
Kolizje kondensatów BEC i symulacja

mikroskop owej
ijnej dynamiki kwantowej

Piotr Deuar
(IF PAN)
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Issues I will try to touch on

• Some similarities and differences between ultracold atoms and quantum optics

• When is a mean-field description of BECs inadequate?

• How BEC collisions are an example of this inadequacy

• What BEC collision experiments look like

• How to go beyond a mean field description in a “straightforward” way

• Four wave mixing with atoms vs. with photons

• The growth of spontaneous condensates: “phase grains” (maybe)





Common description of a “BEC” – the Hamiltonian
Boson field operators Ψ̂(x).

Ĥ =
Z

dx Ψ̂†(x)

{
−~

2∇2

2m
+V(x)+

g
2

Ψ̂†(x)Ψ̂(x)

}
Ψ̂(x)

– In terms of mode occupations for a grid with mesh grid volume ∆V

Ψ̂(x) ∼ âx√
∆V

; [âx, â
†
y] = δxy

– Get something that looks quantum-optics like

Ĥ = ∑
x

{
â†

x H0 âx+χ
(
â†

x

)2
â2

x

}

with χ = g/2∆V, and H0 = −~
2/2m∇2+V(x).

– Similar to Kerr χ(3) nonlinearity.



Common description of a “BEC”:
mean field GP equation

The Boson field Ψ̂(x) is approximately a macroscopic wavefunction Ψ(x) for a
single mode occupied by all N atoms.

Ψ(x) Obeys the (superfluid) Gröss-Pitaevskii (GP) equation:

i~
∂Ψ(x, t)

∂t
=

{
−~

2∇2

2m
+V(x)+g|Ψ(x, t)|2

}
Ψ(x, t)

What does the GP description miss?

1. Incoherent atoms

2. Supersonic effects
— above the speed of sound c(x) =

√
gn(x)/m, motion is no longer superfluid.

3. Details on scales smaller than the healing length ξ(x) = ~/mc
√

2.

Example where this lack is serious: supersonic BEC collisions.



Supersonic BEC collision

Schematic in x-space:

original   
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Lasers in x-space View in k-space

From A. Perrin et al.,

PRL 99 150405 (2007)



Experimental examples

From A.P. Chikkatur et al., PRL 85, 483 (2000).

Integrated density

From J.M. Vogels et al.,

PRL 89, 020401 (2002).
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From N. Katz et al., PRL 95, 220403 (2005).



Why is mean field no good here?

i~
∂Ψ(x, t)

∂t
=

{
−~

2∇2

2m
+V(x)+g|Ψ(x, t)|2

}
Ψ(x, t)

In the halo, initial condensate field Ψ(x,0) is zero, and so stays that way.

(It’s a spontaneous process initially)

( Simulations to be described below )



Metastable He ∗ experiment

Uses multi-channel plate – Allows mapping of 3D atom distribution

From M. Schellekens et al.,

Science 310, 648 (2005).

After long time of flight,
n(x, t) → n(k,0)

From A. Perrin et al., PRL 99 150405 (2007)



Allows measurement of HBT correlations - density g(2)

g(2)(x,y) =
〈â†

xâ†
yâyâx〉

〈n̂(x)〉〈n̂(y)〉

Hanbury Brown-Twiss short-range
correlations g(2)(z,z+ ∆z) in a single
cloud
Schellekens et al., Science 310, 648 (2005)

in a Boson He4 and a Fermion He3

cloud. Note how healing length
ξ(x) = ~/mc

√
2 ∝ 1/m

Jeltes et al., Nature 445, 402 (2007)



Density correlations in the scattered halo

g(2)(k,k′) =
〈n̂(k) [n̂(k′)−δkk′]〉

〈n̂(k)〉〈n̂(k′)〉

From A. Perrin et al., PRL 99 150405 (2007)

Back-to-Back k′ ∼−k
(pairing)

Collinear k′ ∼ k
(HBT)



Another interesting issue – Phase grains

Coherence: g(1)(k,k+δk) =
〈Ψ̂†(k)Ψ̂(k+δk)〉√
〈n̂(k)〉〈n̂(k+δk)〉

– Locally coherent regions. |g(1)| ≫ 0 Norrie et al., PRL 94, 040401 (2005)

– Scattering rate into such a coherent region with n atoms is ∝ (1+n)
→ Bose stimulation if n & 1 leads to rapid coherent growth of occupation of the phase
grain
→ Mini condensates formed.
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Simulation beyond mean field: Bogoliubov Hamiltonian

1. Write Ψ̂(x, t) = φ(x, t)+ ψ̂B(x, t)

2. Substitute into full Ĥ =
R

dx Ψ̂†(x)
{
−~

2∇2

2m + g
2 Ψ̂†(x)Ψ̂(x)

}
Ψ̂(x)

3. Assume ψ̂B(x, t) is orthogonal to φ(x, t).

4. Assume δN the number of particles contained in ψ̂B is ≪ N, the total number.

5. Remove terms of high order in δN/N (quantum depletion) from Ĥ to obtain ĤB

6. For later convenience, separate right- and left-moving condensates (velocities ≈±kC)
into φ(x, t) = φL(x, t)+φR(x, t).



time-dependent Bogoliubov Hamiltonian

ĤB =
Z

dx

{
ψ̂†

B

(
−~

2∇2

2m

)
ψ̂B K.E.

+2g|φ(t)|2ψ̂†
Bψ̂B collective potential

+2gφL(t)φR(t)(ψ̂†
B)

2+h.c. halo pair production

+g
[
φL(t)

2+φR(t)
2
]
(ψ̂†

B)
2+h.c.

}
pair production near BECs

GP equations for condensates:

i~
dφR(x, t)

dt
=

{
− ~

2

2m
∇2+g

[
|φR(x, t)|2+2|φL(x, t)|2+φ∗

L(x, t)φR(x, t)
]}

φR(x, t)

i~
dφL(x, t)

dt
=

{
− ~

2

2m
∇2+g

[
|φL(x, t)|2+2|φR(x, t)|2+φ∗

R(x, t)φL(x, t)
]}

φL(x, t)

Cute and useful feature: can remove terms to see what process affects what
observation.



A “TECHNICAL” DIFFICULTY:

• Experimentally realistic situations require 105−107 lattice points.

• Standard Bogoliubov quasiparticle evolution procedure requires diagonalization of
ĤB, finding of eigenstates, etc. This is unlikely given the size of the space!

SOLUTION: Instead, the dynamics of ψ̂B can be treated stochastically using a method
straight from quantum optics – the positive-P representation. . .

i~
dψ1(x, t)

dt
=

[
− ~

2

2m
∇2+2g|φ(x, t)|2

]
ψ1(x, t)

= +gφ(x, t)2ψ2(x, t)
∗+ i

√
igψ1(x, t) ξ1(x, t)

i~
dψ2(x, t)

dt
=

[
− ~

2

2m
∇2+2g|φ(x, t)|2

]
ψ2(x, t)

= +gφ(x, t)2ψ1(x, t)
∗+ i

√
igψ2(x, t) ξ2(x, t)

Here, ξ j(x, t) are independent Gaussian random variable fields with mean zero and

variances 〈ξi(x, t)ξ j(x′, t ′)〉 = δi j δ(x−x′)δ(t − t ′). And e.g. 〈Ψ̂B
†Ψ̂B〉 = 〈ψ∗

2ψ1〉stoch



Four wave mixing with ATOMS vs with PHOTONS

Z

X
Y

XY-plane

• Spontaneous scattering into empty “halo” modes as with light

• ATOMS: Halo radius NOT at expected |v| = v0 collision velocity, but smaller

• ATOMS: Halo ellipsoidal if condensates non-spherical

• ATOMS: Superradiance-like effect, but small.



Why is Halo radius smaller

It costs µ= 3
2gn(x) to remove a particle from the condensate (the mean-field energy

from the repluslion of the remaining particles), but 2gn(x) to place one in a non-
condensate mode. The energy balance is

~
2k2

0

2m
+

3
2

gn=
~

2k2

2m
+2gn

When the mean-field energy is removed from the Hamiltonian ĤB, the radius reverts to
v0 (and ellipticity disappears)
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Why is the Halo an ellipse?

REASON 1: Particles can roll off the condensate to recover some or all of the lost
mean-field energy ∝ gn(x).

BUT -

in the long condensate direction, this does not
happen because the density “falls out” from under
the particles as the condensates move away before
the particle can roll far.
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WHILE -
in the short directions, a halo particle moves fast and
rolls off before the condensate can change much.
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Why is the Halo an ellipse?

REASON 2: Along the collision direction, halo particles become bogged in the
potential valley forming between the condensates (because they are slightly slower
due to the halo radius shift mentioned before), and become deccelerated in this valley.



Why is the superradiance along the condensate small?

In standard photon-atom superradiance the atom can take on a lot of momentum
but little energy
→ photon can be scattered at almost a right angle, and along long axis of BEC.

PHOTON
ATOM

in atom-atom superradiance all particles have the same mass, changing the
allowed geometry → high-speed scattering along long axis of BEC not possible



Why do phase-grains elongate radially?
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• At late times only lagging tails of BEC wavepackets remain overlapping

• These produce scattered atoms with lower velocity

• Because significant phase space density has already built up in the largest phase
grains, they stimulate strong, coherent scattering out of the lagging BEC tails
preferentially next to the existing phase grain.



Thank you : )


