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Overview

• Supersonic BEC collisions - why is this interesting?

1. The most interesting stuff is not described by GP equations.
2. Experiments can make “precision” measurements.
3. Theory / Experiment agreement could potentially be good

• Why is it “non-trivial”?

1. GP does not suffice.
2. Direct Bogoliubov description is tiresome, tricky and possibly

intractable.

• I will explain how to get a relatively “easy” Bogoliubov description



The most interesting stuff is not described by GP
equations.

Ψ(x) Obeys the (superfluid) Gröss-Pitaevskii (GP) equation:

i~
∂Ψ(x, t)

∂t
=

{
−~

2∇2

2m
+V(x)+g|Ψ(x, t)|2

}
Ψ(x, t)

What does the GP description miss?

1. Incoherent atoms

2. Supersonic effects
— above the speed of sound c(x) =

√
gn(x)/m, motion is no longer superfluid.

3. Details on scales smaller than the healing length ξ(x) = ~/mc
√

2.



Supersonic BEC collision

Schematic in x-space:

original   
condensate 

atoms scattered into      
an ≈ spherical shell

second condensate  
produced by Bragg  
optical transition 
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Lasers in x-space View in k-space

From A. Perrin et al.,

PRL 99 150405 (2007)



Why is mean field no good here?

i~
∂Ψ(x, t)

∂t
=

{
−~

2∇2

2m
+V(x)+g|Ψ(x, t)|2

}
Ψ(x, t)

In the halo, initial condensate field Ψ(x,0) is zero, and so stays that way.

(It’s a spontaneous process initially)

( Simulations to be described below )



Metastable He ∗ experiment

Uses multi-channel plate – Allows mapping of 3D atom distribution

From M. Schellekens et al.,

Science 310, 648 (2005).

After long time of flight,
n(x, t) → n(k,0)

From A. Perrin et al., PRL 99 150405 (2007)



Experiments can make “precision” measurements



Theorists can also make “precision” predictions



Simulation beyond mean field: Bogoliubov Hamiltonian

1. Write Ψ̂(x, t) = φ(x, t)+ ψ̂B(x, t)

2. Substitute into full Ĥ =
R

dx Ψ̂†(x)
{
−~

2∇2

2m + g
2 Ψ̂†(x)Ψ̂(x)

}
Ψ̂(x)

3. Assume ψ̂B(x, t) is orthogonal to φ(x, t).

4. Assume δN the number of particles contained in ψ̂B is ≪ N, the total number.

5. Remove terms of high order in δN/N (quantum depletion) from Ĥ to obtain ĤB

6. For later convenience, separate right- and left-moving condensates (velocities ≈±kC)
into φ(x, t) = φL(x, t)+φR(x, t).

7. Several people now or formerly in this room have investigated this: Rzążewski,
Trippenbach, Ziń, Bach, Chwedeńczuk, . . .



time-dependent Bogoliubov Hamiltonian

ĤB =
Z

dx

{
ψ̂†

B

(
−~

2∇2

2m

)
ψ̂B K.E.

+2g|φ(t)|2ψ̂†
Bψ̂B collective potential

+2gφL(t)φR(t)(ψ̂†
B)

2+h.c. halo pair production

+g
[
φL(t)

2+φR(t)
2
]
(ψ̂†

B)
2+h.c.

}
pair production near BECs

GP equations for condensates:

i~
dφR(x, t)

dt
=

{
− ~

2

2m
∇2+g

[
|φR(x, t)|2+2|φL(x, t)|2+φ∗

L(x, t)φR(x, t)
]}

φR(x, t)

i~
dφL(x, t)

dt
=

{
− ~

2

2m
∇2+g

[
|φL(x, t)|2+2|φR(x, t)|2+φ∗

R(x, t)φL(x, t)
]}

φL(x, t)

Cute and useful feature: can remove terms to see what process affects what
observation.



A “TECHNICAL” DIFFICULTY (or two)

• Experimentally realistic situations require 105−107 lattice points.

• Standard Bogoliubov quasiparticle evolution procedure requires diagonalization of
ĤB, finding of eigenstates, etc. This is unlikely given the size of the space!

• This is a dynamical situation – the coherent background φ(x, t) changes, so
diagonalization would have to be done at each dt step :-(

• Analytic approaches can treat simplified cases, but there are meny terms ∼∝ gn,
and not all can be done analytically at once.



Processes ∝∼ gn

φ = φL +φR

with
kL ∼−k0,kR∼ k0

φLφRΨ̂†
B(k)Ψ̂

†
B(−k) pair creation

φRφRΨ̂†
B(k0+δk)Ψ̂†

B(k0−δk) mini-halo and pair depletion near BECs

φRφRφ∗
Lφ∗

R(3k0) frequency doubling

|φL +φR|2Ψ̂†
B(x)Ψ̂B(x) potential for Ψ̂B atoms

|φR|4 self-potential for right BEC

|φL|2|φR|2 repulsion between R and L BECs

. . . etc.



A SOLUTION
the “STAB” (in the dark?) method

“Stochastic Time-Adaptive Bogoliubov”

Instead of a direct solution of ĤB, the dynamics of ψ̂B can be treated stochastically
using phase-space representations (here, the positive-P representation). Obtain:

i~
dψ1(x, t)

dt
=

[
− ~

2

2m
∇2+2g|φ(x, t)|2

]
ψ1(x, t)

= +gφ(x, t)2ψ2(x, t)
∗+ i

√
igψ1(x, t) ξ1(x, t)

i~
dψ2(x, t)

dt
=

[
− ~

2

2m
∇2+2g|φ(x, t)|2

]
ψ2(x, t)

= +gφ(x, t)2ψ1(x, t)
∗+ i

√
igψ2(x, t) ξ2(x, t)

Here, ξ j(x, t) are independent Gaussian random variable fields with mean zero and

variances 〈ξi(x, t)ξ j(x′, t ′)〉 = δi j δ(x−x′)δ(t − t ′). And e.g. 〈Ψ̂B
†Ψ̂B〉 = 〈ψ∗

2ψ1〉stoch



Positive-P method

One writes the density matrix of the system on M lattice points in coherent states

|ψ j(x)〉 = eψ j(x)ψ̂
†
B(x)|0〉 as

ρ̂ = |Ψ〉〈Ψ| =
Z

D
2Mψ1(x)D

2Mψ2(x) P(ψ1(x),ψ2(x), t) |ψ1(x)〉〈ψ2(x)|

– The distribution P(. . .) can be guaranteed non-negative real

– The complete quantum evolution of the state

i~
∂ρ̂
∂t

=
[
ĤB, ρ̂

]

is equivalent to the random walk of an ensemble of 2M random variables ψν(x, t).

– Expectation values of observables are equivalent to ensemble averages of the
variables.

– Most complexity gets shoved into the ensemble, and hopefully averages out for most
quantities of interest.



Dynamics

i~
∂ρ̂
∂t

= ĤB(t) ρ̂− ρ̂ ĤB(t).

Where time-dependence comes through the dependence of ĤB on φ(t).

• This is equivalent to a Fokker-Planck equation for the distribution P(ψ1,ψ2):

i~
∂P
∂t

= ∑
xν

[
− ∂

∂ψν(x)
Aν(x, t)+∑

σ

∂2

∂ψν(x)ψσ(x)
Dνσ(x, t)

]
P

with time-dependent diffusion coefficients D(x, t) and drift rates A(x, t), etc.

• This in turn is is equivalent to Langevin equations for the 2M random samples ψ1(x)
and ψ2(x) such as:

d
dt

ψν(x) = Aν(ψ1,ψ2, t)+∑
σ

√
Dνσ(ψ1,ψ2, t) ξσ(x, t)

with ξσ(x, t) being real independent white noise fields, delta-correlated in x and t
(and σ).



Features
• Good scaling with system size (M= number of lattice sites):

– Number of variables ∝ M
– Evolution time ∝ M logM/∆t

• Noisy with precision ∝ 1/
√

S ith S trajectories

• Linear evolution in ψν variables, hence no instability like in full positive-P treatment
of the first-principles Hamiltonian.

• Simple basis set (plane waves), despite complicated mean-field evolution.

• Limited to “small” quantum depletion

• No interaction between quasiparticles.

• All spontaneous and stimulated processes included with no empirical parameters

• No back-action of quasiparticles on condensate

• full MF evolution included

• Terms with clear physical meaning can be easily added / removed



Halo radius mysteries

Z

X
Y

• Halo radius NOT at expected |v| = v0 collision velocity, but smaller

• Halo becomes flattened along collision direction

• Halo becomes ellipsoidal ⊥ to collision direction if condensates non-spherical



Mystery 1: Why is Halo radius smaller

It costs µ= 3
2gn(x) to remove a particle from the condensate (the mean-field energy

from the repluslion of the remaining particles), but 2gn(x) to place one in a non-
condensate mode. The energy balance is

~
2k2

0

2m
+

3
2

gn=
~

2k2

2m
+2gn

When the mean-field energy is removed from the Hamiltonian ĤB, the radius reverts to
v0 (and ellipticity disappears)
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Mystery 2: Why is the Halo an ellipse?

Particles can roll off the condensate to recover some or all of the lost mean-field
energy ∝ gn(x).

BUT -
in the long condensate direction, this does not happen because the density
“falls out” from under the particles as the condensates move away before the
particle can roll far.

WHILE -
in the short directions, a halo particle moves fast and rolls off before the
condensate can change much.
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Why is the Halo flattened along collision direction?

Along the collision direction, halo particles become bogged in the potential valley
forming between the condensates (because they are slightly slower due to the halo
radius shift mentioned before), and become deccelerated in this valley.
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Thank you : )


