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Classical field and positive P simulations

e Both give simulations of gquantum dynamics beyond a
linearised Hamiltonian

e Both are numerically tractable
e Each method has its drawbacks
e A hybrid method can alleviate some of these



Classical field (“truncated Wigner”) simulations
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Mean field fails for scattered atoms
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Experiments as per e.g. (x) 1
[J. M. Vogels, K. Xu, & W. Ketterle, PRL 89, 020401 (2002)] P(x,0) = @(x,0) + ntx) ( add 5 virtual particle )
and many others \/é

~ ~ 2 o _dy(x h?

H= KE+%/ [LIJT(X)] W(x)% d3x ih ll;é ) = —%D2+g|q)(x)]2 W(X) ( mf GP equation )

Works well for large N= 6,000,000 particles




Less particles: N = 150,000
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Full guantum dynamics (positive-P) calculations
W(x.0)=a(x0) 5  B(x0)=aex0)
atees two fields
no virtual initial particles
dy(x) G
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wfmm in Do _ —— 2+ gy(x) \/ Ext
[PD & P. D. Drummond, PRL 98, 120402 (2007)] dt i 2m

mean field GP + noise

Classical field has errors for N= 150,000 particles
Positive P only works for short times




Hybrid representation

e Consruct a smooth transition parametrised by parameter A
e A = Ois classical Field, A = 1 is positive-P
e \Want transition to be monotonic!

AFTER SOME TRIES, OBTAIN:

P(x,0) = P(x,0) = @(x,0) + \/f1(27\) (x) initial conditions
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evolution
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atoms in scattered shell
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Why combine bad features of both methods?

Resulting simulations
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Can get an idea of the size of the correction to the classical field method.
e.g: total scattered number overestimated by several thousand

Can

verify some observables at long times

e.g. density in main scattered shell is calculated correctly with classical field method



Estimating full guantum dynamics
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CONCLUSIONS:

e Quantitative assesment of classical field method accuracy

e Extrapolation to full QD for much longer times




