Dynamics of quantum correlations in BECs from first principles

Piotr Deuar
Peter Drummond
Karen Kheruntsyan

Australian Centre for Quantum Atom Optics
University of Queensland, Brisbane

First-principles simulations: Preview

1. How the simulations work
(a few equations)
2. 1D gas dynamics: correlation waves
(pictures)
3. 3D gas dynamics: BEC collision (pictures)
4. 1D gas thermodynamics (pictures)

Interacting Bose gas model

$$
\widehat{H}=\int d^{3} \mathbf{x}\left\{-\frac{\hbar^{2}}{2 m} \widehat{\Psi}^{\dagger}(\mathbf{x}) \nabla^{2} \widehat{\Psi}(\mathbf{x})+\frac{g}{2} \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}(\mathbf{x}) \widehat{\Psi}(\mathbf{x})\right\}
$$

- $\widehat{\Psi}(\mathbf{x})$ is the anihilating Bose field operator at point \mathbf{x}.
- This is the usual cold dilute boson gas.
- Can add external potential, losses, or non-local interactions: $\frac{1}{2} \int d^{3} \mathbf{y} U(\mathbf{x}-\mathbf{y}) \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}^{\dagger}(\mathbf{y}) \widehat{\Psi}(\mathbf{x}) \widehat{\Psi}(\mathbf{y})$ if we like.
- We go to a lattice with spacing $\Delta \mathbf{x}$:
$\Delta \mathbf{x}$ less than healing length ξ, $\Delta \mathbf{x}$ more than s-wave scattering length a_{s}.

First principles: direct method

State:

$$
\widehat{\rho}=\sum_{\widetilde{n} \widetilde{m}} C_{\widetilde{n} \widetilde{m}} e^{i \theta_{\widetilde{n} \tilde{m}}|\widetilde{n}\rangle\langle\widetilde{m}|}
$$

Each configuration:

$$
\widetilde{n}=\left\{\ldots, n_{(x, y, z)}, \ldots\right\}
$$

- $|\widetilde{n}\rangle,|\widetilde{m}\rangle$ are number states. At each point \mathbf{x} there are exactly $n_{\mathbf{x}}$ atoms.
- About N^{M} configurations \widetilde{n} for N particles on M lattice points.
- Real variables $C_{\widetilde{n} \tilde{m}}$ and $\theta_{\tilde{n} \tilde{m}}$. One for each configuration.
- For macroscopic N you can't even store this, let alone do dynamics.

First principles: positive P method

$$
\left.\widehat{\rho}=\int P(\widetilde{\alpha}, \widetilde{\beta}) \| \widetilde{\alpha}\right\rangle\left\langle\widetilde{\beta} \| e^{\widetilde{\alpha}, \tilde{\beta}^{*}} d \widetilde{\alpha} d \widetilde{\beta}\right.
$$

- $P(\widetilde{\alpha}, \widetilde{\beta})$ is real \& positive: A probability.
- $\| \widetilde{\alpha}\rangle,| | \widetilde{\beta}\rangle$ are coherent states
- Variables are continuous.
- There are only $2 M$ complex variables, however many particles.
- Can sample this on a computer. The more samples, the better accuracy.

$$
\widehat{\rho}=\sum_{\widetilde{n} \widetilde{m}} C_{\widetilde{n} \widetilde{m}} e^{i \theta_{\widetilde{n} \tilde{m}}}|\widetilde{n}\rangle\langle\widetilde{m}|
$$

- Configurations discrete, basis orthogonal \hookrightarrow Heaps of variables (several for each configuration)
- Deterministic.

$$
\left.\widehat{\rho}=\int P(\widetilde{\alpha}, \widetilde{\beta}) \| \widetilde{\alpha}\right\rangle\left\langle\widetilde{\beta} \| e^{\widetilde{\alpha} \cdot \widetilde{\beta}^{*}} d \widetilde{\alpha} d \widetilde{\beta}\right.
$$

- Configurations continuous, basis non-orthogonal \hookrightarrow Few variables (several for each lattice point)
- Stochastic.

Dynamical equations

$$
\frac{d \alpha(\mathbf{x})}{d t}=i \frac{\hbar}{2 m} \nabla^{2} \alpha(\mathbf{x})-i\left(\frac{g}{\hbar \Delta V}\right) \alpha(\mathbf{x})^{2} \beta(\mathbf{x})^{*}+i \sqrt{\frac{i g}{\hbar \Delta V}} \alpha(\mathbf{x}) \xi(\mathbf{x})
$$

Plus identical form for $\frac{d \beta(\mathbf{x})}{d t}$ but with independent noise.

- Just mean field GP equations plus noise.
- $\xi(\mathbf{x})$ is a real Gaussian noise

$$
\left\langle\xi(\mathbf{x}, t) \xi\left(\mathbf{y}, t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) \delta_{\mathbf{x}, \mathbf{y}}
$$

- ΔV is the volume per lattice point
- Full quantum evolution.

1D BEC dynamics

What goes on in a BEC when the interaction strength changes?

Basic model:

- At $t \leq 0$: Uniform non-interacting BEC.
- $t>0$ Repulsive interactions turned on.
- Achieved by e.g.
- Exploiting a Feshbach resonance
- OR: changing transverse width

positive P simulation

$\xi=\hbar / \sqrt{2 m \rho g}$ is the healing length $\quad t_{\xi}=\hbar / 2 \rho g=m \xi^{2} / \hbar$ is a healing "time"

Detail: Structure only in correlations

Correlation values scale as:

$$
\left[g^{(n)}-1\right] \propto \frac{1}{\rho \xi} \propto \sqrt{\frac{a_{s}}{\rho \sigma}}
$$

Double Bogoliubov velocity

Dimensionless units: $\mathrm{v}^{2}=\mathrm{k}^{2}+1 / 2$

Velocity distribution (Bogoliubov calculation)

Could this be observed in present experiments?
e.g. After initial disturbance:

- Change a_{s} back to ≈ 0,
- Or release narrow sides of trap.
Then observe free-flight velocity distribution.

2D Gas (Bogoliubov calculation)

First-principles / Bogolibbov

Discrepancies appear due to strong interactions when

$$
\rho \xi \lesssim O(1)
$$

i.e. one or less atoms per healing length.

BEC collision in 3D

How do the scattered atoms behave?

Similar setup to MIT experiment Vogels et al PRL 89, 020401 and approximate calculation
Norrie et al PRL 94, 040401.
(experiment had 30 million atoms, and also four-wave mixing)

Velocity distribution after $316 \mu \mathrm{~s}$

$$
\rho\left(v_{x}, v_{y}\right) \text { at } t=316 \mu \mathrm{~s} \quad \text { maxdens }=6 \mathrm{~s}^{2} \mathrm{~mm}^{-2}
$$

$N=150000$ atoms on a $432 \times 50 \times 50$ lattice \Longrightarrow Hilbert space of $\approx 10^{5 \times 10^{6}}$ dimensions!

This is the largest system I know of for which quantum dynamics has been calculated from first principles.

Scattering rate

In this regime the standard approximate methods appear to agree rather "qualitatively".

Evolution of

Correlations among
scattered atoms

original
condensate

1D Bose gas thermodynamics

Correlations in a grand canonical ensemble
Model:

- Uniform 1D interacting gas.
- In a thermal and diffusion bath: T, μ.
- Two parameters:
- $\widetilde{T}=T / T_{d}$ where $T_{d}=$ degeneracy temperature.
$-\gamma=1 / 2(\rho \xi)^{2}$ interaction strength.
- Simulation in imaginary time: $t \rightarrow i t, \quad \xi(x) \rightarrow \sqrt{i} \xi(x)$.

Regimes attained

"Imaginary time" paths shown

dashed: Ideal gas with same μ, T solid: interacting gas.
$\mathrm{T}_{\mathrm{d}}=$ degeneracy temperature $\gamma=1 / 2(\rho \xi)^{2}$
(interaction strength) $a_{1 D}=1 / \rho \gamma$
(range of influence of single particle)

Thankyou

- cond-mat/0507023
(All the simulations)
References:
- cond-mat/0412174
(1D dynamics - correlation waves)
- Phys. Rev. Lett. 92, 040405 (2004)
(1D thermodynamics)

