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Paweł Ziń (IPJ, Warsaw)
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Plan

• Condensed and uncondensed fractions in a BEC “Matter wave”

• Studying the uncondensed with collisions of BECs

• Describing the BEC using the so-called positive-P representation

• The noisy evolution that results

• some movies

• Interesting features of the stochastic equations

• How quantum many-body dynamics defends itself against this attempt

• Comparison to precision experiments



Condensed and uncondensed fractions in a BEC
Consider the wavelength of a particle of mass m

λ =
h
p
∼ h√

2mE
∼ h√

2mkBT
∝

1√
T

.

A rough picture:
When single wavelengths of different particles overlap, they become
better described by a matter wave, and the BEC forms

Types of uncondensed atoms

• Thermal (Very nicely treated by the SGPE methods of Stoof, Proukakis, et al. )

• Quantum depletion (equlibrium effect, T=0, due to interaction between individual
atoms)

• Supersonic (non-equilibrium) These can physically separate from the main
condensate.



Colliding BECs – experiment
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The uncondensed ones – in velocity-space

mean single shot



Microscopic quantum mechanical description

First-quantized: Wave function ψ(x1,x2, . . . ,xN)

H = − ~
2

2m ∑
j

d2

dx2
j

+∑
j

V (x j)+
g
2 ∑
〈i, j〉

δ(xi− x j)

Second-quantized: Boson field operators Ψ̂(x).

Ĥ =
Z

dx Ψ̂†(x)

{
−~

2∇2

2m
+V (x)+

g
2

Ψ̂†(x)Ψ̂(x)

}
Ψ̂(x)



Difficulty of microscopic description

The Hilbert space of the relevant quantum states grows exponentially with N and/or
the number of single-particle orbitals to consider.

For example M orbitals with up to n particles in each, have a Hilbert space
dimension of

D = (n+1)M

To get eigenstates, eigenvalues, etc, in practice, one needs to diagonalise (or just
even STORE !) matrices of size D2



Gröss-Pitaevskii Equation – GPE

The standard description of a pure condensate.

The assumption – All the N particles are in the same orbital Φ(x, t).

Ψ̂(x, t) → ψ(x, t) =
√

NΦ(x, t)

The order parameter Ψ(x) obeys the (superfluid, mean-field) Gröss-Pitaevskii (GP)
equation:

i~
∂Ψ(x, t)

∂t
=

{
−~

2∇2

2m
+V (x)+g|Ψ(x, t)|2

}
Ψ(x, t)



Stochastic descriptions of departures from GPE

Thermal - SGPE

d ψ(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+g |ψ(x, t)|2− iR(x, t,T )

]
ψ(x, t)+

√
Σ(x, t,T )η(x, t)

White complex noise η : 〈η∗(x, t)η(x′, t ′)〉 = δ(t − t ′)δ(x− x′), 〈η(x, t)2〉 = 0.

Positive-P

d ψ1(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+gψ2(x, t)

∗ψ1(x, t)+ i
√

igξ1(x, t)

]
ψ1(x, t)

d ψ2(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+gψ1(x, t)

∗ψ2(x, t)+ i
√

igξ2(x, t)

]
ψ2(x, t)

White real multiplicative independent noises ξ j : 〈ξi(x, t)ξ j(x′, t ′)〉 = δ(t − t ′)δ(x− x′)δi j.



positive-P representation
Write the density matrix of the system

ρ = |ψ〉〈ψ|

as a probability distribution over coherent state operators

ρ =
Z

D[ψ1(x)]D[ψ2(x)] |ψ1(x)〉〈ψ2(x)
∗| P(ψ1(x),ψ2(x))

This leads to a Fokker-Planck equation for the probability P

And to random walk equations for samples ψ1(x),ψ2(x) of P.

Averages of the samples correspond to quantum mechanical expectation values.
E.g. density:

n(x) = 〈ψ2(x)
∗ψ1(x)〉.



Simulations

insert movie here insert movie here



Advantages of simulations
Can “observe” what happens during the collision, rather than just the final debris.
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Stochastic subtleties

• Multiplicative noise requires care when numerically integrating

• Since ψ(t) ∼ ψ(0)e(1+i)
√

gζ(t), where ζ(t) ≈ R t
0 ξ(s)ds is a noise, one must watch

that the phase variance is not too large.
→ if phase variance & O(10), systematic sampling errors can result.

• Two fields ψ1 and ψ2 allow one to add noise without adding new particles:
This is because 〈ψ∗

2ψ1〉 does not necessarily grow even though 〈|ψ j|2〉 do.



Noise amplification
The Hilbert Space
Strikes Back

d ψ1(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+gψ2(x, t)

∗ψ1(x, t)+ i
√

igξ1(x, t)

]
ψ1(x, t)

d ψ2(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+gψ1(x, t)

∗ψ2(x, t)+ i
√

igξ2(x, t)

]
ψ1(x, t)

• The “density”, ψ∗
2ψ1 was initially real since ψ2(0) = ψ1(0) at t = 0

• Different noises xi1 and ξ2 make it acquire an imaginary part.

• Then ψ1 (say) starts to grow exponentially, while ψ2 decays, keeping
→ noise takes off and becomes unmanageable after an “effective simulation time”

tsim ∼
(

~

g

)
(∆V )(1/3)

(maxx{n(x)})( 2/3)



Comparison to experiment – halo position & shape

Experiment
Simulation



Precision comparisons to experiment

• The scattering halo is not a sphere;

• The experiment can make precision measurements of the shifts;

• Is the current theory complete enough to explain them?

Experiment (�) + theory (◦)

Old calibration



The future – treating both kinds of incoherence
SGPE / positive-P hybrid shoudl be able to treat both the thermal atoms and the

quantum depletion in a “quasi-complete” manner.

Positive-P

d ψ1(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+gψ2(x, t)

∗ψ1(x, t)+ i
√

igξ1(x, t)− iR(x, t,T )

]
ψ1(x, t)

+
√

Σ(x, t,T )η(x, t)

d ψ2(x, t)
dt

=
−i
~

[
− ~

2

2m
∇2+gψ1(x, t)

∗ψ2(x, t)+ i
√

igξ2(x, t)− iR(x, t,T )

]
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+
√

Σ(x, t,T )η(x, t)

White real multiplicative independent noises ξ j : 〈ξi(x, t)ξ j(x′, t ′)〉 = δ(t − t ′)δ(x− x′)δi j.



Thank you : )


