First-principles quantum dynamics with 150,000 atoms: Correlations in a BEC collision

P. Deuar ${ }^{1,2,3}$ and P. D. Drummond ${ }^{1}$

1. Australian Centre for Quantum Atom Optics, The University of Queensland, Brisbane, Australia
2. Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, Orsay, France
3. Van der WaalsZeeman Institute, Universiteit van Amsterdam, Amsterdam, The Netherlands

System

- 4-wave mixing as per Vogels et a/[1] experiment (but less atoms).
- Initial Na BEC formed in cigar-shaped $20 \times 80 \times 80 \mathrm{~Hz}$ trap.
- Trap turned off at $\mathrm{t}=0$.
- Collision along the axial direction "x".

original condensate	2% seed wave produced by second Bragg pulse
	\because second condensate produced by Bragg optical transition
	an \approx spherical shell correlations calculated from here $v_{y}=v_{Q}$
	miltonian density:
$\widehat{H}=\frac{\hbar^{2}}{2 m} \nabla \widehat{\Psi}^{\dagger} \nabla \widehat{\Psi}+V(x) \widehat{\Psi}^{\dagger} \widehat{\Psi}+\frac{g}{2} \widehat{\Psi}^{\dagger 2} \widehat{\Psi}^{2}$	

Boson creation operators $\widehat{\Psi}^{\dagger}(x)$ at x.

Method

positive P representation

$\hat{\rho}=\int P(\vec{v}) \bigotimes_{x}|\alpha(x)\rangle\left\langle\beta^{*}(x)\right| d \vec{v}$

- Probability distribution P of variables $\vec{v}=\{\vec{\alpha}(\vec{x}), \vec{\beta}(\vec{x})\}$ which specify LOCAL coherent state projectors.
- 2 complex variables per lattice point.
- Describes any quantum state.
- Correspondences:

1. Master equation for $\hat{\rho}$.
2. \rightarrow Fokker-Planck equation for P.
3. \longrightarrow Stochastic equations for $\vec{\alpha}, \vec{\beta}$

- Quantum observables correspond to appropriate averages of variables \vec{v}

$$
\widehat{\Psi}(x) \leftrightarrow \alpha(x) \quad \widehat{\Psi}^{\dagger}(x) \leftrightarrow \beta(x)
$$

Dynamics

Just Gross-Pitaevskii equations plus Gaussian noise

$$
\begin{aligned}
\frac{d \alpha(x)}{d t}= & -i \hbar \sum_{y} \omega_{x y} \alpha(y)-\frac{i g}{\Delta x} \alpha(x)^{2} \beta(x) \\
& +i \sqrt{\frac{i g}{\Delta x}} \alpha(x) \xi_{1}(x, t)
\end{aligned}
$$

And $\frac{d \beta(x)}{d t}=\frac{d \alpha^{*}(x)}{d t}$ but with $\alpha^{*} \leftrightarrow \beta$ and new noises ξ_{2}.

- $\xi_{j}(x, t)$ are independent Gaussian noises of variance $1 / \Delta t$ for each x, t, j.
- Linear couplings $\omega_{x y}$ between x and y contain kinetics and external potential.

Scattering Dynamics

- No seed wave for now.
- Coherent and incoherent evolution coupled together.
- Initially: GP ground state of trap.

Velocity distribution dynamics

velocities relative to COM moving at v_{Q}

FIRST-PRINCIPLES DYNAMICS TRACTABLE IN MANY CASES
e.g. four wave mixing:

- 150000 atoms.
-432x105×50 lattice.
That's over two million points.
- 1024 trajectories
- About a week on a single PC
- No truncation or linearization.

Bosonic enhancement

 $\begin{array}{ll}\text { normal scattering } & \begin{array}{l}\text { bosonic enhancemen } \\ \text { "spontaneous emission" }\end{array} \\ \text { "stimulated emission" }\end{array}$

- Truncated Wigner is in error in such dilute regimes.
-This is due to the spurious virtual par ticles meant to mimic quantum noise.

Correlation Dynamics

Correlations between scattered atoms at different velocities

\qquad scatered atom having
$\mathrm{v}_{\mathrm{o}}-=9.8 \mathrm{mm/s}$ radial velocity
 Note: axial and tangential
correlations do not change Noie. axia and tangential
corralation so on to hane
apprecialiy on this timescale

- Further effects seen beyond previous truncated Wigner treatments [2]:
- Marked radial-only growth of phase grains with time.
- At short times $g^{(2)}\left(\mathrm{v}_{\mathrm{Q}},-\mathrm{v}_{\mathrm{Q}}\right) \gg 2$.
- Coherence $\left(g^{(1)}\right)$ and correlation $\left(g^{(2)}\right)$ lengths consistent with analytic estimates [3].

Four Wave Mixing

Acknowledgments

We thank C. W. Gardiner, G. Shlyapnikov, J. Chwedeńczuk, M. Trippenbach, and P . Ziń for enlightening discussions.

References

[^0]
[^0]: [1] J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 89, 020401 (2002).
 [2] A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005); Phys. Rev. A 73, 043617 (2006).
 [3] P. Ziń, J. Chwedeńczuk, A. Veitia, K. Rzązewski, and M. Trippen bach, Phys. Rev. Lett. 94, 200401 (2005)

