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System

e 4-wave mixing as per Vogels et al[1]
experiment (but less atoms).

e Initial Na BEC formed In cigar-shaped
20x80x80Hz trap.

e Trap turned off at t=0.
e Collision along the axial direction "x".
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Method

positive P representation
p= [ P(@) ®lalw)) (5*(z)| di
e Probability distribution P of variables
v ={a(x), 5(x)} which specify LOCAL
coherent state projectors.

e 2 complex variables per lattice point.
e Describes any guantum state.

e Correspondences:

1. Master equation for p.

2. — Fokker-Planck equation for P.

3. —» Stochastic equations for @, 3

e Quantum observables correspond to
appropriate averages of variables v
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Dynamics
Just Gross-Pitaevskil equations plus
Gaussian noise
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o i(z,t) are independent Gaussian
noises of variance 1/At for each z, t, ;.

e Linear couplings w,, between z and y
contain kinetics and external potential.

Scattering Dynamics

e NO seed wave for now.

e Coherent and Incoherent evolution
coupled together.

e Initially: GP ground state of trap.
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FIRST-PRINCIPLES DYNAMICS
TRACTABLE IN MANY CASES
e.g. four wave mixing:

¢ 150000 atoms.

¢ 432x105x50 lattice.
That’s over two million points.

e 1024 trajectories
e About a week on an oldish PC.
e NO truncation or linearization.
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Correlation Dynamics

Correlations between scattered
atoms at different velocities

radial velocity correlations
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e At short times g% (vq, —vq) > 2, which
appears to differ from recent Wigner
method estimates|3].

e This Is due to truncation of high order
FPE terms in the Wignher method.

e Coherence (¢'") and correlation (¢'%) [
lengths consistent with analytic esti-
mates in Zin et al [2].

Four Wave Mixing

density at vX=O

10

0

-10

10

10
0
-10
-10 0 10 -10 0 10 -10 0 10
vV, [mm/s] v, [mm/s] v, [mm/s]
Acknowledgments
P Deuar wishes to thank

J. Chwedenczuk, M. Trippenbach,
and P. Zin for enlightening discussions.

References

[1] J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 89, 020401
(2002).

[2] P. Zin, J. Chwedenczuk, A. Veitia, K. Rzazewski, and M. Trippen-
bach, Phys. Rev. Lett. 94, 200401 (2005).

[3] A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett.
94, 040401 (2005).




