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Many-Many Body Problems

It has been (and is) claimed (e.g. famously
by Feynman) that full qguantum evolution of
systems involving a large number of bodies is
iImpossible to model on classical computers.

The idea being that if you have N bodies,
each with D energy levels (say), then Hilbert
space has

pN
dimensions.
e.g. for just 20 10-energy-level particles,

that's
100, 000, 000,000, 000,000, 000

simultaneous differential equations to solve.

(piece of cake!)

But. ..



BEC's

The Hamiltonian for a N particle BEC con-
tains terms of the sort

absorption terms

~T2-2
a; aj

Where the a; are anihilation operators for
field modes .

The number of significant modes is again of
the order of N.

But now, rather than solving for each ele-
ment in the density matrix, let’'s do some-
thing more cunning...



Positive P distribution

Since the full quantum state p(¢t) may be
complicated, let's try writing it as a weighted
combination of simpler states. How about
coherent states?

It is much easier to solve for the behaviour
of a coherent state under our Hamiltonian,
and then we'll add up the solutions accord-
ing to their weights, and find how the more
complicated state has evolved.

Better still: 1t is even easier to find out
how a coherent state |a« > changes over an
infinitesimal time dt. Then we can write a
differential equation, and let a computer do
the hard work!



For now, consider a single mode.

Let us write the state of the full system as
p = >,  Pla,pla><p
all a &
— /P|a >< 8] d?a d°8

If we consider a single element |a >< 3|, after
time dt it will become a weighted sum of the
nearby elements. So in the end we get a
differential equation for P(«, 3).

Typically we might have

OP o 02
— AP) + —_(DP 98 t

For N modes , P will be a function of 2N
complex variables (4N real variables).
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Now for a tr

Suppose we have a coherent state initially,

This would

it evolves to a Gaussian.
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like random diffusion, or Brownian

IS

This

motion. which can be modeled with gaussian

noise of variance dt:

— /2dW

do

). 2000 samples

P(t

0). 2000 samples

P(t

\ANe can do thic for more combplicated differ-



The beauty of this is that now if we have N
modes, we only have 2N first order (complex)
differential equations (with noise).

Compare this to the DY needed with the
head-on matrix element approach!

To get the expectation value of an observe-
able, we calculate some large number of ran-
dom trajectories, and average an appropriate
function over them.

For example the photon number,
E(a'a)

IS given by the average over all randomly gen-
erated trajectories

< af* >

Time for some pictures!
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Individual paths, and the mean:
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Averages over different numbers of paths:
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C/< 4

B+E > = <X
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E.g: Drummond and Corney successfully
treated the evaporative cooling of ions, and
formation of a BEC using the positive P-
distribution.

[P. D. Drummond and J. F. Corney,
Phys. Rev. A 60, R2661 (1999)]

There were 10,000 atoms!
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a problem:

consider the 1D case H = hi(a'a)?

1000 Paths

5 T T T
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The positive P-distribution does well up to
a certain time, but unfortunately after about
t =~ 0.3, the < X > errors are resistant to step
Size. 14

Exact



Why? Long tails on the distribution.
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Recently we have been trying a different ex-
pansion, with very promising results.

p= > Plp|ela><pl+e®B><al
all o &

Here the " basic states”’” are Hermitean. This
makes them more like real quantum states
than the |a >< B| that were used previously.

This gives more complicated equations, but
we can let the computer slave away at them.
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previous equations...

= —ia(l/24 aa) + (1 —i)a/V2¢
a = ia(l/24 aa)+ (1 +i)a/VvV2E

Q.
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New equations...

> QS 8l
|
o N

where
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%[(m +no) +T(ny —np) +2FT] + £
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[((n1 —np—T(ny +np) —2FT] 4+ £

1
- [n1 4 0o+ T(ny — n2) + 2TF) + Fé|

%[nl—NQ—T(nl-l-nz)—QTF] +F§_}

exp[(z+z+y+y)/2]cos[(y —y—x+2)/2]
exp[(z+z+y+9)/2sin[(y —y—2z+z)/2]
tan(6 4 no)

—|a|?/2

—|8]°

exp

exp

(1 =) (z+1y)/2]

(1 =)z +1y)/2]
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Hermitean (one gauge)
100 Paths
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Comments:

e [ he ultimate aim is to simulate a BEC,
but we have only done the 1D case in this
new expansion so far.

e T his is because of the small discrepancy
between numerical and analytical results
which we want to fix! We now believe
it is probably due to the stiffness of the
equations.

e Varying the positive P approach in such
ways may give computational improve-
ments for many quantum systems.
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Thank You
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