First-principles quantum simulations of interacting Bose gases

P. D. Drummond and P. Deuar

ARC Centre of Excellence for Quantum Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072, Australia

Model

Hamiltonian density:

$$
\widehat{H}=\frac{\hbar^{2}}{2 m} \nabla \widehat{\Psi}^{\dagger} \nabla \widehat{\Psi}+V(x) \widehat{\Psi}^{\dagger} \widehat{\Psi}+\frac{g^{2}}{2} \widehat{\Psi}^{\dagger 2} \widehat{\Psi}^{2}
$$

Boson creation operators $\widehat{\Psi}^{\dagger}(x)$ at x.

Method

Gauge P representation[?]

$$
\hat{\rho}=\int G(\vec{v}) \Omega \bigotimes_{x} \hat{\Lambda}_{x} d \vec{v}
$$

- Probability distribution G of variables $\vec{v}=\{\Omega, \vec{\alpha}(\vec{x}), \vec{\beta}(\vec{x})\}$ which specify operators $\hat{\Lambda}_{x}$ at each lattice point x.
- Complex weight Ω.
- At each lattice point x, LOCAL coherent state operator:

$$
\hat{\Lambda}_{x}=|\alpha(x)\rangle\left\langle\beta^{*}(x)\right|
$$

- 2 complex variables per lattice point.
- Describes any quantum state.
- Correspondences:

1. Master equation for $\hat{\rho}$.
2. \rightarrow Fokker-Planck equation for G.
3. \longrightarrow Stochastic equations for \vec{v}.

- Quantum observables correspond to appropriate averages of variables \vec{v}.

Dynamics

Just Gross-Pitaevskii equations plus Gaussian noise

$$
\begin{aligned}
\frac{d \alpha(x)}{d t}= & -i \hbar \sum_{y} \omega_{x y} \alpha(y)-\frac{i g}{\Delta x} \alpha(x)^{2} \beta(x) \\
& +i \sqrt{\frac{i g}{\Delta x}} \alpha(x) \xi_{1}(x, t)
\end{aligned}
$$

And $\frac{d \beta(x)}{d t}=\frac{d \alpha^{*}(x)}{d t}$ but with $\alpha^{*} \leftrightarrow \beta$ and new noise ξ_{2}.
$\bullet \xi_{j}(x, t)$ are independent Gaussian noises of variance $1 / \Delta t$ for each x, t, j.

- Linear couplings $\omega_{x y}$ between x and y contain kinetics and external potential.

Simulation properties

- Number of equations linear in lattice size. \longrightarrow TRACTABLE!
- No linearization. No truncation of any kind. Full quantum evolution.
- Applies to open and closed systems.
- Any observables can be calculated.
- Parallel algorithm easily implemented.

3D Colliding BECs

- 150000 atoms
- No truncation or linearization.
- Collision along cigar-shaped trap in direction x .
-4-wave mixing as per Vogels et al[?] experiment (but less atoms).

Velocity distribution evolution.
 $\mathrm{t}=0$

$\mathrm{t}=0.13 \mathrm{~ms}$

- Both coherent and incoherent scattering important.
Scattering into initially empty modes (no seed this time).

- Beginnings of coherent scattering into initially empty modes visible.

Correlation waves

- 1D uniform gas.
- Evolution after disturbance at $t=0$ in the form of a change from $g=0$ to $g>0$ (e.g. rapid Feshbach tuning)

- Wave behaviour not visible in density - only in correlations.

Thermodynamics

Grand canonical ensemble

- Similar to dynamics but in "imaginary time" $\tau=1 / k_{B} T$
- Evolution of weight Ω.
- Initial (high T) condition: $\widehat{\rho}(0)=\hat{I}$

$$
\frac{d \hat{\rho}}{d \tau}=-\frac{1}{2}\left[\widehat{H}-\widehat{N} \frac{\partial \mu}{\partial \tau}, \hat{\rho}\right]_{+}
$$

1D uniform gas[?]
Spatial correlations (1st-3rd order) In various regimes

We find that a
Preferred interparticle distance $\mathcal{O}\left(a_{1 D}\right)$ arises in transition gas regime.

Three-point correlations $\left.g^{(3)}\left(x_{1}, x_{2}\right)=\frac{1}{\rho^{3}}\left\langle\hat{\Psi}^{\dagger}(0)\right)^{\dagger}\left(x_{1}\right) \hat{\Psi}^{\dagger}\left(x_{2}\right) \widehat{\Psi}(0) \hat{\Psi}\left(x_{1}\right) \widehat{\Psi}\left(x_{2}\right)\right\rangle$

References

[1] P. D. Drummond and P. Deuar, J. Opt. B-Quant. and Semi class. Opt. 5, S281 (2003).
[2] P. D. Drummond, P. Deuar, and K. V. Kheruntsyan, Phys. Rev. Lett. 92, 040405 (2004)
[3] J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 89, 020401 (2002).

