Superfluid dipolar Fermi gases and their excitations

Piotr Deuar, Misha Baranov, Gora Shlyapnikov

LPTMS

Université Paris-sud XI

Universiteit van Amsterdam

LPTMS, 19 Mars 2008

Overview

1. Motivation

- Comparison with standard BCS gas;
- A "clean" realisation of solid-state phases
- 2. Experimental prospects

possible realisations; Behaviour of critical temperature T_c

3. Model for the uniform 3D gas

 \widehat{H} , mean-field theory , assumptions

4. Quasiparticle (pair) excitations

Anisotropic energy gap for pair breaking, gap nodes

5. Collective excitations & superfluid component Hydrodynamics, anisotropic damping, unusual superfluid current response

Physical system

• uniform 3D gas

• Cold:
$$T < T_c$$

$$V_D(R,\theta) = \frac{d^2}{R^3} \left(1 - 3\cos^2\theta\right)$$

static external field (E or B)
 ⇒ full polarisation

- single-species (spin polarised)
- dilute ⇒ Energy dominated by Fermi sea to leading order
- short-range interaction assumed negligible (Fermi exclusion, no *p*-wave resonances)

(1) Motivation

BCS superfluidity

dipole-dipole potential

- LONG range interaction
- Anisotropic
- always partly attractive
 BCS pairing if *polarised*
- Needs 1 spin component
- Energy gap has nodes
- Stability conditions nontrivial
 Góral, Brewczyk, Rzążewski PRA 67,025601 (2003)

standard s-wave ↑↓ potential

• SHORT range interaction

• Isotropic

- arttractive or repulsive BCS pairing only if $a_s < 0$
- Needs 2 spin components
- Energy gap always $\neq 0$

Condensed matter analogue

- The node structure of the direction-dependent order parameter is similar to that of solid state and liquid He phases, e.g.:
 - Polar phase of $^{3}\mathrm{He}.$

Aoyama & Ikeda PRB 73, 060504 (2006),

(Never experimentally realized) Elbs etal. arXiv:0707.3544

- Heavy-fermion superconductors like UPt₃.
 (Difficult to get pure system, many potential phases)
- Qualitatively similar behaviour expected in some respects.
- Dipole gas is a much "cleaner" system.
 - \widehat{H} well known
 - spin degrees of freedom can be removed.
- It is potentially well controllable.

(2) **Prospects for superfluidity**

Possible Physical Realisations

- 1. Heteronuclear polar molecules
 - Several groups actively aiming to cool to ultracold T.
 e.g. Bigelow (Rochester), Grimm (Innsbruck), ...
 - Method 1: Photoassociaton from cold atomic gases
 - Method 2: Buffer gas cooling
- 2. Magnetic atomic dipoles
 - e.g. ⁵³Cr (6 parallel spins in valence electron shell)
 - Current experiments: O. Gorceix (Uni Paris-Nord)
- 3. Induce electric dipoles in atoms with strong E fields

Critical Temperature for BCS standard $\uparrow \downarrow$ gas:

$$T_c = \mathbf{0.28} E_F \exp\left(-\frac{\pi}{2|a_s|k_F}\right)$$

Dipole gas:

MB, Mar'enko, Rychkov, GS, PRA 66, 013606 (2002)

$$T_c = 1.44 E_F \exp\left(-\frac{\pi}{2|a_D|k_F}\right)$$

 \Rightarrow *Effective* scattering length a_D :

$$a_D = -2m\left(\frac{d}{\pi\hbar}\right)^2$$

 T_c rises strongly with $a_D \propto md^2$

Candidates for BCS pairing

(large $|a_D|$ desirable)

Short-range interactions

• Two spin components. For example ⁶Li : $a_s = -114$ nm

Dipoles

• Heteronuclear polar molecules

 ${}^{15}\text{ND}^3$: $a_D = -145 \text{ nm}$ HCN : $a_D = -740 \text{ nm}$ NaCs : $a_D \gtrsim -500 \text{ nm}$

• Magnetic atomic dipoles

⁵²Cr : $a_D = -0.5$ nm (pretty weak)

• Atoms with induced electric dipole

 $a_D \approx -1$ to -10 nm (need $\approx 10^6$ V/cm)

(3) Model

Hamiltonian

$$\widehat{H} = \text{K.E.} + \frac{1}{2} \int d^3x d^3y \left\{ \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_x V_D(x-y) \widehat{\Psi}_y^{\dagger} \widehat{\Psi}_y \right\}$$

• $\widehat{\Psi}_x$ is the anihilating Fermi field operator at point *x*.

BCS Mean field theory: Postulate the quadratic effective Hamiltonian:

$$\begin{split} \widehat{H}_{\text{eff}} &= \frac{1}{2} \int d^3 x \, d^3 y \, \Big\{ \begin{array}{cc} \frac{\hbar^2}{m} \, \widehat{\Psi}_x^{\dagger} \, \nabla^2 \widehat{\Psi}_x \, \delta(x-y) & \text{Kinetic} \\ \Delta^*(x-y) \, \widehat{\Psi}_x \, \widehat{\Psi}_y - \Delta(x-y) \, \widehat{\Psi}_x^{\dagger} \, \widehat{\Psi}_y^{\dagger} & \text{BCS} \\ + W(x-y) \, \widehat{\Psi}_x^{\dagger} \, \widehat{\Psi}_y & \Big\} \quad \text{Hartree} \end{split}$$

• With some "appropriate" $\Delta(x-y)$ and W(x-y)

Gap equation

Choose $\Delta(x-y)$ and W(x-y) to minimise the full Free energy

$$F = \langle \widehat{H} \rangle_{\text{eff}} - \mu N - TS$$

when calculated with eigenstates of $\widehat{H}_{ ext{eff}}$.

Obtain:

$$\Delta(x-y) = V_D(x-y) \left\langle \widehat{\Psi}_x \widehat{\Psi}_y \right\rangle_{\text{eff}} \quad \text{GAP}$$
$$W(x-y) = -V_D(x-y) \left\langle \widehat{\Psi}_x^{\dagger} \widehat{\Psi}_y \right\rangle_{\text{eff}} \quad \text{``Hartree'` field}$$

 Δ , W and Ψ must be self-consistent.

Uniform gas

In *k*–space

$$\widehat{H}_{\text{eff}} = \frac{1}{2} \int d^3k \left\{ \left(\frac{\hbar^2 k^2}{m} - 2\mu - W(k) \right) \widehat{\Psi}_k^{\dagger} \widehat{\Psi}_k + \Delta^*(k) \widehat{\Psi}_k \widehat{\Psi}_{-k} - \Delta(k) \widehat{\Psi}_k^{\dagger} \widehat{\Psi}_{-k}^{\dagger} \right\}$$

• W(k) is a minor energy shift of Fermi surface

 \implies ignore it in leading order

- Order parameter $\Delta(k) \neq 0$ corresponds to BCS pairing of k and -k atoms.
- Important difference to standard $\uparrow \downarrow$ gas: $\Delta(k)$ is anisotropic and has nodes on the Fermi surface

(4) Quasiparticle (pair) excitations

BCS gap $\Delta_F(\theta)$ on Fermi surface

NODE in plane \perp to polarisation Breaking a pair costs $2 \times E$, where $E(k) = \sqrt{(K.E. - E_F)^2 + \Delta^2} \ge |\Delta|$.

- Dipoles: Easy to excite a pair in plane ⊥ to polarisation because energy cost is small.
- **† gas**: Appreciable energy cost of excitations always.

BCS gap away from Fermi surface

MB, Mar'enko, Rychkov, GS, PRA 66, 013606 (2002)

Consequences of pole in Δ

	↑↓ gas	dipoles
dispersion	isotropic	anisotropic
damping of sound at $T = 0$	0	nonzero
Specific heat at low T	$\sim \exp(-\Delta/T)$	$\sim T^2$
normal component at low T	$\sim \exp(-\Delta/T)$	polynomial in T

(5A) Collective excitations

Low energy modes

Phase perturbations of the ground state order parameter (Goldstone mode)

$$\Delta_0(x-y) \rightarrow \Delta(x,y) = \Delta_0(x-y) e^{2i\phi(x,t)}$$

Assumptions:

- Low energy ($\hbar\omega \ll \Delta_0^{\rm max}$)
- Phase perturbations only (amplitude perturbations are gapped)
- Low $\omega \implies$ long wavelength ($k \ll k_F$)

 \implies insensitive to small-scale of $|x - y| \implies \phi \approx \phi(x \text{ only })$

• Weak perturbation \implies lowest order in ϕ

Perturbation

Single-particle wavefunctions $U_{v}(\mathbf{r},t)$ and $V_{v}(\mathbf{r},t)$ from a Bogoliubov diagonalization

$$\widehat{\Psi}(\mathbf{r}) = \sum_{
u} \left[U_{
u}(\mathbf{r}) \widehat{b}_{
u} + V_{
u}(\mathbf{r})^* \ \widehat{b}_{
u}^\dagger
ight]$$

obey BDG equations

$$i\hbar\frac{\partial}{\partial t}\begin{bmatrix} U_{\nu}(\mathbf{r})\\ V_{\nu}(\mathbf{r})\end{bmatrix} = H_{0}(\mathbf{r})\begin{bmatrix} U_{\nu}(\mathbf{r})\\ -V_{\nu}(\mathbf{r})\end{bmatrix} - \int d^{3}\mathbf{r}'\begin{bmatrix} \Delta(\mathbf{r},\mathbf{r}')V_{\nu}(\mathbf{r}')\\ \Delta^{*}(\mathbf{r},\mathbf{r}')U_{\nu}(\mathbf{r}')\end{bmatrix}$$

Expand them in terms of the uniform-gas wavefunctions $U^0(\mathbf{r})$ and $V^0(\mathbf{r})$ and coefficients $C^{(\eta)} \sim \mathcal{O}(\phi)$

$$\begin{bmatrix} U_{\nu}(\mathbf{r}) \\ V_{\nu}(\mathbf{r}) \end{bmatrix} = \sum_{j} \left\{ (\delta_{j\nu} + C_{j\nu}^{(1)}) \begin{bmatrix} U_{\nu}^{0}(\mathbf{r}) \\ V_{\nu}^{0}(\mathbf{r}) \end{bmatrix} + C_{j\nu}^{(2)} \begin{bmatrix} V_{\nu}^{0}(\mathbf{r})^{*} \\ -U_{\nu}^{0}(\mathbf{r})^{*} \end{bmatrix} \right\},$$

finf $C^{(\mu)}$ from BDG equation, and substitute it all into Gap equation, which must be satisfied up to $O(\phi)$.

$$\Delta(\mathbf{r},\mathbf{r}') = \frac{V_D(\mathbf{r}-\mathbf{r}')}{2} \sum_{\nu} \tanh\left(\frac{E_{\nu}}{2k_BT}\right) \left[U_{\nu}(\mathbf{r})V_{\nu}^*(\mathbf{r}') - U_{\nu}(\mathbf{r}')V_{\nu}^*(\mathbf{r})\right]$$

Consistency equation in *k***-space**

$$\begin{split} -\frac{\Phi_{\mathbf{k}}\Delta_{\mathbf{M}}^{0}\tau_{\mathbf{M}}^{0}}{2E_{\mathbf{M}}^{0}} &= \frac{\Phi_{\mathbf{k}}\Delta_{\mathbf{M}}^{0}}{4E_{\mathbf{m}}^{0}E_{\mathbf{n}}^{0}} \left\{ \left(\frac{\tau_{\mathbf{n}}^{0}-\tau_{\mathbf{m}}^{0}}{2}\right) \left[\frac{(E_{\mathbf{n}}^{0}+\varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0}-\varepsilon_{\mathbf{m}}) + \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega - E_{\mathbf{n}}^{0} + E_{\mathbf{m}}^{0} + i0} - \frac{(E_{\mathbf{n}}^{0}-\varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0}+\varepsilon_{\mathbf{m}}) + \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega + E_{\mathbf{n}}^{0} - E_{\mathbf{m}}^{0} + i0}\right] \\ &+ \tau_{\mathbf{n}}^{0} \left[\frac{(E_{\mathbf{n}}^{0}+\varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0}+\varepsilon_{\mathbf{m}}) - \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega - E_{\mathbf{n}}^{0} - E_{\mathbf{m}}^{0} + i0}\right] - \tau_{\mathbf{m}}^{0} \left[\frac{(E_{\mathbf{n}}^{0}-\varepsilon_{\mathbf{n}})(E_{\mathbf{m}}^{0}-\varepsilon_{\mathbf{m}}) - \Delta_{\mathbf{n}}^{0}\Delta_{\mathbf{m}}^{0}}{\hbar\omega + E_{\mathbf{n}}^{0} + E_{\mathbf{m}}^{0} + i0}\right] \right\}. \end{split}$$

where $\mathbf{n} = \mathbf{M} + \mathbf{k}/2$, $\mathbf{m} = -\mathbf{M} + \mathbf{k}/2$, $\varepsilon_{\mathbf{k}} = \hbar^2 k^2 / 2m - E_F$, $E_{\mathbf{k}}^0 = \sqrt{\varepsilon_{\mathbf{k}}^2 + (\Delta_{\mathbf{k}}^0)^2}$, and $\tau_{\mathbf{k}}^0 = \tanh(E_{\mathbf{k}}^0 / 2T)$.

- Landau processes ($E + \omega \leftrightarrow E'$ 1st line) and Beliaev processes ($E + E' \leftrightarrow \omega$ — 2nd line).
- LONG wavelength k, SHORT wavelength M.
- Similar form to $\uparrow \downarrow$ gas, but there's a practical **PROBLEM** ...

Practical problem

- For any long wavelength **k** of $\phi_{\mathbf{k}}$, there are many solutions with different ω , parametrised by the wavenumber $\mathbf{M} \sim k_F$ from $\Delta_{\mathbf{M}}^0$.
- Experiments can control/perturb/see long wavelengths **k**, but not **M**, which is an internal microscopic parameter at high energy $\sim \mu$
- Presumably, if you perturb system externally with wavenumber **k** the result will be some weighted average over all **M** solutions.
- But what are the weights?

The solution — an effective Lagrangian

- 1. In the action integral formulation of quantum mechanics where $\langle \hat{O} \rangle = \int \mathcal{D}^2 \Delta$, $\mathcal{D}^2 \Psi e^{iS/\hbar} O[\Delta, \Psi, \text{c.c}]$ etc., write down an action $S(\Delta, \Psi)$ so that its saddle point $\partial S/\partial \{\Delta, \Psi\} = 0$ gives the full BCS theory.
- 2. Substitute perturbation $\Delta \rightarrow \Delta_0 e^{2i\phi}$ to give $S(\Delta_0, \phi, \Psi)$.
- 3. An effective action S_{eff} for the small perturbation ϕ is obtained by integrating over the irrelevant variables Ψ .
- 4. get $S_{\text{eff}}(\phi, \Delta_0, \Psi_0) = -i\hbar \log \left[\langle e^{i\delta S/\hbar} \rangle \right]$ where Ψ_0 is the unperturbed ground state wavefunction.
- 5. Consistency equation for ϕ is given by the saddle-point solution $\partial S_{\rm eff}/\partial \phi = 0$.
- 6. Weights turn out to be $\Delta_{\mathbf{M}}^{0}$.

(5B) Predictions (diagrams - hooray)

T = 0 Superfluid

Find Bogoliubov sound, same as for the standard $\uparrow \downarrow BCS$ gas

$$\omega = \left(\frac{v_F}{\sqrt{3}}\right) k$$

To lowest order in $\omega \ll E_F/\hbar$ and $k \ll k_F$.

Not too surprising from hydrodynamics

T = 0 Hydrodynamics

Relies on the hydrodynamic Hamiltonian for superfluid velocity v_s

$$H \approx \int d^3x \left\{ \frac{1}{2} m \rho v_s(x)^2 + U(\rho) \right\}$$

and the continuity and current equations

$$\vec{v}_s = \frac{\vec{J}_s(x)}{\rho} = \frac{\hbar}{m} \rho \, \vec{\nabla} \phi(x) \quad \text{and} \quad \vec{\nabla} \cdot \vec{J}_s(x) = -\frac{\partial \rho}{\partial t}$$

which are found to be the same for dipoles and short-range gases to order $\mathcal{O}(\Delta^{\max}/E_F)$.

Since $U(\rho)$ arises overwhelmingly from the filled Fermi sphere, \implies interaction details have minor effect locally (But give leading corrections to $\hbar\omega$ by flattening the Fermi sphere) **Beyond hydrodynamics**

T = 0 Anisotropic damping of sound

- Purely diffusive (as for standard short-range ↑↓gas)
- Anisotropic (differently to ↑↓gas)

Veering superfluid current $0 < T < T_c$

• Current response J_s to an external phase perturbation of the gap

$$\Delta(x, y, t) = \Delta_0(x - y)e^{2i\phi(x, t)}$$

• Strable driving frequency ω , wave-vector k, in direction θ .

Direction-dependent superfluid

(tentative)

Can define direction-dependent "normal" and "superfluid" components

 $\rho = \rho_n(\theta) + \rho_s(\theta)$

so that the usual current equation applies to within a modulus:

$$|\vec{J_s}| = \frac{\hbar}{m} \rho_s |\vec{\nabla}\phi|$$

Potential related research

- analogues with phases known in Helium
- Are there other low energy modes? e.g. from perturbation of the polarisation axis.
- What's going on with the current near $\theta = \pi/2$.
- Are the Δ -amplitude modulation modes low-energy near $\theta = \pi/2$?
- Are there interesting low energy perturbations of the discarded Hartree field W(x,y)?

Merci!