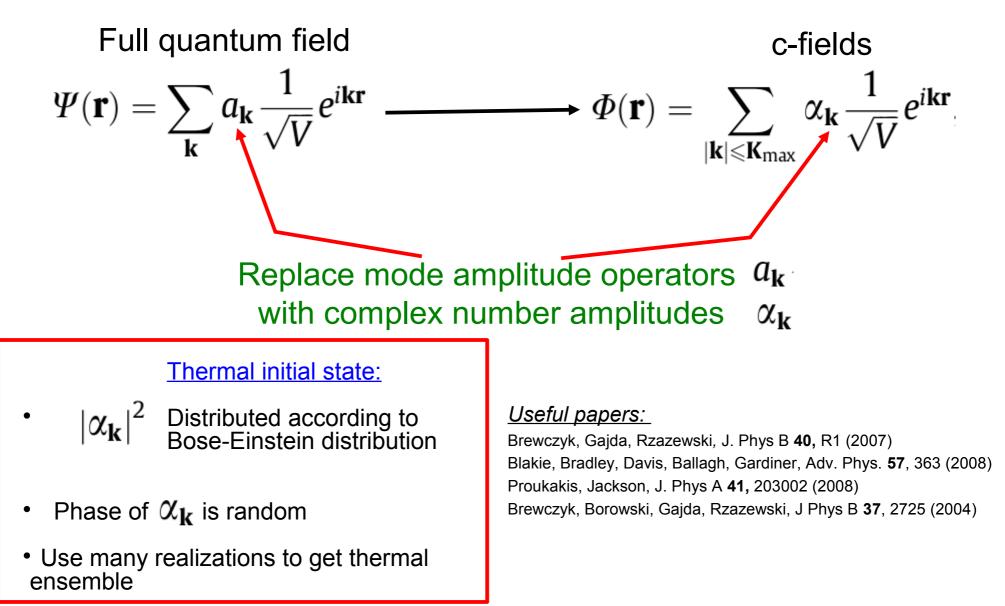
Kheruntsyan, Jaskula, PD, Bonneau, Partridge, Ruaudel, Boiron, Lopes, Westbrook, arXiv:1204.0058



18.04.2012 Swinburne University of Technology, Melbourne, Australia

Classical field model for T>0

e.g. free space : plane wave basis

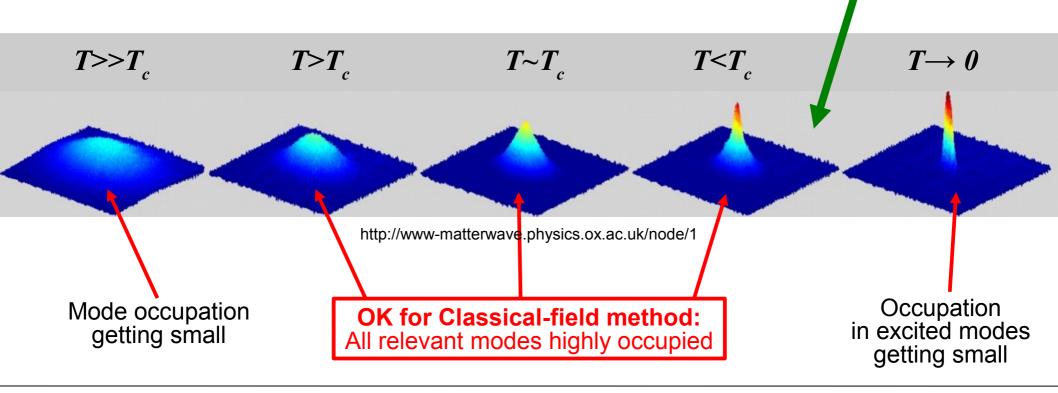


Validity of classical field

$$\left[\hat{\Psi}(x), \hat{\Psi}^{\dagger}(x')\right] = \delta(x - x') \qquad \rightarrow \qquad \left[\psi^*(x), \psi(x')\right] = 0$$

 \rightarrow it will be fine, ...

.... as long as there are <u>always many atoms involved</u> in whatever it is we are studying



18.04.2012 Swinburne University of Technology, Melbourne, Australia

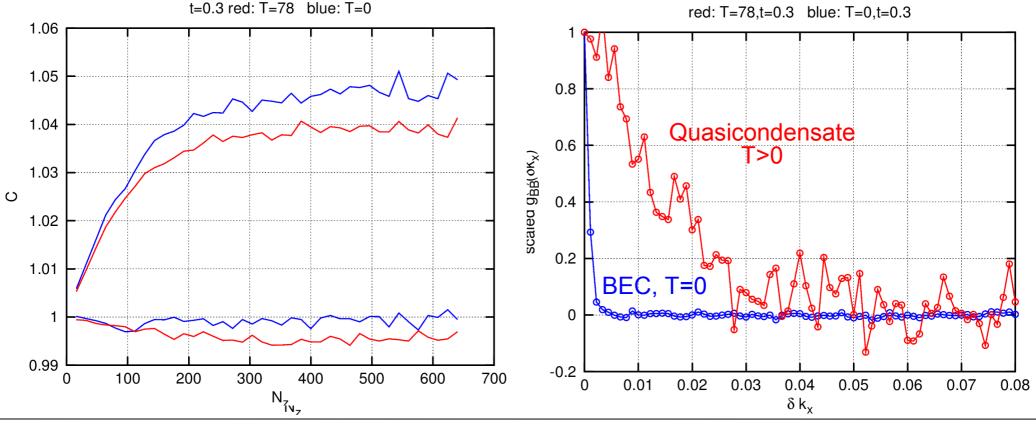
Quasicondensate

Quasicondensate effects on correlations

Initial classical field described by model of *Phase-fluctuating 3D condensates in elongated traps* Petrov, Shlyapnikov, Walraven, PRL **87**, 050404 (2001)

CS-violation not affected much

k,-k correlations strongly affected



18.04.2012 Swinburne University of Technology, Melbourne, Australia

16/17

Conclusions / Outlook

- "Straightforward" simulation of supersonic quantum dynamics With positive-P treatment of Bogoliubov field
- Bogoliubov dynamics made tractable for large systems
 By use of plane wave modes + stochastic noise
- Treat classical field realizations as condensates for T>0
 Quasicondensate (and near Tc?)