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First-principles simulations: Preview

1. How the simulations work
(a few equations)

2. 1D gas dynamics: correlation waves
(pictures)

3. 3D gas dynamics: BEC collision
(pictures)

4. 1D gas thermodynamics
(pictures)



Interacting Bose gas model
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Ψ � x � is the anihilating Bose field operator at point x.

� This is the usual cold dilute boson gas.

� Can add external potential, losses, or non-local interactions:
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if we like.

� We go to a lattice with spacing ∆x:
∆x less than healing length ξ,
∆x more than s-wave scattering length as.



First principles: direct method
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m � are number states. At each point x there are exactly nx atoms.

� About NM configurations

�

n for N particles on M lattice points.

� Real variables C� n

�

m and θ� n

�

m. One for each configuration.

� For macroscopic N you can’t even store this, let alone do dynamics.



First principles: positive P method
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β � is real & positive: A probability.
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β � are coherent states

� Variables are continuous.

� There are only 2M complex variables, however many particles.

� Can sample this on a computer. The more samples, the better
accuracy.
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� Configurations discrete, basis orthogonal

� � Heaps of variables (several for each configuration)

� Deterministic.
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� Configurations continuous, basis non-orthogonal

� � Few variables (several for each lattice point)

� Stochastic.



Dynamical equations

dα � x �
dt
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Plus identical form for dβ  x �

dt but with independent noise.

� Just mean field GP equations plus noise.

� ξ � x � is a real Gaussian noise

� ξ � x � t � ξ � y � t �
� � � δ � t � t �
� δx � y

� ∆V is the volume per lattice point

� Full quantum evolution.



1D BEC dynamics

What goes on in a BEC when the interaction strength changes?

Basic model:

� At t � 0: Uniform non-interacting BEC.

� t � 0 Repulsive interactions turned on.

� Achieved by e.g.

– Exploiting a Feshbach resonance
– OR: changing transverse width



positive P simulation
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ξ� � � 2mρg is the healing length tξ� � � 2ρg� mξ2 � � is a healing “time”



Detail: Structure only in correlations
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Double Bogoliubov velocity
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Velocity distribution (Bogoliubov calculation)

Could this be observed in
present experiments?
e.g. After initial disturbance:

— Change as back to � 0,
— Or release narrow

sides of trap.
Then observe free-flight velocity
distribution.



2D Gas (Bogoliubov calculation)
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First-principles / Bogolibbov
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Discrepancies appear due to strong interactions when

ρξ O � 1 �

i.e. one or less atoms per healing length.



BEC collision in 3D

How do the scattered atoms behave?

correlations calculated   
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— 150000 atoms of 23 � � in a BEC.
— Initial trap f� 20 � 80 � 80 ��

— Trap turned off at t � 0
— At t� 0 Bragg laser pulse gives

coherent kick 2 � � � 20 � � �
	

to 50% of atoms
— Initial conditions: assume T � 0

Similar setup to MIT experiment Vogels et al PRL 89, 020401 and approximate calculation

Norrie et al PRL 94, 040401.

(experiment had 30 million atoms, and also four-wave mixing)



Velocity distribution after 316µs

N � 150000 atoms on a 432 � 50 � 50 lattice

� � Hilbert space of � 105� 106
dimensions!

This is the largest system I know of for which quantum dynamics has
been calculated from first principles.
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Scattering rate
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In this regime the standard approximate methods appear to agree
rather “qualitatively”.
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1D Bose gas thermodynamics

Correlations in a grand canonical ensemble

Model:

� Uniform 1D interacting gas.

� In a thermal and diffusion bath: T � µ.

� Two parameters:

–

�

T � T

�

Td where Td � degeneracy temperature.
– γ � 1

�

2 � ρξ �

2 interaction strength.

� Simulation in imaginary time: t � it � ξ � x � � iξ � x � .
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Thankyou
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