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1 MPIPKS, Dresden, Germany; 2 Université Paris-Sud, CNRS, Orsay, France; 3 ACQAO, University of Queensland, Brisbane, Australia

• To show this we plot the Rydberg-Rydberg correlation function

g(2)(x, y) = 〈: N̂e(x)N̂e(y) :〉/(〈N̂e(x)〉〈N̂e(y)〉). (14)
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(a) Rydberg-Rydberg correlation function g(2)(x, y) as defined in the
text at time t = τ/2. (b) The same at t = 3τ/4.
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So far, only for the unrealistic po-
tential on the left tractable sampling
errors were achieved.

Interaction quench in the extended Bose-Hubbard model

• Instead of the continuous transfer of population from the |g〉 to the
|e〉 component as before, let us ignore |g〉 and begin with a nonzero
initial population in |e〉, which is in a coherent state (superfluid).

• We then consider the effect of long-range interactions, corresponding
to a sudden quench.

• Our Hamiltonian corresponds to the extended Bose-Hubbard model.
For the local Bose-Hubbard model the quench was studied eg. in [5].

• The interaction dephases correlations between different sites. Without
hopping ω̃ij = 0 there will be an exact quantum revival.

• Inter-site hopping causes an eventual cessation of revival oscillations
and can establish an equilibirum [5].

• We look at the one-body density matrix g(1)(x, y) =

〈âe(x)†âe(y)〉/
√

〈N̂e(x)〉〈N̂e(y)〉 to look for similar effects in
the presence of long-range interactions.
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(a) Off-diagonal one-body density matrix (coherence) g(1)(x, y) as de-
fined in the text. Plots are from t = 0, to t = 12× 10−4 with increasing
time: (black), (green), (magenta), (blue), (red).

• Currently, Gauge-P simulations of this scenario reach well after the
decoherence time but fail (just?) before the first revival time.

Outlook

These preliminary results should be improved in the following ways:

• Make a definite statement as to whether nonlocal diffusion gauges can
be advantageous over local ones.

• Simulate the Rydberg excitation echo sequence for more realistic
Coulombic potentials. To this end we currently investigate using the
Gauge-freedom to distribute the Coulomb potential among determin-
istic and noise terms.

• Investigate observables that show interesting behaviour well before
the revival time for the quench scenario.

Conclusions

• We have extended the stochastic Gauge-P formalism to long-range
interacting systems by deriving an expression for a characteristic vari-
ance and developing adaptive local diffusion gauges from that.

• We have applied the method to echo type Rydberg excitations and
de-excitations in Bose-Einstein condensates.

• For a toy-model potential, we find the formation of a strongly anti-
blockaded gas of Rydberg atoms during the de-excitation phase.

• We trialled simulating interaction-quenches in the extended Bose-
Hubbard model. The Gauge-P formalism can model the initial de-
struction of long-range phase-coherence, but fails before the first quan-
tum revival.
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• f (α,β, Ω) is arbitrary function of γ, which can thus be inserted into
the FPE.

• It can be shown that this allows modifications of the drift terms of
Eq. (5) without affecting the noise terms [2].

• Commonly for Bose-Einstein condensates:

i
∂α

∂t
= . . . g[αβ]α → i

∂α

∂t
= . . . gRe[αβ]α. (8)

Diffusion gauges

• For B fulfilling D = BBT , this is also true for B′ = BO, where O is
an arbitrary complex orthogonal matrix defined by 1 = OOT . O is
called diffusion gauge.

• A useful simple local diffusion gauge is:

O =

(

− cosh a1 −i sinh a1
−i sinh a1 cosh a1

)

. (9)

• Diffusion gauges with a > 0 shift the noise from αβ to α/β.

• The parameter a can be adjusted to minimize the sampling error at
a time instant of interest.

Gauged equations of motion

• Using both types of gauges, the full stochastic equations of motion
for the Hamiltonian Eq. (2) without any bath-coupling are:

dγn = i





∑

l

ωnlγl +
∑

l

γnWnl(nl − ml)





+
√

i
∑

lp

γnSnlOlpdηp, 0 < n ≤ 2M (10)

dγ2M+1 = dΩ =
√

iΩ
∑

plk

dηpOlpSklmk. (11)

We used γ̄ = (βT ,αT , Ω), nk = αkβk and have defined 2M × 2M
matrices

ω =

(

−ω̃ 0
0 ω̃

)

, W =

(

−W̃ 0

0 W̃

)

, S =

(

−i
√

W̃ 0

0
√

W̃

)

.

(12)

• The function mk parametrizes the drift gauge. We choose mk =
Im[nk] to stabilize the equations.

Optimization of stochastic gauges

• We define a characteristic variance

V =
1

2M

2M
∑

n

var[log |Ωγn|], (13)

which must not get much larger than 10 to obtain a useful sampling
error.

• Using stochastic calculus, we calculate the time evolution of V that
follows from Eqs. (10) and (11). One obtains V(t, O, W̃ , n(t = 0)).

• The expression allowed us to tune constant local diffusion gauges as
in Eq. (9), by minimizing V with respect to a. This can yield an
adaptive local diffusion gauge a(t).

• It also could be used to devise fully nonlocal diffusion gauges with
more complicated forms of O. So far these do not seem to be better
than local gauges.

Applications (work in progress)

Echo sequences in strongly interacting Rydberg Gases

• We study Rydberg state (|e〉) excitation and de-excitation in a Bose-
condensed gas of ground state atoms (|g〉).

• Conversion is modeled with a Rabi-coupling term

Ĥ = · · · + ω
∑

n â
†
e,nâg,n.

• We consider an echo sequence as in the experiment [4], where after an
excitation time τ/2, the sign of the Rabi coupling is flipped ω → −ω.

• Without interactions, the system would return to its initial state.
Due to dephasing by the long range interactions within the Rydberg
component, a residual excited state population remains.
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(a) (black) Atom number in the ground state Ng during echo sequence

with τ = 5×10−4. (blue) Total number. Dotted lines indicate sampling
error. (b) (black) Excited state number Ne form stochastic quantum
field theory. (red) Mean field simulation. (c) Mandel-Q parameter for
ground and excited state. Q = (〈N̂2

e,g〉 − 〈N̂e,g〉2)/〈N̂e,g〉 − 1.

• During the de-exitation part of the echo sequence, strong quantum
correlation develop, indicating the formation of “clumps” of atoms.

Motivation

• N-particle, M-mode Hilbertspace growth as MN , making first prin-
ciples calculations in many-body quantum mechanics extremely chal-
lenging.

• This limitation can sometimes be overcome by stochastic phase space
methods [1].

• Stochastic methods work better if “gauge” freedom is exploited [2].

• We develop gauge techniques for systems with long-range interactions.

Gauge-P Method

• Expresses the density matrix in a modified P-representation.

• Quantum correlations are represented by stochastic correlations in an
ensemble of trajectories, allowing a massive reduction in basis size.

• Gauge techniques allow a tuning of the resulting stochastic equations
of motion to reduce the sampling error.

• Method can easily be adapted to treat open quantum systems.

Phase space representation

• We define many-mode coherent states |α〉 with the crucial property
ân|α〉 = αn|α〉. ân destroys a boson in the single particle mode |n〉.

• The density operator is expanded in terms of the many-mode Gauge-P
representation

ρ̂ =

∫

d4Mα

∫

d4Mβ

∫

d2Ω

[

Ω
|α〉〈β∗|
〈β∗|α〉

]

G(α,β, Ω). (1)

• We wish to solve the quantum dynamics of the following many-body
Hamiltonian from first principles:

Ĥ =
∑

nm

[

â
†
nω̃nmâm +

1

2
â
†
nâ

†
mW̃nmânâm

]

. (2)

Stochastic equations of motion

• We begin from a master-equation such like:

d

dt
ρ̂ = − i

~
[Ĥ, ρ̂] +

∑

j

κj

2

(

2Ôjρ̂ Ô
†
j − Ô

†
jÔjρ̂ − ρ̂ Ô

†
jÔj

)

, (3)

including coupling to some baths via the operators Ôj.

• Inserting Eq. (1) into Eq. (3) we obtain an equation of motion for
G(α,β, Ω) of the Fokker-Planck type:

∂G

∂t
= −

∑

j

∂

∂γj
AjG +

1

2

∑

nj

∂

∂γn

∂

∂γj
DnjG, (4)

where we have introduced the notation γT = (αT ,βT , Ω). The first
term on the rhs. is called drift term, the second diffusion term.

• The solution of a Fokker-Planck equation (FPE) corresponds exactly
to the solution of the stochastic differential equations (SDEs) [3]

dγn = Andt +
∑

j

Bnjdηj(t). (5)

The matrix B is the “square-root” of the diffusion matrix D = BBT .

• The γn is a stochastic wave function and the dηj(t) are real gaussian

noises with correlations dηj(t)dηk(t′) = δj,kδ(t − t′).
• The distribution of the γn within an ensemble of trajectories repro-

duces the functional form of G(γ, t):

(left) Exemplary G(γ, t) for single mode, considering variable α only.
(right) Corresponding distribution of α in the ensemble of trajectories.

Quantum field observables

• Using Eq. (1), we can write the stochastic correspondence of any
normally ordered quantum expectation value:

〈(a†n)p(am)q〉 = Re[ Ωβpαq]/Re[Ω]. (6)

• · · · denotes a stochastic average of trajectories. Due to the finite
ensemble size the average has an error called the sampling error. It
is usually well estimated by the standard deviation of the average.

Drift Gauges

• From Eq. (1) we have

f (α,β, Ω)

[

1 − Ω
∂

∂Ω

]

Λ = 0, Λ ≡ Ω
|α〉〈β∗|
〈β∗|α〉 . (7)


