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What is a BEC?

A collection of bose atoms in which many
atoms occupy the same quantum state.

First experimentally achieved in 1995.

Coldest known matter in the universe.
(T =~ 50-100 nK)

Diffuse gas of atoms in a magneto-optical
trap.

Achieved by evaporative cooling of a gas
of thermal atoms.

Typically 1000 to 10° atoms in conden-
sate.



e Large number of atoms behaving coher-
ently.

e Might be used to make an atom-laser.



Why simulate a BEC
numerically?

Analytic solutions make serious assump-
tions about the condensate.

e.g. T~ 0, or significantly below critical
temperature.

e.g. Mean-field theory.

These assumptions are often not satis-
fied, particularily near critical tempera-
ture, or for small condensates.

Analytic results do not always agree with
experiment.

Numerical simulations could make predic-
tions in the regimes which do not satisfy
the analytic assumptions.



Many-body problems

if you have N bodies, each with D energy
levels (say), then Hilbert space has

DN

dimensions.

e.g. for just 15 4-energy-level particles,
that's about (41%)2

~ 1000 000 OO0 000 000 000

simultaneous differential equations to solve.

BEC's contain 103 — 109 atoms!

Exact solution of density matrix is impos-
sible on a classical computer.



Stochastic equations to the
rescue

e Using the positive P distribution we can
reduce problem to 4N stochastic equa-
tions.

~

e N is the number of momentum modes in
the field. For a BEC, this is similar to
number of atoms V.

e [0 calculate observeables, average over
many realizations (trajectories).

e As number of trajectories grows, result
approaches exact quantum mechanics.

e Very efficient — interesting quantities and
main trends emerge from noise first.



Used to simulate (e.g.) condensation of
BEC. [Drummond & Corney, Phys. rev. A 60,
R2661 (1999)].

There were 10,000 atoms, 32,000 mo-
mentum modes, 1010 000 states in Hilbert

spacel

Problems after condensation: unmanage-
able noise.

Solution (hopefully): improve P distribu-
tion.









Quantum model of a BEC

T he usual non-relativistic Hamiltonian for neu-
tral atoms in a trap V(x), interacting via a

potential U(x), together with absorbing reser-
voirs R(x), in D =2 or D = 3 dimensions:

T, 2
H = /dDX BVQmKTJT(X)V\TJ(X)]

+ / dPx -V(X)\TJT(X)\TJ(X)]

+ /dDX UT(x)R(x) + \TJ(X)RT(X)]

+ //dDXdDyU(XQ_ Y gt 00 () U () U (x).

W (x) is the boson field at spatial position x.
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e Expand the boson field W(x) in momen-

tum modes aE:

W(x,t) = Z

—

k

~ k- ~f —ik.
ar(t) e x4 aE(t) e " X}

— N

e [ he Hamiltonian now becomes

/\ AN AN X '/\ AN
= h Z [wwaTaj gninj
1,j=1
+ trap potential and damping terms

also include reservoir in
master equation

where: n; = aTaz

e [ he ﬁiﬁj terms are the most important.
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Positive P distribution?

Expand density matrix p as a weighted
sum of coherent state elements ||@ >:

ﬁ:/ P(&»’B’) ||af<6|| dQNO_Z d2~g
< plla >

Where C_'Z: [Oé]_,OéQ,...,OéZ‘,---;aN]v

and
=T
|& >= e2i %% |0 >

IS un-normalised.

aj IS the creation operator for the :th mo-
mentum mode of the field. (Like in quan-
tum optics)
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Individual paths, and the mean:

<X>=<a+a" >/2
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Averages

over different numbers of paths:
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Important toy problem

e [ he noise problem in BEC simulations is
due to the x;;(ala;)(ala;) terms in the
hamiltonian.

e [ he one-mode anharmonic oscillator, a
very simplified BEC hamiltonian shows
the same noise problems:

=7 (aa)?

e If we could fix the noise problem for this
toy system, we should be able to fix it for
the full BEC.
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Intractable noise

consider the 1D case H = hi(ala)?
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The positive P-distribution does well up to
a certain time, but unfortunately after about
t ~ 0.3, the < X > errors are resistant to step

size.
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What is the problem?

7 o : 1=0.25

2x 10
1t
0 »
-1t
% 0 2
7
x 10
o 1=0.25
10 ——
5 -
0"
_5;;': A
1
-10 -5 0 5 10

20



Hermitian P distribution?
A

_— ?Ng 42N 3 40
TrA] ¢ © P

p=| P, 5.6)

A=e?a>< Bl +e )5 >< 4

New identities:

02 d\

' 2IA = 0
(Zaaae+aa>

2
RN A PO
0po0 | 9B

21



22



Equations with stochastic

gauges G,G.

daa = —iqa] {aﬂ*—l—%

— G+ DT+t + VidW ]
g = —if[ {a"B+

— G =)(T+ )}t + VidW ]

dd = —2T(G?+ G?)dt + V2[GdW + GdW]
with

0 = 0+4Im[as”]

T = tan(d)

The noises dW and dW are random, Gaus-
sian, mutually uncorrelated, and uncorrelated
for different times, with variance

< AW (£)dW (t) >= dt

When the gauges G and G are zero the equa-
tions are identical to those obtained using the
positive P-distribution.
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Stochastic Gauges

e [ he functions G are arbitrary. A good
choice turns out to be

¢ = 7 (la - Relap*(1 +)])

— o :
G = Z(181° + Relap™(1 = i)] )

with a free parameter u deciding how much
the new equations vary from the old pos-
itive P version.

e [ his gauge contains all «,8 trajectories
within a finite radius from zero in phase-
Space.

e [radeoff: This radius is small for large
w, but non-zero boundary terms spoil the
calculation due to systematic errors. For
w small, the systematic errors are negli-
gible, but the noise is larger.

e 1 = 0.001 is a good choice.
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| Positive P .
Mean field | rostve Y=(a-a")/2i
3 Theory 5 /

I

Best gaugeso far
u=0.001

Exact result
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Comparison of simulations of the quadrature
Y = Z(a—al) for an initial coherent state
| 3> acted on by A = 2(afa)?. 10,000 tra-
jectories.
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Comparison of simulations of the quadrature
Y = Z(a—al) for an initial coherent state
| 3> acted on by A = 2(afa)2. 10,000 tra-
jectories. Thick shaded line: exact result;
Dotted line: Positive P distribution; Dashed
line: © = 1 Hermitian gauge — note the
systematic error!; Solid line: u = 0.001 Her-
mitian gauge.
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Comparison of sampling errors for various
stochastic simulations: “old” positive P (u = 0),
small sampling hermitian P (u = 1), best her-
mitian P (x = 0.001). Shown is the variance

in quadrature Y. Size of actual sampling un-
certainty in calculated moment for N trajec-
tories is \/Var(Y)/N, hence number of trajec-
tories needed for an a accurate result grows
as Var(Y). Note the logarithmic scalel
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Some Conclusions

For (7)2 anharmonic interactions, sam-
pling error is reduced by many orders of
magnitude, allowing numerical simulations
of systems for which these are important.

Bose-Einstein Condensates are such sys-
tems.

The computational overheads (number of
equations) for Positive-P type methods
scale linearly with number of subsystems!

When the last “kinks” are ironed out of
this method, it should be possible to per-
form full quantum simulations of BEC's.
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e During our investigations into appropri-
ate gauges, we have observed that the
optimal choice of gauge may depend on
which observable one is interested in. Tak-
ing this into account may lead to further
improvement in calculation efficiency.

e [ he stochastic gauge approach could be
used to improve quantum simulations of
many systems, also with other quasi-probability
distributions.
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T hank You
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