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Condensed and uncondensed fractions in a BEC
Consider the wavelength of a particle of mass m
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When single wavelengths of different particles overlap, they become

Arough picture: better described by a matter wave, and the BEC forms

Types of uncondensed atoms
e Thermal (Very nicely treated by the SGPE methods of Stoof, Proukakis, et al. )

e Quantum depletion (equlibrium effect, T=0, due to interaction between individual
atoms)

e Supersonic (non-equilibrium) These can physically separate from the main
condensate.



Colliding BECs — experiment
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The uncondensed ones — In velocity-space

deg90nie5 nskxky tQ=1.8634

ky /Q

ky /Q

deg90nie5 nskykz tQ=1.8634

——

2500

--2000

- 11500

£ 1000

500

-0.5

0 0.5 1
kz/Q

mean

2500

2000

11500

11000

1150

1100

single shot



Microscopic guantum mechanical description

First-quantized: Wave function (Xg, X2, . . . , Xn)

Second-quantized: Boson field operators W(x).

/ dx ¥7(x) { h2D2+V(x)+gLTJT(x)LTJ(x)} P(x)



Difficulty of microscopic description

The Hilbert space of the relevant quantum states grows exponentially with N and/or
the number of single-particle orbitals to consider.

For example M orbitals with up to n particles in each, have a Hilbert space
dimension of

D=(n+1"

To get eigenstates, eigenvalues, etc, in practice, one needs to diagonalise (or just
even STORE!) matrices of size D?



Gross-Pitaevskii Equation — GPE

The standard description of a pure condensate.

The assumption — All the N particles are in the same orbital ®(X,t).

P(x,t) — W(x,t) = VND(x 1)

The order parameter W(X) obeys the (superfluid, mean-field) Gross-Pitaevskii (GP)
equation:
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Stochastic descriptions of departures from GPE

Thermal - SGPE
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positive-P representation
Write the density matrix of the system

p= W)W

as a probability distribution over coherent state operators

p= [ DI (IDW2()]  [¥2(¥)(W2)']  PWs(), ()

This leads to a Fokker-Planck equation for the probability P
And to random walk equations for samples Y1 (X), W2(x) of P.

Averages of the samples correspond to quantum mechanical expectation values.
E.g. density:
N(x) = (W2(x) Pa(x)).



Simulations

| nsert novie here

| nsert novie here




Advantages of simulations
Can “observe” what happens during the collision, rather than just the final debris.
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Stochastic subtleties

e Multiplicative noise requires care when numerically integrating

e Since Y(t) ~ W(0)eHNVEW® where {(t) ~ [5&(s)ds s a noise, one must watch
that the phase variance is not too large.
— if phase variance 2 O(10), systematic sampling errors can result.

e Two fields Y1 and W, allow one to add noise without adding new particles:
This is because (W3W;) does not necessarily grow even though {|W;|?) do.



The Hilbert Space

Noise amplification _
Strikes Back
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e The “density”, W51 was initially real since Y»(0) = Y1(0) att =0
e Different noises Xi1 and > make it acquire an imaginary part.

e Then ), (say) starts to grow exponentially, while > decays, keeping
— noise takes off and becomes unmanageable after an “effective simulation time”
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Comparison to experiment — halo position & shape
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Precision comparisons to experiment

e The scattering halo is not a sphere;
e The experiment can make precision measurements of the shifts;

e |s the current theory complete enough to explain them?
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The future — treating both kinds of incoherence

SGPE / positive-P hybrid shoudl be able to treat both the thermal atoms and the
guantum depletion in a “quasi-complete” manner.
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White real multiplicative independent noises ¢ : (&;(X,1)&;(X,t)) = &(t —t")d(x—X')d;;.



Thank you :)



