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Many-Many Body Problems

It has been (and is) claimed (e.g. famously

by Feynman) that full quantum evolution of

systems involving a large number of bodies is

impossible to model on classical computers.

The idea being that if you have N bodies,

each with D energy levels (say), then Hilbert

space has

DN

dimensions.

e.g. for just 20 10-energy-level particles,

that’s

100,000,000,000,000,000,000

simultaneous differential equations to solve.

(piece of cake!)

But. . .
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BEC’s

The Hamiltonian for a N particle BEC con-

tains terms of the sort

â
†
i âj

absorption terms

â
†2
i â2j

Where the âi are anihilation operators for

field modes i.

The number of significant modes is again of

the order of N .

But now, rather than solving for each ele-

ment in the density matrix, let’s do some-

thing more cunning...
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Positive P distribution

Since the full quantum state ρ̂(t) may be

complicated, let’s try writing it as a weighted

combination of simpler states. How about

coherent states?

It is much easier to solve for the behaviour

of a coherent state under our Hamiltonian,

and then we’ll add up the solutions accord-

ing to their weights, and find how the more

complicated state has evolved.

Better still: It is even easier to find out

how a coherent state |α > changes over an

infinitesimal time dt. Then we can write a

differential equation, and let a computer do

the hard work!
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For now, consider a single mode.

Let us write the state of the full system as

ρ̂ =
∑

all α & β

P (α, β)|α >< β|

→
∫

P |α >< β| d2α d2β

If we consider a single element |α >< β|, after
time dt it will become a weighted sum of the

nearby elements. So in the end we get a

differential equation for P (α, β).

Typically we might have

∂P

∂t
=

∂

∂α
(AP ) +

∂2

∂α2
(DP ) + ∂β terms

For N modes , P will be a function of 2N

complex variables (4N real variables).
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Now for a trick!

Suppose we have a coherent state initially,
and it evolves to a Gaussian. This would
correspond to

∂P

∂t
=

∂2

∂α2
P
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This is like random diffusion, or Brownian
motion. which can be modeled with gaussian
noise of variance dt:

dα =
√
2dW
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We can do this for more complicated differ-
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The beauty of this is that now if we have N

modes, we only have 2N first order (complex)

differential equations (with noise).

Compare this to the DN needed with the

head-on matrix element approach!

To get the expectation value of an observe-

able, we calculate some large number of ran-

dom trajectories, and average an appropriate

function over them.

For example the photon number,

E(â†â)

is given by the average over all randomly gen-

erated trajectories

< αβ∗ >

Time for some pictures!
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Individual paths, and the mean:
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Averages over different numbers of paths:
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E.g: Drummond and Corney successfully

treated the evaporative cooling of ions, and

formation of a BEC using the positive P-

distribution.

[P. D. Drummond and J. F. Corney,

Phys. Rev. A 60, R2661 (1999)]

There were 10,000 atoms!
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a problem:

consider the 1D case H = h̄(â†â)2
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The positive P-distribution does well up to
a certain time, but unfortunately after about
t ≈ 0.3, the < X > errors are resistant to step
size. 14



Why? Long tails on the distribution.
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Recently we have been trying a different ex-

pansion, with very promising results.

ρ̂ =
∑

all α & β

P (α, β)
[

eiθ|α >< β|+ e−iθ|β >< α|
]

Here the ”basic states” are Hermitean. This

makes them more like real quantum states

than the |α >< β| that were used previously.

This gives more complicated equations, but

we can let the computer slave away at them.
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previous equations...

α̇ = −iα(1/2+ ᾱα) + (1− i)α/
√
2ξ

˙̄α = iᾱ(1/2+ ᾱα) + (1+ i)ᾱ/
√
2ξ̄
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New equations...

ẋ =
1

2
[(n1 + n2) + T (n1 − n2) + 2FT ] + ξ

˙̄x =
1

2

[

(n1 − n2 − T (n1 + n2)− 2F̄ T
]

+ ξ̄

ẏ = F

˙̄y = F̄

θ̇ = −F

{

1

2
[n1 + n2 + T (n1 − n2) + 2TF ] + Fξ

}

+F̄

{

1

2

[

n1 − n2 − T (n1 + n2)− 2T F̄
]

+ F̄ ξ̄

}

where

n1 = exp [(x+ x̄+ y + ȳ)/2] cos [(y − ȳ − x+ x̄)/2]

n2 = exp [(x+ x̄+ y + ȳ)/2] sin [(y − ȳ − x+ x̄)/2]

T = tan(θ + n2)

F = −|α|2/2
F̄ = −|β|2

α = exp [(1− i)(x+ iy)/2]

β = exp [(1− i)(x̄+ iȳ)/2]
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Comments:

• The ultimate aim is to simulate a BEC,

but we have only done the 1D case in this

new expansion so far.

• This is because of the small discrepancy

between numerical and analytical results

which we want to fix! We now believe

it is probably due to the stiffness of the

equations.

• Varying the positive P approach in such

ways may give computational improve-

ments for many quantum systems.

20



Thank You
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