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Model

Hamiltonian density:

Ĥ =
h̄2

2m
∇Ψ̂†∇Ψ̂ + V (x)Ψ̂†Ψ̂ +

g

2
Ψ̂†2Ψ̂2

Boson creation operators Ψ̂†(x) at x.

Method

Gauge P representation[?]

ρ̂ =
∫

G(~v) Ω
⊗

x
Λ̂x d~v

•Probability distribution G of variables

~v = {Ω, ~α(~x), ~β(~x)} which specify oper-

ators Λ̂x at each lattice point x.

•Complex weight Ω.

•At each lattice point x, LOCAL coher-

ent state operator:

Λ̂x = |α(x)〉 〈β∗(x)|

•2 complex variables per lattice point.

•Describes any quantum state.

•Correspondences:

1. Master equation for ρ̂.

2. → Fokker-Planck equation for G.

3. −→ Stochastic equations for ~v.

•Quantum observables correspond to

appropriate averages of variables ~v.

Dynamics
Just Gross-Pitaevskii equations plus

Gaussian noise

dα(x)

dt
= −ih̄

∑

y
ωxy α(y) −

ig

∆x
α(x)2β(x)

+i

√√√√ ig

∆x
α(x) ξ1(x, t)

And dβ(x)
dt = dα∗(x)

dt but with α∗ ↔ β and

new noise ξ2.

• ξj(x, t) are independent Gaussian

noises of variance 1/∆t for each x, t, j.

•Linear couplings ωxy between x and y

contain kinetics and external potential.

Simulation properties

•Number of equations linear in lattice

size. −→ TRACTABLE!

•No linearization. No truncation of any

kind. Full quantum evolution.

•Applies to open and closed systems.

•Any observables can be calculated.

•Parallel algorithm easily implemented.

3D Colliding BECs

• 150000 atoms.

•No truncation or linearization.

•Collision along cigar-shaped trap in

direction x.

•4-wave mixing as per Vogels et al [?]

experiment (but less atoms).

Velocity distribution evolution.

•Both coherent and incoherent scatter-

ing important.

Scattering into initially empty modes

(no seed this time).
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•Beginnings of coherent scattering into

initially empty modes visible.

Correlation waves

• 1D uniform gas.

• Evolution after disturbance at t = 0

in the form of a change from g = 0

to g > 0 (e.g. rapid Feshbach tuning)
(t

ξ
=4πmξ

2
/h )

• Wave behaviour not visible in density

— only in correlations.

Thermodynamics

Grand canonical ensemble

•Similar to dynamics but in “imaginary

time” τ = 1/kBT

•Evolution of weight Ω.

• Initial (high T ) condition: ρ̂(0) = Î

dρ̂

dτ
= −

1

2



Ĥ − N̂
∂µ

∂τ
, ρ̂





+

1D uniform gas[?]

Spatial correlations (1st–3rd order)

In various regimes
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dashed: Ideal gas with same µ, T

solid: interacting gas.  
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Interaction

strength
γ =

mg

h̄2ρ

Quantum

degeneracy

temperature
Td =

2πh̄2ρ2

mkB

1D scattering

length
a1D =

h̄2

mg

We find that a

Preferred interparticle distance O(a1D)

arises in transition gas regime.

Three-point correlations

g(3)(x1, x2) =
1

ρ3

〈
Ψ̂†(0)Ψ̂†(x1)Ψ̂

†(x2)Ψ̂(0)Ψ̂(x1)Ψ̂(x2)
〉
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