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Main points

1. Quantum dynamics of a Bose gas

Ĥ =
Z

ddx

{
Ψ̂†(x)

[
Vext(x)−

~
2

2m
∇2

]
Ψ̂(x) +

g
2

Ψ̂†(x)2Ψ̂(x)2

}

interacting via a 2-particle contact potential
is described “fully” by these simple, though noisy, field equations:

i~
d
dt

ψ(x) =

[
Vext(x)−

~
2

2m
∇2+g ψ(x)φ(x)∗+

√
i~g ξ(x)

]
ψ(x)

i~
d
dt

φ(x) =

[
Vext(x)−

~
2

2m
∇2+g φ(x)ψ(x)∗+

√
i~g ζ(x)

]
φ(x)

2. Example with N=150 000 atoms: the fate of the scattered atoms in a BEC collision.
[PD & Drummond, PRL 98, 120402 (2007)]



Discretization

• Divide space up into small bins of volume ∆V , label them by “x”
âx is the bosonic anihilation operator for particles in box x

Ĥ =⇒ ∑
x,y

~ωxy â†
x ây +

g
2∆V ∑

x

â†
x
2 âx

2

where
~ωxy = δxy Vext(x) + kinetics

• Provided bins are ≪ smallest relevant length scale, processes in continuum will be
modeled accurately.

• Bose-Hubbard model is a special case with one bin per lattice site, and a particular
choice of ωxy to obtain −J ∑〈i, j〉 â†

i â j etc.



Positive P representation

• From quantum optics: Density matrix ρ̂ = ∑iCi |Φ j〉〈Φ j| is equivalent to
[Drummond & Gardiner, J. Phys. A 13, 2353 (1980)]

ρ̂ =
Z

D ψ(x) D φ(x) P( {ψ(x)},{φ(x)} )
O

x

‖ψ(x)〉〈φ(x)‖
N (x)

with coherent states of mean particle density |ψ(x)|2 in each bin “x”

‖ψ(x)〉 = exp
[
(
√

∆V ψ(x)) â†
x

]
|0〉

• The distribution P is positive and real — it’s a probability distribution.

→֒ ρ̂ ≡ lim
S→∞

{
S random samples of fields ψ(x) and φ(x)

}



Dynamics

• Schrodinger equation is:
i~ ˙̂ρ = Ĥ ρ̂− ρ̂ Ĥ.

• Without going into gory details, this is equivalent to a Fokker-Planck equation for the
distribution P(ψ,φ):

i~
∂P
∂t

= ∑
x

[
− ∂

∂ψ(x)
Ax +

∂2

∂ψ(x)2
Dx + etc. with

∂
∂φ(x)

]
P

with diffusion coefficients Dx and drift rates Ax, etc.

• This in turn is is equivalent to Langevin equations for the random samples ψ(x) and
φ(x) such as:

d
dt

ψ(x) = Ax(ψ,φ)+
√

Dx(φ,ψ) ξ(x, t)

with ξ(x, t) being a real white noise field, delta-correlated in both x and t.



Gross-Pitaevskii + Noise
For our case of the contact–s wave–interacting Bose gas, one has:

[Drummond & Corney PRA 60, R2661 (1999)], [PD & Drummond J. Phys. A 39, 1163 (2006)]

i~
d
dt

ψ(x) =

[
Vext(x)−

~
2

2m
∇2+g ψ(x)φ(x)∗+

√
i~g ξ(x)

]
ψ(x)

i~
d
dt

φ(x) =

[
Vext(x)−

~
2

2m
∇2+g φ(x)ψ(x)∗+

√
i~g ζ(x)

]
φ(x)

The ξ(x, t) and ζ(x, t) are delta-correlated independent noise fields with variances:

〈ξ(x, t)ξ(x′, t ′)〉 = 〈ζ(x, t)ζ(x′, t ′)〉 = δ(t − t ′)δd(x− x′)

Differences to GP:

• noise

• two complex fields

• ψ and φ coupled by nonlinear terms



Is this a “free lunch”?

• No processes discarded =⇒ “exact” to all orders of perturbation etc.

• Complexity of description (e.g. number of variables) grows only linearly with system
size (number of bins/modes etc.): just have the fields ψ(x) and φ(x)

• Simple to implement: (repeatedly integrate GP equation with fresh noises and add
it all up)

• All observables can in principle be computed via: 〈Ψ̂†(x)nΨ̂(y)m〉 ≡ 〈φ(x)∗nψ(y)m〉S

BUT

• Over time, nonlinearity amplifies the noise:

• =⇒ Time for which you can simulate is limited.
[PD & Drummond, J. Phys. A 39, 1163 (2006)]
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BEC collision
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• 150,000 atoms of 23Na in a BEC.

• Initial trap f = 20×80×80Hz.

• Trap turned off at t ≥ 0

• At t = 0 Bragg laser pulse gives a
coherent kick 2vQ ≈ 19.64mm/s to
50% of the atoms.

• Collision well above sound velocity
(3.1 mm/s in center of cloud)

• Similar setup to experiments at MIT (23Na – with 3 ×107 atoms) [Vogels et al. PRL 89, 020401

(2002)], and Orsay (3He) [Perrin et al. arXiv:0704.3047]

• Initial conditions used here at t = 0 were T ≈ 0 and a coherent GP ground state
(realistically one has, for T ≈ 0.4Tc, quantum depletion ≈ 1%, which is negligible)

• Theory includes: [Bach et al. PRA 65, 063605 (2002), Zin et al. PRL 94, 200401 (2005)](Bogoliubov expansion),
[Norrie et al. , PRL 84, 040401 (2005); PRA 73, 043617(2006)](truncated Wigner), [PD & Drummond, PRL 98, 120402

(2007)](here)



Scattered atoms
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Correlations
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Phase grains and Bose enhancement
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Conclusions

• Full quantum dynamics of an interacting Bose gas can be simulated efficiently;
However — for a limited time only.

• Formulation is rather simple : two coupled GP equations + noise.

• Atoms scattered in a collision of BECs display rich dynamics and correlations

• Their dynamics undergo a qualitative change once “phase grains” become occupied
by more than one particle.


