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Overview

. Motivation
Comparison with standard BCS gas;
A “clean” realisation of solid-state phases

. Experimental prospects
possible realisations; Behaviour of critical temperature T.

. Model for the uniform 3D gas
H , mean-field theory , assumptions

. Quasiparticle (pair) excitations
Anisotropic energy gap for pair breaking, gap nodes

. Collective excitations & superfluid component
Hydrodynamics, anisotropic damping,
unusual superfluid current response
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uniform 3D gas
Cold: T < T,

static external field (E or B)
— full polarisation

single-species (spin polarised)

dilute = Energy dominated by
Fermi sea to leading order

short-range interaction assumed
negligible (Fermi exclusion, no
p-wave resonances)



(1) Motivation



BCS superfluidity

dipole—dipole
potential
LONG range interaction o
Anisotropic O
always partly attractive o

BCS pairing if polarised
Needs 1 spin component o

Energy gap has nodes o

Stability conditions nontrivial
Goral, Brewczyk, Rzgzewski PRA 67,025601 (2003)

standard s-wave
7| potential

SHORT range interaction
|sotropic

arttractive or repulsive
BCS pairing only if ag < O

Needs 2 spin components

Energy gap always # 0



Condensed matter analogue

e The node structure of the direction-dependent order parameter is
similar to that of solid state and liquid He phases, e.g.:

— Polar phase of *He.
Aoyama & lkeda PRB 73, 060504 (2006),

(Never experimentally realized) Elbs etal. arxiv:0707.3544
— Heavy-fermion superconductors like UPts.
(Difficult to get pure system, many potential phases)

e Qualitatively similar behaviour expected in some respects.

e Dipole gas is a much “cleaner” system.

— H well known
— spin degrees of freedom can be removed.

e |t is potentially well controllable.



(2) Prospects for superfluidity



Possible Physical Realisations

1. Heteronuclear polar molecules

e Several groups actively aiming to cool to ultracold T.
e.g. Bigelow (Rochester), Grimm (Innsbruck), ...

e Method 1: Photoassociaton from cold atomic gases

e Method 2: Buffer gas cooling

2. Magnetic atomic dipoles

e e.g. >3Cr (6 parallel spins in valence electron shell)
e Current experiments: O. Gorceix (Uni Paris-Nord)

3. Induce electric dipoles in atoms with strong E fields



Critical Temperature for BCS
standard T| gas:

T. — 0.28E- exp(—zlasz)

Dipole gas:

MB, Mar’enko, Rychkov, GS, PRA 66, 013606 (2002)

T
T. = 1.44E¢ eXp(_ZlaD]kF>

—> Effective scattering length ap:
d 2
)

T, rises strongly with ap O md?




Candidates for BCS pairing

(large |ap| desirable)
Short-range interactions
e Two spin components. For example °Li : ac= —114nm
Dipoles

e Heteronuclear polar molecules
ND3: ap = —145nm
HCN :ap = —740nm
NaCs : ap =~ —500nm

e Magnetic atomic dipoles

°2Cr : ap = —0.5 nm (pretty weak)

e Atoms with induced electric dipole

ap ~ —1to —10nm (need ~ 1P V/cm)



(3) Model



Hamiltonian

~ 1 o~ ~p~
H = KE. + 3 / d3xd3y{ YT, Vp(x—y) way}
o LTJX IS the anihilating Fermi field operator at point X.
BCS Mean field theory: Postulate the quadratic effective Hamiltonian:
Her = 5 d°xd y{ = W, O°W,0(x—y) Kinetic

A (x—y) P, — A(x—y) WIW] BCS
FW(x—y) Wi, } Hartree

e With some “appropriate” A(X—Y) and W(x—)



Gap eguation

Choose A(Xx—Y) and W(X—Y) to minimise the full Free energy
F = (H)e —HN—TS

when calculated with eigenstates of I:I\eff.

Obtain:

AX—Y) =Vp(X—Y) <LTJXLTJy> GAP

W(X—Yy) = —-Vp(X—Y) <@l@y>eﬁ “Hartree" field

A, W and WY must be self-consistent.



Uniform gas

In kK—space
h2k? s ~ s
Her =5 / d3k{ <——2p W(k)) LIJELIJk+A*(k)LIJkLIJk—A(k)LIJlLIJTk}

e \W(K) is a minor energy shift of Fermi surface
—> ignore it in leading order

e Order parameter A(K) # O corresponds to BCS pairing of k and —k
atoms.

e Important difference to standard T]gas: A(K) is anisotropic and has
nodes on the Fermi surface



(4) Quasiparticle (pair)
excitations



BCS gap Ar(0) on Fermi surface
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NODE in plane _L to polarisation
Breaking a pair costs 2 x E, where E(k) = \/(K.E. — Ef)2+ A2 > |A|.

e Dipoles: Easy to excite a pair in plane L to polarisation because
energy cost is small.

e T |gas: Appreciable energy cost of excitations always.



BCS gap away from Fermi surface

A(p,6)/A(R.9)

2 4 6 8 10 p/ R

MB, Mar’enko, Rychkov, GS, PRA 66, 013606 (2002)



Consequences of polein A

i1 sin[ (192) cos8 |
<
—0.5
)
LL
d 0 | |
0O 0.7854 1.59708 2.3562 3.1416
71 gas dipoles
dispersion Isotropic anisotropic
damping of sound at T =0 0 nonzero
Specific heat at low T ~ exp(—A/T) ~ T2
normal component atlow T | ~ exp(—A/T) | polynomial in T




(5A) Collective excitations



Low energy modes

Phase perturbations of the ground state order parameter (Goldstone
mode)

Bo(x—y) = A(xY) =Lo(x—y)

Assumptions:

e Lowenergy (hw<<AF™)
e Phase perturbations only (amplitude perturbations are gapped)

e Loww = long wavelength (k< Kkg)
—> insensitive to small-scale of [Xx—y| =— @~ @(xonly)

e \Weak perturbation =— lowest order in @



Perturbation

Single-particle wavefunctions U, (r,t) and \,(r,t) from a Bogoliubov diagonalization

() = 3 [Uu(r)By+V(r)" BY]

\Y

obey BDG equations

|h§ ) = Ho(r) 0 —/d3r’
L) V(1) A (r, 1)Uy (1)

A(r,r )\V(r’)

Expand them in terms of the uniform-gas wavefunctions U(r) and V(r) and coefficients C" ~ O(¢)

Uy (1) ud(r) VO(r)*
Vv Z BJV—FCJV Y _|_CJ{\2}) Vv 7
RGCHER Vo) Ug(ry

finf C® from BDG equation, and substitute it all into Gap equation, which must be satisfied up to O(®).

A(r,r') = V—(r )

Ztanh(ZlZT) Uy (r)Vy (r") = Uy (r")Vy (r)]



Consistency equation in  K-space

AT G {(Tﬂ—T%) [(E2+€n)(E%—8m)+A2A9n (Eﬁ—en)(Er%+em)+A2A9n]

2EQ,  4EQE 2 hw—E9+E%+i0  hw+ES—E9+i0

410 (ER+&n) (Em +&m) — A3AG 10 (ER —&n)(Em —&m) —ARAG,
" hw—E%—EQ +i0 m hw+EJ+EY +10 '

where N =M +k/2, m=—M +k/2, & = h*k?/2m— Eg, E? = /€2 + (AY)?, and 1) = tanh(EY/2T).

e Landau processes (E + w <« E' — 1st line) and
Beliaev processes (E + E' <~ w— 2nd line).

e LONG wavelength k, SHORT wavelength M.

e Similar form to T]gas, but there’s a practical PROBLEM ...



Practical problem

e For any long wavelength k of ¢, there are many solutions with
different w, parametrised by the wavenumber M ~ kg from ARA-

e Experiments can control/perturb/see long wavelengths k, but not M,
which is an internal microscopic parameter at high energy ~ [

e Presumably, if you perturb system externally with wavenumber K the
result will be some weighted average over all M solutions.

e But what are the weights?



The solution — an effective Lagrangian
. In the action integral formulation of quantum mechanics where

(O) = [ DN, DY dS/"O[A, W, c.c] etc., write down an action
S(A, W) so that its saddle point 3S/0{A,W} = 0 gives the full BCS
theory.

. Substitute perturbation A — Age?® to give S(Ao, @, V).

. An effective action S for the small perturbation @ is obtained by
integrating over the irrelevant variables W.

. get Sg(@, 0o, Wo) = —ihlog [(€°97)] where Wy is the unperturbed
ground state wavefunction.

. Consistency equation for @ is given by the saddle-point solution
0S./0¢=0.

Weights turn out to be AY,.




(5B) Predictions

(diagrams - hooray)



T = 0 Superfluid

Find Bogoliubov sound, same as for the standard T|BCS gas

()

To lowest order in W < Eg /A and K < kg.

Not too surprising from hydrodynamics ...



T = 0 Hydrodynamics

Relies on the hydrodynamic Hamiltonian for superfluid velocity vg

H~ /d3{ —mpvs(X)? +U(p)}

and the continuity and current equations

kX)) _h = = oo 0p
Vs = ) _mpDcp(x) and  [0-J4(X) = P

which are found to be the same for dipoles and short-range gases to
order O(A™*/Eg).

Since U (p) arises overwhelmingly from the filled Fermi sphere,
—> Interaction details have minor effect locally
(But give leading corrections to hw by flattening the Fermi sphere)



Beyond hydrodynamics
T = 0 Anisotropic damping of sound

()

thog
Apax

) o)

absent for standard | gas

Beliaev process:

collective =— 2xquasipart.

r(0)

1.5

079 15 236 3.14



T ~ T. behaviour

W= —i (721&?) (%) k? <1+Zin2(1+30052)))
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e Purely diffusive (as for standard short-range 1 |gas)

e Anisotropic (differently to T|gas)



Veering superfluid current 0< T < T;

e Current response Jsto an external phase perturbation of the gap

A(X,Y,t) = Do(x— y)e# D

e Strable driving frequency w, wave-vector K, in direction ©.

Veering current
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Direction-dependent superfluid

( tentative )
Can define direction-dependent “normal” and “superfluid” components

P =pPn(0) +ps(0)
so that the usual current equation applies to within a modulus:
— h —
sl = —ps|lg

Z

1‘ _________ e ) " attraction

repulsion

XorY

repulsion

superfluid component
p (8) (arb. units)
—]
V
)

attraction

0 0.3927 O.7é354 1.1.781 1.5708



Potential related research

e analogues with phases known in Helium

e Are there other low energy modes? - e.g. from perturbation of the
polarisation axis.

e What's going on with the current near 8 = 11/2.
e Are the A-amplitude modulation modes low-energy near 8 = 11/2?

e Are there Interesting low energy perturbations of the discarded
Hartree field W(X,y)?

Mercl!



