

AB INITIO SIMULATIONS OF COLLISIONS OF HELIUM CONDENSATES

<u>Karén Kheruntsyan¹, P. Deuar², V. Krachmalnicoff³, J-C. Jaksula³, G. Partridge³, M. Bonneau³, D. Boiron³, C. Westbrook³</u> ¹ARC Centre of Excellence for Quantum-Atom Optics, University of Queensland, Brisbane, QLD 4072, Australia ²Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland ³Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, Campus Polytechnique, 91127 Palaiseau Cedex, France

1. Motivation

- Interested in mechanisms of pair production of particles for *quantum-atom optics* (pair correlated photons have been pivotal to quantum optics; e.g., demonstrations of EPR paradox and violations of Bell's inequalities)
- Pair-correlated atoms in BEC collisions have been detected in [1]
- Modified experiments are underway; the new geometry gives better detection access
- First-principles simulations are now possible for the entire collision duration (in contrast to [2])

2. Hamiltonian and positive-*P* equations

 $\hat{H} = \int d^3 \mathbf{x} \left(\frac{\hbar^2}{2m} \left| \nabla \hat{\Psi} \right|^2 + \frac{U_0}{2} \hat{\Psi}^+ \hat{\Psi}$ (1)

Positive-*P* (phase-space) method: the quantum many-body dynamics, governed by the Hamiltonian (1), is simulated exactly via stochastic differential equations for *c*-fields [2]:

$$\frac{\partial \psi(\mathbf{x},t)}{\partial t} = \frac{i\hbar}{2m} \nabla^2 \psi - i(U_0/\hbar) \widetilde{\psi} \psi \psi + \sqrt{-i(U_0/\hbar)\psi^2} \xi_1(\mathbf{x},t)$$
$$\frac{\partial \widetilde{\psi}(\mathbf{x},t)}{\partial t} = \frac{-i\hbar}{2m} \nabla^2 \widetilde{\psi} + i(U_0/\hbar) \widetilde{\psi} \psi \psi + \sqrt{i(U_0/\hbar)\widetilde{\psi}^2} \xi_2(\mathbf{x},t)$$

- $\langle \xi_i(\mathbf{x},t) \text{noise terms, with } \langle \xi_i(\mathbf{x},t)\xi_j(\mathbf{x}',t') \rangle = \delta_{ij}\delta^{(3)}(\mathbf{x}-\mathbf{x}')\delta(t-t')$
- $U_0 = 4\pi \hbar^2 a / m s$ -wave scattering interaction

3. Simulation parameters

- Total No. of ⁴He* atoms in the initial BEC: 10⁵
- Initial condition: pure BEC in a coherent state, split into two counter-propagating halves $\psi(\mathbf{x},0) = \sqrt{n(\mathbf{x})/2} \left[\exp(ik_0 z) + \exp(-ik_0 z) \right]$
- Harmonic trap: 47/1150/1150 Hz
- Relative collision velocity: $2v_0=2 \times 7.36$ cm/s
- Numerical lattice: 1024 x 48 x 112 lattice points
- Number of modes simulated: 5505024
- Positive-*P* simulations run for 70 μ s
- Number of stochastic trajectory averages: 2000
- Computing time: 6-7 days on 10 CPUS

Figure 1. Schematic diagram of the collision geometry: The two disks represent the colliding condensates; the sphere represents the scattered atoms. The cigar shaped initial condensate is shown in the middle.

of the atomic cloud after 70 μ s, showing the spatial separation of the two colliding condensates.

Stochastic Hartree-Fock-Bogoliubov approach

- Apply the HFB scheme: $\hat{\Psi}(\mathbf{x},t) = \psi_0(\mathbf{x},t) + \hat{\delta}(\mathbf{x},t)$
- Re-formulate the Heisenberg equations of motion for $\hat{\delta}(\mathbf{x},t)$

 $i\hbar \frac{\partial \hat{\delta}(\mathbf{x},t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + 2U_0 |\psi_0(\mathbf{x},t)|^2 \right] \hat{\delta}(\mathbf{x},t) + 2U_0 \psi_0(\mathbf{x},t)^2 \hat{\delta}^+(\mathbf{x},t)$ according to the positive-*P* method

- easier to solve than the standard Bogoliubov method in 3D - can incorporate the mean field dynamics of the colliding condensates $[\psi_0(\mathbf{x},t)]$ as the solution to the GP equation

 $k_{x,y}/k_0$

Figure 4. Slice of the atomic momentum distribution through the origin in the k_x - k_y plane in **polar co**ordinates (left panel); the respective radial densities along k_x and k_y axis (right panel) show the anisotropy of the distribution and its ellipticity (ε =1.03). The axis are in units of $k_0 = mv_0 / \hbar$.

Comparison table:	Peak position (units of k_0)		Peak width (units of k_0)		Peak density (arb. units)		N _{scattered}
	along k_x	k_v	k_x	k_{v}	k_x	k_v	
Theory	0.95±0.01	0.98±0.01	0.08±0.005	0.10±0.005	1.40±0.1	ĺ	1400±50
Experiment	0.88±0.02	0.94±0.02	0.09±0.01	0.11±0.01	1.48±0.16	1	1600±200

- agreement with the full positive-P simulation!

- Scattered atoms move in a complicated mean-field potential landscape of the separating and expanding condensates
- Shift $\delta k = k_0 k_s$ in the radius of the sphere can be estimated as $\frac{\hbar^2 k_0^2}{2m} + U_0 n_0 = \frac{\hbar^2 k_s^2}{2m} + 2U_0 n_0 \implies \frac{\hbar^2 k_s^2}{2m} = \frac{\hbar^2 k_0^2}{2m} - U_0 n_0 \implies \frac{\delta k}{k_0} \approx \frac{m U_0 n_0}{\hbar^2 k_0^2}$
- Ellipticity: atoms moving along y slide down a steeper hill of the mean-field potential and regain the energy shift $U_0 n_0$ as kinetic energy (radius is back to k_0), unlike the atoms along x

REFERENCES

[1] Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates. A. Perrin, H. Chang, V. Krachmalnicoff, M. Schellekens, D. Boiron, A. Aspect, and C. I. Westbrook, Phys. Rev. Lett. 99, 150405 (2007). [2] Atomic four-wave mixing via condensate collisions. A. Perrin, C. M. Savage, D. Boiron, V. Krachmalnicoff, C. I. Westbrook, K. V. Kheruntsyan, New J. Physics **10**, 045021 (2008).

