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What is a BEC?

• A collection of bose atoms in which many

atoms occupy the same quantum state.

• First experimentally achieved in 1995.

• Coldest known matter in the universe.

(T ≈ 50-100 nK)

• Diffuse gas of atoms in a magneto-optical

trap.

• Achieved by evaporative cooling of a gas

of thermal atoms.

• Typically 1000 to 109 atoms in conden-

sate.
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• Large number of atoms behaving coher-

ently.

• Might be used to make an atom-laser.
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Why simulate a BEC
numerically?

• Analytic solutions make serious assump-

tions about the condensate.

• e.g. T ≈ 0, or significantly below critical

temperature.

• e.g. Mean-field theory.

• These assumptions are often not satis-

fied, particularily near critical tempera-

ture, or for small condensates.

• Analytic results do not always agree with

experiment.

• Numerical simulations could make predic-

tions in the regimes which do not satisfy

the analytic assumptions.
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Many-body problems

• if you have N bodies, each with D energy

levels (say), then Hilbert space has

DN

dimensions.

• e.g. for just 15 4-energy-level particles,

that’s about (415)2

≈ 1000 000 000 000 000 000

simultaneous differential equations to solve.

• BEC’s contain 103 − 109 atoms!

• Exact solution of density matrix is impos-

sible on a classical computer.
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Stochastic equations to the
rescue

• Using the positive P distribution we can

reduce problem to 4Ñ stochastic equa-

tions.

• Ñ is the number of momentum modes in

the field. For a BEC, this is similar to

number of atoms N .

• To calculate observeables, average over

many realizations (trajectories).

• As number of trajectories grows, result

approaches exact quantum mechanics.

• Very efficient — interesting quantities and

main trends emerge from noise first.
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• Used to simulate (e.g.) condensation of

BEC. [Drummond & Corney, Phys. rev. A 60,

R2661 (1999)].

• There were 10,000 atoms, 32,000 mo-

mentum modes, 1010 000
states in Hilbert

space!

• Problems after condensation: unmanage-

able noise.

• Solution (hopefully): improve P distribu-

tion.
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Quantum model of a BEC

The usual non-relativistic Hamiltonian for neu-

tral atoms in a trap V (x), interacting via a

potential U(x), together with absorbing reser-

voirs R̂(x), in D = 2 or D = 3 dimensions:

Ĥ =
∫

dDx

[
h̄22m

∇ Ψ̂†(x)∇Ψ̂(x)

]

+
∫

dDx

[
V (x)Ψ̂†(x)Ψ̂(x)

]

+
∫

dDx

[
Ψ̂†(x)R̂(x) + Ψ̂(x)R̂†(x)

]

+
∫ ∫

dDxdDy
U(x− y)

2
Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x) .

Ψ̂(x) is the boson field at spatial position x.
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• Expand the boson field Ψ̂(x) in momen-

tum modes â~k:

Ψ̂(x, t) =
∑

~k

{
â~k(t) ei

~k·x + â
†
~k
(t) e−i~k.x

}

• The Hamiltonian now becomes

Ĥ = h̄
m∑

i,j=1

[
ωijâ

†
i âj +

χij

2
n̂in̂j

]

+ trap potential and damping terms

also include reservoir in

master equation

where: n̂i = â
†
i âi

• The n̂in̂j terms are the most important.
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Positive P distribution?

• Expand density matrix ρ̂ as a weighted

sum of coherent state elements ||~α >:

ρ̂ =
∫

P (~α, ~β)
||~α >< ~β||
< ~β||~α >

d2Ñ~α d2Ñ ~β

• Where ~α = [α1, α2, . . . , αi, . . . , αÑ ],

• and

||~α >= e
∑

i αiâ
†
i |0 >

is un-normalised.

• â
†
i is the creation operator for the ith mo-

mentum mode of the field. (Like in quan-

tum optics)
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Individual paths, and the mean:
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Averages over different numbers of paths:
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Important toy problem

• The noise problem in BEC simulations is

due to the χij(â
†
i âi)(â

†
jâj) terms in the

hamiltonian.

• The one-mode anharmonic oscillator, a

very simplified BEC hamiltonian shows

the same noise problems:

Ĥ =
χ

2
(â†â)2

• If we could fix the noise problem for this

toy system, we should be able to fix it for

the full BEC.
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Intractable noise

consider the 1D case H = h̄(â†â)2
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The positive P-distribution does well up to
a certain time, but unfortunately after about
t ≈ 0.3, the < X > errors are resistant to step
size.
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What is the problem?
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Hermitian P distribution?

ρ̂ =
∫

P (~α, ~β, θ)
Λ̂

Tr[Λ̂]
d2Ñ~α d2Ñ ~β dθ

Λ̂ = eiθ||~α >< ~β||+ e−iθ||~β >< ~α||

New identities:

(
i

∂2

∂α∂θ
+

∂

∂α

)
Λ̂ = 0

(
i

∂2

∂β∂θ
+

∂

∂β

)
Λ̂ = 0

(
∂2

∂θ2
+ 1

)
Λ̂ = 0
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Equations with stochastic
gauges G,Ḡ.

dα = −iα[ {αβ∗ + 1

2

− G(1 + i)(T + i)}dt +
√
i dW ]

dβ = −iβ[ {α∗β +
1

2

− Ḡ(1− i)(T + i)}dt +
√
i dW ]

dθ̃ = −2T (G2 + Ḡ2)dt +
√
2 [GdW + ḠdW ]

with

θ̃ = θ + Im[αβ∗]
T = tan(θ̃)

The noises dW and dW̄ are random, Gaus-

sian, mutually uncorrelated, and uncorrelated

for different times, with variance

< dW (t)dW (t) >= dt

When the gauges G and Ḡ are zero the equa-

tions are identical to those obtained using the

positive P-distribution.
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Stochastic Gauges

• The functions G are arbitrary. A good

choice turns out to be

G =
µ

2

(
|α|2 −Re[αβ∗(1 + i)]

)

Ḡ =
µ

2

(
|β|2 +Re[αβ∗(1− i)]

)

with a free parameter µ deciding how much

the new equations vary from the old pos-

itive P version.

• This gauge contains all α,β trajectories

within a finite radius from zero in phase-

space.

• Tradeoff: This radius is small for large

µ, but non-zero boundary terms spoil the

calculation due to systematic errors. For

µ small, the systematic errors are negli-

gible, but the noise is larger.

• µ = 0.001 is a good choice.
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Comparison of simulations of the quadrature

Ŷ = 1
2i(â − â†) for an initial coherent state

| 3 > acted on by Ĥ = h̄
2(â

†â)2. 10,000 tra-

jectories.
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Some Conclusions

• For (n̂)2 anharmonic interactions, sam-

pling error is reduced by many orders of

magnitude, allowing numerical simulations

of systems for which these are important.

• Bose-Einstein Condensates are such sys-

tems.

• The computational overheads (number of

equations) for Positive-P type methods

scale linearly with number of subsystems!

• When the last “kinks” are ironed out of

this method, it should be possible to per-

form full quantum simulations of BEC’s.
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• During our investigations into appropri-

ate gauges, we have observed that the

optimal choice of gauge may depend on

which observable one is interested in. Tak-

ing this into account may lead to further

improvement in calculation efficiency.

• The stochastic gauge approach could be

used to improve quantum simulations of

many systems, also with other quasi-probability

distributions.
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Thank You
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