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Outline

• Why are first principles many-body cal-

culations hard?

• How the positive P-distribution can sim-

ulate the formation of a BEC

• Unfortunately, it can’t simulate a BEC’s

evolution due to quartic terms in the Hamil-

tonian.

• How this problem has been overcome for

a single momentum-mode quartic hamil-

tonian, (which displays the same prob-

lemetic numerical behaviour), by using a

new Hermitian P-distribution.

• This should be able to lead to a full sim-

ulation of a BEC’s evolution.
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Some quotes:

• “Can a quantum system be probabilis-

tically simulated by a classical universal

computer? . . . If you take the computer

to be the classical kind . . . the answer

is certainly, No!” (Richard P. Feynman

Simulating Physics with Computers)

• “The equivalent to Molecular Dynamics

. . . does not exist in any practical sense

. . . One is forced to either simulate very

small systems (i.e. less than five parti-

cles) or to make serious approximations.”

(David M. Ceperley, Lectures on Quan-

tum Monte Carlo, May 1996 )
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Many-Many Body Problems

It has been (and is) claimed (e.g. famously

by Feynman) that full quantum evolution of

systems involving a large number of bodies is

impossible to model on classical computers.

The idea being that if you have N bodies,

each with D energy levels (say), then Hilbert

space has

DN

dimensions.

e.g. for just 20 10-energy-level particles, that’s

100,000,000,000,000,000,000

simultaneous differential equations to solve.

(piece of cake!)

But. . .
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But. . . you can simulate the state evolution

usingphase-space methods, which lead to stochas-

tic equations. In many cases you only have

some constant × N

stochastic equations!

E.g: Drummond and Corney treated the evap-

orative cooling of ions, and formation of a

BEC from first principles using the positive

P-distribution.

[P. D. Drummond and J. F. Corney,

Phys. Rev. A 60, R2661 (1999)]

There were 10,000 atoms!

Clearly stochastic methods are useful here!
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Quantum model of a
BEC

The usual non-relativistic Hamiltonian for neu-

tral atoms in a trap V (x), interacting via a

potential U(x), together with absorbing reser-

voirs R̂(x), in D = 2 or D = 3 dimensions:

Ĥ =
∫

dD
x

[
h̄2

2m
∇Ψ̂†(x)∇Ψ̂(x)

]

+
∫

dD
x

[
V (x)Ψ̂†(x)Ψ̂(x)

]

+
∫

dD
x

[
Ψ̂†(x)R̂(x) + Ψ̂(x)R̂†(x)

]

+
∫ ∫

dD
xdD

y
U(x − y)

2
Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x) .
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Momentum mode model

• Expand the field Ψ̂(x) using free-field modes,

with a maximum momentum cutoff |k|max.

• Provided |k|max ≪ a−1
0 , where a0 is the

S-wave scattering length, U(x − y) can

be replaced by a delta function.

With anihilation operators âi for the ith mode,

we can write

Ĥ = h̄
m∑

i,j=1

[
ωijâ

†
i âj +

χij

2
n̂in̂j

]

+ trap potential and damping terms

also include reservoir in master equation

where: n̂i = â
†
i âi
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• The condensation of a BEC has been

simulated with Positive P distribution meth-

ods on the lattice model above, but sam-

pling error destroys the simulation after

the time of condensation.

• The positive P method works well for the

â
†
i âj and damping terms, but cannot han-

dle terms like (â†â)2 for longer times.

• Need a method with much less sampling

error for the (â†â)2 Hamiltonian.

• Have found one. See below!
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Positive P representation
A quick review

ρ̂ =
∫

P (ααα, βββ)
| ααα >< βββ |
< βββ | ααα >

d2nααα d2nβββ

• P is a positive, real, normalised distribu-

tion function over the n-subsystem co-

herent states | ααα >, | βββ >.

• P exists for any quantum state.

• When appropriate boundary terms van-

ish, P obeys a Fokker-Planck equation.

(FPE)

• The FPE leads to 2n complex stochastic

equations
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Advantages of Positive P

For n subsystems:

• IMMENSE improvement over direct so-

lution of density matrix:

– Density matrix methods would require

2Dn real equations, with D itself large.

– Positive P requires only 4n real stochas-

tic equations!

• Used already to make some successful

many-body predictions

– Quantum soliton behaviour in optical

fibers [Nature 365, pp 307]

– Condensation of a BEC [Phys. Rev.

A 60, pp R2261 ]
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Anharmonic n̂2

Hamiltonian

Ĥ =
h̄χ

2
(â†â)2

Is the crucial term for a BEC simulation.

Standard Positive P simulations notoriously

give unmanageable sampling errors after

short times.

The density matrix ρ̂ evolves according to

∂ρ̂

∂t
=

−i

h̄
[Ĥ, ρ̂]

=
∫

P (α, β)
ĤΛ̂ − Λ̂Ĥ

Tr[ Λ̂ ]
d2αd2β

with

Λ̂ = ||α >< β||

In terms of the un-normalised Bargmann

coherent states

|| α > = eαâ†| 0 >= e|α|
2/2|α >
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We can use the operator identities

(â†â) Λ̂ = α
∂

∂α
Λ̂

Λ̂ (â†â) = β∗ ∂

∂β∗Λ̂

To generate a Fokker-Planck Equation for

P if appropriate boundary terms vanish.

∂P

∂t
=

[
i

∂

∂α
α(αβ∗ +

1

2
) − i

∂

∂β∗β∗(αβ∗ +
1

2
)

+
∂2

∂α2
α2 − ∂2

∂β∗2β∗2
]

P

This then leads to two complex stochastic

equations with two real, gaussian noises dW

and dW with < dW (t)dW (t′) >= δ(t − t′)dt

dα = −iα[ (αβ∗ +
1

2
)dt +

√
i dW ]

dβ = −iβ[ (α∗β +
1

2
)dt +

√
i dW ]
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Observables are then calculated as appropri-

ate averages over the calculated trajectories.

E.g. occupation number of the mode

< â†â >=< αβ∗ >trajectories

Unfortunately for this hamiltonian (and thus

the BEC), the distribution of |α| develops

exponentially growing tails after some time.

For BECs this occurs at the same time as

condensation.
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Comparison of the variable α for the positive

P and µ = 1 low sampling error gauge. The

initial coherent state | 3 > was acted on by

Ĥ = h̄
2(â†â)2 for t = 0.6. The scale is loga-

rithmic! Note the small number of very large

α values in the Positive P simulation which

cause the large sampling error. 10,000 tra-

jectories shown.
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Hermitian P
representation

ρ̂ =
∫

P (ααα, βββ, θ)
Λ̂(ααα, βββ, θ)

Tr[ Λ̂ ]
d2nααα d2nβ dθ

The Kernel Λ̂ is

Λ̂ = eiθ || ααα >< βββ || + e−iθ || βββ >< ααα ||

In terms of n-subsystem Bargmann

coherent states

|| ααα > = exp




n∑

i=1

αiâ
†
i



 | 0 >
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• Has all the desirable properties of the

Positive P distribution,

• but also addresses the sampling
error problem!

• The kernel Λ̂ consists of coherent states,

like the Positive P, but is hermitian.

• Λ̂ Has an internal quantum phase θ.

• Λ̂ is entangled if ααα 6= βββ.

• A positive, real P exists for all quantum

states.

P (ααα, βββ, θ) = P+(ααα, βββ) δ
(
θ − arg(ααα∗ · βββ)

)

(here P+ is the “old” positive P distribu-

tion function.)
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• For n subsystems/modes, we would now

have 4n + 1 real stochastic equations.

(There is only one quantum phase θ for

the entire system.)

• The expectation values of all the observe-

ables can be calculated by generating some

amount N of realizations of these stochas-

tioc equations, and averaging over them.

To get the expectation value of observ-

able X̂

< X̂ > =

〈
Tr[X̂Λ̂]

Tr[ Λ̂ ]

〉
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For our anharmonic Hamiltonian

Ĥ =
h̄χ

2
(â†â)

We get exactly the same stochastic equa-

tions as with the original Positive P distribu-

tion.

So, what have we gained..?
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Stochastic Gauges

With the new kernel, we have new operator

identities!
(

i
∂2

∂α∂θ
+

∂

∂α

)
Λ̂ = 0

(
i

∂2

∂β∂θ
+

∂

∂β

)
Λ̂ = 0

(
∂2

∂θ2
+ 1

)
Λ̂ = 0

Thus we can add any arbitrary multiple, or

integral f, f of them to the master

equation, which contains things like
∫

PĤΛ̂.

We can add any functions of the variables:

f(α, β, θ) like

0 =
∫

P f

(
∂2

∂θ2
+ 1

)
Λ̂ d2α d2β dθ

.

21



Then we obtain correspondences in the Fokker

Planck eqn., e.g.

0 ↔
(
2

∂

∂θ
f tan

(
θ + Im[αβ∗]

)
+

∂2

∂θ2
f

)
P

which overall lead to modifications of the

stochastic equations.

dα = −iα[ {αβ∗ +
1

2

− G(1 + i)(T + i)}dt +
√

i dW ]

dβ = −iβ[ {α∗β +
1

2

− Ḡ(1 − i)(T + i)}dt +
√

i dW ]

dθ̃ = −2T (G2 + Ḡ2)dt +
√

2 [GdW + ḠdW ]

with

θ̃ = θ + Im[αβ∗] ; T = tan(θ̃)
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We now have ARBITRARY functions

(Gauges) G, Ḡ in the stochastic equations

which we can use to tailor them our satis-

faction!

• The choice G = Ḡ = 0 gives the “old”

positive P equations.

(G = f − 1
2 Re[αβ∗(1 + i) ], etc.)

• Our aim is to reduce sampling error. We

do this by keeping α and β fairly small –

this causes diffusion in the θ̃ variable. A

gauge which achieves very small sampling

error is

G = 1
2

(
|α|2 − Re[αβ∗(1 + i)]

)

Ḡ = 1
2

(
|β|2 + Re[αβ∗(1 − i)]

)
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• Unfortunately, this particular gauge ap-

pears to lead to non-vanishing bound-

ary terms in the θ̃ variable, which gives

some (reasonably small) systematic er-

rors in the resulting observables.

• If we make the departure from the “old”

positive P behaviour small, by multiplying

the above gauges by a constant factor

µ, then these systematic errors become

negligible for most time frames, while the

sampling error is still very small compared

to the positive P simulation. There ap-

pears to be a tradeoff between boundary

terms and sampling error.

• For the trial case we have been investi-

gating (α(0) = β(0) = 3), µ = 0.001 is a

good choice.
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Comparison of simulations of the quadrature

Ŷ = 1
2i(â − â†) for an initial coherent state

| 3 > acted on by Ĥ = h̄
2(â†â)2. 10,000 tra-

jectories. Dotted lines indicate the size of

the errors due to finite sampling.
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Comparison of sampling errors for various

stochastic simulations: “old” positive P (µ = 0),

small sampling hermitian P (µ = 1), best her-

mitian P (µ = 0.001). Shown is the variance

in quadrature Ŷ . Size of actual sampling un-

certainty in calculated moment for N trajec-

tories is
√

Var(Ŷ )/N , hence number of trajec-

tories needed for an a accurate result grows

as Var(Y ). Note the logarithmic scale!
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Some Conclusions

• For (n̂)2 anharmonic interactions, sam-

pling error is reduced by many orders of

magnitude, allowing numerical simulations

of systems for which these are important.

• Bose-Einstein Condensates are such sys-

tems.

• The computational overheads (number of

equations) for Positive-P type methods

scale linearly with number of subsystems!

• When the last “kinks” are ironed out of

this method, it should be possible to per-

form full quantum simulations of BEC’s.
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• Further investigation needed to optimize

the gauge – i.e. remove the boundary

term “kinks”.

• During our investigations into appropri-

ate gauges, we have observed that the

optimal choice of gauge may depend on

which observable one is interested in. Tak-

ing this into account may lead to further

improvement in calculation efficiency.

• The stochastic gauge approach could be

used to improve quantum simulations of

many systems, also with other quasi-probability

distributions.
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Thank You
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Comparison of simulations of the quadrature

Ŷ = 1
2i(â − â†) for an initial coherent state

| 3 > acted on by Ĥ = h̄
2(â†â)2. 10,000 tra-

jectories. Thick shaded line: exact result;

Dotted line: Positive P distribution; Dashed

line: µ = 1 Hermitian gauge; Solid line: µ =

0.001 hermitian gauge.
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