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• “Can a quantum system be probabilistically simulated by a

classical universal computer? . . . If you take the computer to

be the classical kind . . . the answer is certainly, No!” (Richard P.

Feynman Simulating Physics with Computers)

• “The equivalent to Molecular Dynamics . . . does not exist in

any practical sense . . . One is forced to either simulate very

small systems (i.e. less than five particles) or to make serious

approximations.” (David M. Ceperley, Lectures on Quantum

Monte Carlo, May 1996 )

• We need to improve on methods already implemented by the

Positive P, and other quasi-probability representations.



Positive P representation

ρ̂ =

∫
P (ααα, βββ)

| ααα >< βββ |
< βββ | ααα >

d2nααα d2nβββ

• P is a positive, real, normalised distribution function over the

n-subsystem coherent states | ααα >, | βββ >.

• P exists for any quantum state.

• When appropriate boundary terms vanish, P obeys a Fokker-

Planck equation. (FPE)

• The FPE leads to 2n complex stochastic equations



Advantages of Positive P

For n subsystems:

• IMMENSE improvement over direct solution of density matrix:

– Density matrix methods would require 2Dn real equations, with

D itself large.

– Positive P requires only 4n real stochastic equations!

• Used already to make some successful many-body predictions

– Quantum soliton behaviour in optical fibers [Nature 365, pp 307]

– Condensation of a BEC [Phys. Rev. A 60, pp R2261 ]

• Already well understood.



Drawbacks of Positive P

• For many interesting systems,

sampling error becomes unmanageable in finite time.

• Requires boundary terms in phase space to vanish.

• Not exact for high order interactions. ( >3rd order in â† )

Fortunately, this is insignificant in many interesting cases.



Quantum model of a BEC

The usual non-relativistic Hamiltonian for neutral atoms in a trap

V (x), interacting via a potential U(x), together with absorbing

reservoirs R̂(x), in d = 2 or d = 3 dimensions:

Ĥ =

∫
ddx

[
h̄2

2m
∇Ψ̂†(x)∇Ψ̂(x) + V (x)Ψ̂†(x)Ψ̂(x)

]

+

∫
ddx

[
Ψ̂†(x)R̂(x) + Ψ̂(x)R̂†(x)

]

+
1

2

∫ ∫
ddxddyU(x− y)Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x) .



Simplified lattice model (ignoring reservoirs)

• Generic interaction Hamiltonian of a lattice Bose gas,

• Nonlinear interactions between the sites

• linear interactions that couple different sites together:

Ĥ = h̄

m∑

i,j=1

[
ωijâ

†
i âj +

χij

2
n̂in̂j

]

+ trap potential, damping, noise

where: n̂i = â†i âi



• The condensation of a BEC has been simulated with Positive P

distribution methods on the lattice model above, but sampling

error destroys the simulation after the time condensation.

• The positive P method works well for the â†i âj and damping

terms, but cannot handle terms like (â†â)2 for longer times. (See

figures 1, 2, 4).

• Need a method with much less sampling error for the (â†â)2

Hamiltonian.

• Have found one. See below!
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Figure 1: Comparison of the variable α for the positive P and µ = 1 low sampling
error gauge. The initial coherent state | 3 > was acted on by Ĥ = h̄

2
(â†â)2

for t = 0.6. The scale is logarithmic! Note the small number of very large α
values in the Positive P simulation which cause the large sampling error. 10, 000
trajectories shown.
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Figure 2: Comparison of the variable α for the positive P and µ = 0.001 optimum
gauge after t = 0.6. 10, 000 trajectories shown.



Hermitian P representation

ρ̂ =

∫
P (ααα, βββ, θ)

Λ̂(ααα, βββ, θ)

Tr[ Λ̂ ]
d2nααα d2nβ dθ

The Kernel Λ̂ is

Λ̂ = eiθ || ααα >< βββ ||+ e−iθ || βββ >< ααα ||

In terms of n-subsystem Bargmann coherent states

|| ααα > = exp

[
n∑

i=1

αiâ
†
i

]
| 0 >



• Has all the desirable properties of the Positive P distribution,

• but also addresses the sampling error problem!

• The kernel Λ̂ consists of coherent states, like the Positive P, but

is hermitian.

• Λ̂ Has an internal quantum phase θ.

• Λ̂ is entangled if ααα 6= βββ.

• A positive, real P exists for all quantum states.

P (ααα, βββ, θ) = P+(ααα, βββ) δ (θ − arg(ααα∗ · βββ) )

(here P+ is the “old” positive P distribution function.)



• For n subsystems/modes, we would now have 4n + 1 real

stochastic equations. (There is only one quantum phase θ for the

entire system.)

• The expectation values of all the observeables can be calculated

by generating some amount N of realizations of these stochastioc

equations, and averaging over them. To get the expectation value

of observable X̂

< X̂ > =

〈
Tr[X̂Λ̂]

Tr[ Λ̂ ]

〉



Anharmonic n̂2 Hamiltonian

Ĥ =
h̄χ

2
(â†â)2

Is the crucial term for a BEC simulation. Standard Positive P

simulations notoriously give unmanageable sampling errors after

short times (see figure 4).

The density matrix ρ̂ evolves according to

∂ρ̂

∂t
=

−i

h̄
[Ĥ, ρ̂]

=

∫
P (α, β, θ)

ĤΛ̂− Λ̂Ĥ

Tr[ Λ̂ ]
d2αd2βdθ



We can use the operator identity

(â†â) Λ̂ =

(
α

∂

∂α
+ β

∂

∂β

)
Λ̂

To generate a Fokker-Planck Equation for P if boundary terms

vanish.

This then leads to two complex stochastic equations with two real

noises dW and dW . In fact, the same ones as for the Positive P!

dα = −iα[ (αβ∗ +
1

2
)dt+

√
i dW ]

dβ = −iβ[ (α∗β +
1

2
)dt+

√
i dW ]



Stochastic Gauges

With the new kernel, we have new operator identities!

(
i

∂2

∂α∂θ
+

∂

∂α

)
Λ̂ = 0

(
i

∂2

∂β∂θ
+

∂

∂β

)
Λ̂ = 0

(
∂2

∂θ2
+ 1

)
Λ̂ = 0

Thus we can add any arbitrary multiple f, f of them to the master

equation! This includes functions of the variables: f(α, β, θ).



Then we obtain correspondences in the Fokker Planck eqn., e.g.

0 ↔
(
2
∂

∂θ
f tan (θ + Im[αβ∗]) +

∂2

∂θ2
f

)
P

which overall lead to modifications of the stochastic equations.

dα = −iα[ {αβ∗ +
1

2
− G(1 + i)(T + i)}dt +

√
i dW ]

dβ = −iβ[ {α∗β +
1

2
− Ḡ(1− i)(T + i)}dt +

√
i dW ]

dθ̃ = −2T (G2 + Ḡ2)dt +
√
2 [GdW + ḠdW ]

with

θ̃ = θ + Im[αβ∗] ; T = tan(θ̃)



We now have ARBITRARY functions (Gauges) G, Ḡ

in the stochastic equations which we can use to tailor

them our satisfaction!

• The choice G = Ḡ = 0 gives the “old” positive P equations.

(G = f − 1

2
Re[αβ∗(1 + i) ], etc.)

• Our aim is to reduce sampling error. We do this by keeping α and

β fairly small – this causes diffusion in the θ̃ variable. A gauge

which achieves very small sampling error is

G = 1

2

(
|α|2 − Re[αβ∗(1 + i)]

)

Ḡ = 1

2

(
|β|2 + Re[αβ∗(1− i)]

)



• Unfortunately, this particular gauge appears to lead to non-

vanishing boundary terms in the θ̃ variable, which gives some

(reasonably small) systematic errors in the resulting observables.

• If we make the departure from the “old” positive P behaviour

small, by multiplying the above gauges by a constant factor µ,

then these systematic errors become negligible for most time

frames, while the sampling error is still very small compared to

the positive P simulation. There appears to be a tradeoff between

boundary terms and sampling error.

• For the trial case we have been investigating (α(0) = β(0) = 3),

µ = 0.001 is a good choice. (See figures 3 and 4).
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Figure 3: Comparison of simulations of the quadrature Ŷ = 1

2i
(â − â†) for an

initial coherent state | 3 > acted on by Ĥ = h̄
2
(â†â)2. 10, 000 trajectories. Dotted

lines indicate the size of the errors due to finite sampling.
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Figure 4: Comparison of sampling errors for various stochastic simulations: “old”
positive P (µ = 0), small sampling hermitian P (µ = 1), best hermitian P
(µ = 0.001). Shown is the variance in quadrature Ŷ . Size of actual sampling

uncertainty in calculated moment for N trajectories is

√
Var(Ŷ )/N , hence

number of trajectories needed for an a accurate result grows as Var(Y ). Note the
logarithmic scale!



Some Conclusions

• For (n̂)2 anharmonic interactions, sampling error is reduced by

many orders of magnitude, allowing numerical simulations of

systems for which these are important.

• Bose-Einstein Condensates are such systems.

• The computational overheads (number of equations) for Positive-

P type methods scale linearly with number of subsystems!

• When the last “kinks” are ironed out of this method, it should be

possible to perform full quantum simulations of BEC’s.



• Further investigation needed to optimize the gauge – i.e. remove

the boundary term “kinks”.

• During our investigations into appropriate gauges, we have

observed that the optimal choice of gauge may depend on which

observable one is interested in. Taking this into account may lead

to further improvement in calculation efficiency.

• The stochastic gauge approach could be used to improve quantum

simulations of many systems, also with other quasi-probability

distributions.


