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Overview

1. Why are gases of fermionic dipoles interesting
A comparison with the case of short-range interactions

2. Making a superfluid dipole gas
physical realisations, critical temperature Tc

3. Model for the uniform 3D gas
Ĥ , assumptions

4. Elementary excitations
Quasiparticles, breaking a BCS pair

5. Collective excitations & superfulidity
Sound waves, hydrodynamics, superfluid current response



Interparticle Potential

VD(R,θ) =
d2

R3

(
1−3cos2 θ

)



dipole–dipole
potential

• LONG range interaction

• ANIsotropic

• always partly attractive
BCS pairing if polarised

• BCS with 1 component

• p,d,. . . -wave scattering

• much yet to explore

short-range
potential

• SHORT range interaction

• Isotropic

• results in
BCS pairing only if as < 0

• BCS needs 2 components

• only s-wave scattering



(2) Prospects for superfluidity



Possible Physical Realisations

• Heteronuclear (“polar”) molecules

• Magnetic atomic dipoles

– e.g. 52Cr (6 parallel spins in valence electron shell)
– BEC achieved A. Griesmaier et al, PRL 94, 160401 (2005)

– For Bosons, a strong short-range interaction is usually present
=⇒ dipole effects seen were only perturbative

– Fermions don’t have s-wave =⇒ much purer dipole effects

• Induce electric dipoles in atoms with strong E fields



Critical Temperature for BCS
Short-range-interacting gas:

Tc = 0.28EF exp
(
− π

2|as|kF

)

Dipole gas:
M. Baranov et al, PRA 66, 013606 (2002)

Tc = 1.44EF exp
(
− π

2|aD|kF

)

=⇒ Effective scattering length aD:

aD = −2m

(
d

π~

)2

Tc rises strongly with aD ∝ md2



Candidates for BCS pairing
(large |aD| desirable)

Short-range interactions
• Two spin components. For example 6Li : as = −114 nm

Dipoles
• Heteronuclear (“polar”) molecules

14N16O : aD = −2.4 nm
15ND3 : aD = −145 nm

• Magnetic atomic dipoles (from electronic spin)

– 52Cr : aD = −0.5 nm (weak compared to as)

• Atoms with induced electric dipole

– aD ≈−1 to −10 nm (need ≈ 106 V/cm)



(3) Model



Assumptions

• uniform 3D gas

• static external field (E or B)
=⇒ full polarisation

• single-species

• dilute =⇒ Energy dominated by
Fermi sea to leading order

• short-range interaction (e.g. p-wave)
negligible (Fermi exclusion)



Hamiltonian

Ĥ = K.E. +
1
2

Z

d3xd3y
{

Ψ̂†
xΨ̂x VD(x− y) Ψ̂†

yΨ̂y

}

• Ψ̂x is the anihilating Fermi field operator at point x.

Postulate interaction to be primarily with an effective “mean” field

Ĥeff =
1
2

Z

d3xd3y
{

Ψ̂† ~
2

m Ψ̂†
x ∇2Ψ̂x δ(x− y) Kinetic

∆∗(x− y)Ψ̂xΨ̂y−∆(x− y)Ψ̂†
xΨ̂†

y BCS

+W (x− y)Ψ̂†
xΨ̂y

}
Hartree

• With “appropriate” ∆(x− y) and W (x− y)



Gap equation

Choose ∆(x− y) and W (x− y) to minimise the full Free energy

F = 〈Ĥ〉eff −µN −T S

when calculated with eigenstates of Ĥeff .

Obtain:
∆(x− y) = VD(x− y)

〈
Ψ̂xΨ̂y

〉
eff

W (x− y) = −VD(x− y)
〈

Ψ̂†
xΨ̂y

〉
eff



Final Hamiltonian

In k–space

Ĥeff =
1
2

Z

d3k

{(
~

2k2

m
−W (k)

)
Ψ̂†

kΨ̂k +∆∗(k)Ψ̂kΨ̂−k −∆(k)Ψ̂†
kΨ̂†

−k

}

• W (k) is a minor energy shift of Fermi surface =⇒ ignore it

• Order parameter ∆(k) 6= 0 corresponds to BCS pairing of k and −k
atoms.

• Important difference: ∆(k) anisotropic



(4) Quasiparticle excitations



BCS gap ∆F(θ) on Fermi surface
T < Tc
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• ANISOTROPIC, unlike short-range gas, and
ZERO in plane ⊥ to polarisation.

=⇒ From these, all interesting features follow.

• T = Tc known (Baranov et al (2002) )

• Found that for T < Tc,
∆(T )

∆(Tc)
= const to O(∆max/EF)



Single-particle excitations T < Tc

Breaking a pair costs 2×
E(|k|,θk)=

√
(K.E.−EF)2 +∆2

in both cases −2 −1 0 1 2
0

1

2

( k−k
F
 ) / ∆

E
 / 

∆

dipoles

∆(|k|,θk)

easy to excite a pair in plane
⊥ to polarisation because
energy cost is small

short-range

∆ constant

appreciable energy cost
always



(5) Collective excitations
and superfuidity



Collective excitations (Sound)
Phase perturbations of the order parameter

∆0(x− y) → ∆(x,y) = ∆0(x− y) e2iφ(x,t)

Assumptions:

• Low energy ( ω � ∆max
0 )

• Phase perturbations only (φ real) because amplitude perturbations
require splitting of pairs (and so are gapped)

• Low ω =⇒ long wavelength (k � kF)
=⇒ insensitive to small-scale of |x− y| =⇒ φ ≈ φ(x only )

• Weak perturbation =⇒ lowest order in φ



T = 0 Superfluid

Find Bogoliubov sound, same as for the short-range-interacting gas

ω =

(
vF√

3

)
k

To lowest order in ω � EF/~ and k � kF .

Not too surprising from hydrodynamics . . .



T = 0 Hydrodynamics
Relies on the hydrodynamic Hamiltonian for superfluid velocity vs

H ≈
Z

d3x

{
1
2mρvs(x)

2 + U(ρ)

}

and the continuity and current equations

~vs =
~Js(x)

ρ
=

~

m
ρ ~∇φ(x) and ~∇ · ~Js(x) = −∂ρ

∂t

which are found to be the same for dipoles and short-range gases to
order O(∆max/EF).

Since U(ρ) arises overwhelmingly from the filled Fermi sphere,
=⇒ no appreciable dependence on interaction details



Beyond hydrodynamics

T = 0 Anisotropic damping of sound

ω =

(
vF√

3

)
k

{
1− i k

(
~vF√
3∆max

)
Γ(θ)

}

absent for short-range gas

collective exc.
=⇒ 2× 1-particle exc.
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T ≈ Tc behaviour

ω = −i

(
7ζ(3)

6π3

)(
~v2

F

Tc

)
k2

(
1+

3
2π2(1+3cos2θ)

)
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Short−range

• Purely diffusive (as for short-range interactions)

• Anisotropic (differently to short-range interactions)



Superfluid current 0 < T < Tc

• Consider current response to the external driving perturbation δ∆(φ).

• Driving frequency ω, wave-vector k, in direction θ.

~J (T )
s (ω,k,θ) = ~J (T=0)

s (ω,k) [1−δ(θ) ]
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Direction-dependent superfluid
( preliminary and tentative )

Can define direction-dependent “normal” and “superfluid” components

ρ = ρn(θ)+ρs(θ)

so that

~Js =
~

m
ρs

~∇φ
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ρ
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???



Thankyou


