Violation of the Cauchy-Schwartz inequality with matter waves

Piotr Deuar
Institute of Physics, Polish Academy of Sciences, Warsaw

Experiment

Chris Westbrook (Palaiaseau):
Denis Boiron
Jean-Christophe Jaskula
Marie Bonneau
Guthrie Partridge Josselin Ruaudel
Raphael Lopes

Theory

Karen Kheruntsyan
(University of Queensland)
Piotr Deuar
(IF PAN, Warsaw)

By way of motivation: quantum nonlocality

Bell's theorem:

Any hidden variable theory consistent with relativity cannot describe all the phenomena of quantum mechanics

- 1935 EPR paradox
"quantum mechanics is incomplete"
- 1964 Bell's inequality
"either quantum mechanics or local realism" $\sqrt{2}$
- Experiments:
- 1972 Freedman \& Clauser
- 1981 Aspect [photons] ----- "looks like it's quantum mechanics"
- 1998 Zeilinger (closed locality loophole)
- 2001 Wineland (closed detection loophole) [ion internal states]
- 2007 Zeilinger (ruled out Leggett-type non-local realism)
- 2009 Martinis [solid state qubits]

Now consider separated entangled atomic pairs:

- entangled mass
- objects with internal structure

BEC collision

- Above the speed of sound $v_{s}=\sqrt{\mu / m}$ a condensate no longer behaves as a superfluid

$$
\lambda_{v}=\frac{2 \pi \hbar}{m v}
$$

k-space density

BEC width in K-space K -space
is v_{s}

Scattered atoms Well separated From BEC
PD, Ziń, Chwedeńczuk, Trippenbach, EPJD 65, 19 (2011)

So far in Orsay

- 2005 single atom measurements, HBT M. Schellekens et al, Science 310, 648 (2005),
- 2007 Observation of correlations across halo A. Perrin et al, PRL 99, 150405 (2007)
- 2010 sub-Poissonian fluctuations of number difference across halo
J.C. Jaskula et al, PRL 105, 190402 (2010)
- 2012 Cauchy-Schwartz inequality violation K. V. Kheruntsyan et al, PRL 108, 260401 (2012)

Cauchy-Schwartz inequality

- For vectors:

$$
|\vec{x} \cdot \vec{y}| \leq|\vec{x}||\vec{y}|
$$

- Limit on allowed fluctuations of random variables:

$$
\operatorname{Cov}[X, Y] \leq \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}
$$

- Obeyed by observables in classical physics, and any ensemble from which single values are drawn
- Simplest test of stronger-than-classical correlation
- Precursor, necessary condition of Bell tests etc.

Cauchy Schwartz - quantum formulation

- Consider 2 boson modes $\widehat{a}_{1} \widehat{a}_{2}$
- and simultaneous detection of two particles, e.g.
- expectation value of the number of particles detected in mode 1 :

$$
\left\langle\widehat{a}_{1}^{\dagger} \widehat{a}_{1}^{\dagger} \widehat{a}_{1} \widehat{a}_{1}\right\rangle
$$

- expectation value of the number of particles detected taking one from each mode:

$$
\left\langle\widehat{a}_{1}^{\dagger} \widehat{a}_{2}^{\dagger} \widehat{a}_{2} \widehat{a}_{1}\right\rangle
$$

- Cauchy-Schwartz inequality for the results of these measurements:

$$
\left\langle\widehat{a}_{1}^{\dagger} \widehat{a}_{2}^{\dagger} \widehat{a}_{2} \widehat{a}_{1}\right\rangle^{2} \leq\left\langle\widehat{a}_{1}^{\dagger 2} \widehat{a}_{1}^{2}\right\rangle\left\langle\widehat{a}_{2}^{\dagger 2} \widehat{a}_{2}^{2}\right\rangle
$$

$$
g_{i j}^{(2)}=\frac{\left\langle\widehat{a}_{i}^{\dagger} \widehat{a}_{j}^{\dagger} \widehat{a}_{j} \widehat{a}_{i}\right\rangle}{\left\langle\widehat{a}_{j}^{\dagger} \widehat{a}_{j}\right\rangle\left\langle\widehat{a}_{i}^{\dagger} \widehat{a}_{i}\right\rangle}
$$

Cauchy-Schwartz inequality - violation

- Stronger than any possible classical correlations
- Cross-correlations between particles in two different modes are larger than correlations between particles in the same mode
- No underlying probability distribution of particle counts in individual modes
- Particle counts not described by random variables.
- Violated in the past in quantum optics:

```
- Clauser, Phys. Rev. D 9, }853\mathrm{ (1974)
- Kimble Dagenais, Mandel, PRL 39, }691\mathrm{ (1997)
- Zou, Wang, Mandel, Opt. Commun. 84, 351 (1991)
- Marino, Boyer, Lett, PRL 100, 233601 (2008)
```


Experiment - setup, bins

Simulation - t-dependent Bogoliubov approx.

PD, Chwedeńczuk, Ziń, Trippenbach, PRA 83, 063625 (2011)
Useful to see what's going on (only have access to the final distribution in experiment)

Bogoliubov fluctuation field - MUST BE "small"
Bogoliubov is "easily solvable". However,
3D simulation: 10^{7} spatial grid points. $H=10000000 \times 10000000$ matrix? Did not try to diagonalize

Treat only $\widehat{\delta}(\mathbf{x}, t)$ using positive-P representation

See also Wigner treatment:
Sinatra, Castin \& Lobo J. Mod Opt 47, 26292000

$$
i \hbar \frac{d \phi(x)}{d t}=\left[H_{0}(x)+g|\phi(x)|^{2}\right] \phi(x) \quad \text { GP mean field }
$$

$$
i \hbar \frac{d \psi(x)}{d t}=\left\{H_{0}(x)+2 g|\phi(x)|^{2}\right\} \psi(x)+g \phi(x)^{2} \widetilde{\psi}(x)^{*}+\sqrt{i \hbar g} \phi(x) \xi(x, t)
$$

$$
i \hbar \frac{d \widetilde{\psi}(x)}{d t}=\left\{H_{0}(x)+2 g|\phi(x)|^{2}\right\} \widetilde{\psi}(x)+g \phi(x)^{2} \psi(x)^{*}+\sqrt{i \hbar g} \phi(x) \widetilde{\xi}(x, t)
$$

Can use plane wave basis ---> no diagonalizing of $10^{7} \times 10^{7}$ matrices :)

Experiment - correlations

- Two local modes (measurements) \rightarrow use peak values
- Peak values seem to imply no CS violation

Experiment - number squeezing

- However, experiment showed number difference squeezing between opposite regions of the halo.(sub-Poissonian fluctuations)

$$
\operatorname{var}\left[n_{1}-n_{2}\right]<\left\langle n_{1}+n_{2}\right\rangle
$$

- Which is equivalent to Cauchy-Schwartz violation in a symmetric two-mode situation.

$$
\eta^{2}=\frac{\Delta\left(n_{1}-n_{2}\right)^{2}}{n_{1}+n_{2}} \geq 1 \quad \text { classically }
$$

- So what gives? Two-mode assumption!

Multimode Cauchy-Schwartz violation

Kheruntsyan, Jaskula, PD, Bonneaư, Partridge, Ruaudel, Boiron, Lopes, Westbrook, PRL 108, 260401 (2012)

Consider 2 BINS not 2 MODES

Bin averaged correlations $\widehat{N}_{i}=\int_{\operatorname{bin} j} \widehat{\Psi}^{\dagger}(k) \widehat{\Psi}(k) d k$
$\overline{\mathcal{G}}_{i j}^{(2)}=\left\langle: \widehat{N}_{i} \widehat{N}_{j}:\right\rangle$
$C=\overline{\mathcal{G}}_{12}^{(2)} / \sqrt{\overline{\mathcal{G}}_{11}^{(2)} \overline{\mathcal{G}}_{22}^{(2)}}$
$C \leq 1$
classically
compare $g_{12}^{(2)} \leq \sqrt{g_{11}^{(2)} g_{22}^{(2)}}$
$M=2 \times 8 \quad M=4 \times 8$

simulation
$1.00 \begin{gathered}1.0 \\ 0\end{gathered}$
Number of zones M

Multi-mode : simple model

- Gaussian ansatz for correlations

$$
g_{\mathrm{bb} ; \mathrm{cl}}^{(2)}(\overrightarrow{\Delta x})=1+h_{\mathrm{bb} ; \mathrm{cl}} e^{-|\overrightarrow{\Delta x}|^{2} / 2 \sigma_{\mathrm{bb} ; \mathrm{cl}}^{2}}
$$

- Multimode relationships:

$$
\begin{aligned}
& \eta^{2}=1+(2 \pi)^{3 / 2} \bar{n}\left[h_{\mathrm{cl}} \sigma_{\mathrm{cl}}^{3}-h_{\mathrm{bb}} \sigma_{\mathrm{bb}}^{3}\right] \quad 10 \quad \begin{array}{r}
\text { Dense halo } \\
\text { can be bad for }
\end{array} \eta^{2} \\
& \text { LARGE BIN } \gg \sigma \\
& \eta^{2}=1+\bar{n}(\Delta x)^{3}\left[h_{\mathrm{cl}}-h_{\mathrm{bb}}\right] \\
& \text { SMALL BIN } \ll \sigma \\
& \text { correlation peak } \\
& \text { coherence volume } \\
& \text { bin size } \\
& \text { PD, T. Wasak, J. Chwedeńczuk, M. Trippenbach, unpublished }
\end{aligned}
$$

Conclusions

- Cauchy-Schwartz violation with massive, separated particles

Simplest nonclassicality test
Precursor of Bell tests on massive particles

- Multimode nature of correlations can be crucial Coherence volume and bin volume important
- Bogoliubov theory with a very large lattice tractable With stochastic approaches: positive-P or Wigner
- Outlook: Bell tests?

Rarity-Tapster scheme

Rarity \& Tapster, PRL 64, 2495 (1990)

