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First-principles simulations: Preview

. How the simulations work
(a few equations)

. 1D gas dynamics: correlation waves
(pictures)

. 3D gas dynamics: BEC collision
(pictures)

. 1D gas thermodynamics
(pictures)



Interacting Bose gas model
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W(X) is the anihilating Bose field operator at point X.
This is the usual cold dilute boson gas.

e Can add external potential, losses, or non-local interactions:
3/ APy U(x—y) WH(x) Wi(y) W(x) W(y)
If we like.

e \We go to a lattice with spacing AX:
AX less than healing length &,
AX more than s-wave scattering length as.



First principles: direct method
State:

p=" Cime"m [A)
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Each configuration:
A={...,Nxyzs---}
o [N), are number states. At each point X there are exactly ny atoms.
e About NM configurations 1 for N particles on M lattice points.
e Real variables Css and B57. One for each configuration.

e For macroscopic N you can’t even store this, let alone do dynamics.



First principles: positive P method

p= [P@.P) lia)

&P da dp

P(G,E) is real & positive: A probability.

a), are coherent states

Variables are continuous.

There are only 2M complex variables, however many particles.

Can sample this on a computer.
accuracy.

The more samples, the better



p=" Cime"m [A)
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Configurations discrete, basis orthogonal

— Heaps of variables

Deterministic.

(several for each configuration)

b= [P@.p) @) & o dp

Configurations continuous, basis non-orthogonal

< Few variables

Stochastic.

(several for each lattice point)



Dynamical equations

qt = om0 — i<h%> (X)* Bx)"+ \/hfv a(x) &(x)

Plus identical form for B( ) but with iIndependent noise.

e Just mean field GP equations plus noise.

e (X) is a real Gaussian noise
(E06t) E(y,t) ) = Ot —t') Byy
e AV is the volume per lattice point

e Full quantum evolution.



1D BEC dynamics

What goes on in a BEC when the interaction strength changes?

Basic model:

e Att < 0O: Uniform non-interacting BEC.
e t > O Repulsive interactions turned on.

e Achieved by e.g.

— Exploiting a Feshbach resonance
— OR: changing transverse width



positive P simulation
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mé?/h is a healing “time”



Detail: Structure only in correlations
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Correlation values scale as: gm—1 0L O /%




Double Bogoliubov velocity
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Dimensionless units: v =k?+41/2




Velocity distribution (Bogoliubov calculation)

p(k) colors truncate at p(k)=1000,
then contours at 2000, 4000, ...

0

Could this be observed In
present experiments?
e.g. After initial disturbance:

— Change ag back to = 0O,

— Or release narrow

sides of trap.

Then observe free-flight velocity
distribution.
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2D (Gas (Bogoliubov calculation)
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l.e. one or less atoms per healing length.
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BEC collision in 3D

How do the scattered atoms behave?

RO second condensate

ggga”eﬂsate ’g;%;ffriﬁégﬁgg — 150000 atoms of %Na in a BEC.

w2V, — Initial trap f = 20 x 80 x 80Hz
— Trap turned offatt > 0
= ”M‘ét\\o‘?ns scattered into  — Att = 0 Bragg laser pulse gives
y .80 =spherical shel coherent kick 2vg = 20mm/s
\ to 50% of atoms
— Initial conditions: assume T =~ 0
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correlations calculated
from here vy:vQ

Similar setup to MIT experiment Vogels et al PRL 89, 020401 and approximate calculation
Norrie et al PRL 94, 040401.

(experiment had 30 million atoms, and also four-wave mixing)



Velocity distribution after 316ls
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p(vx,vy) att=316us maxdens=6 £mm p(x=0,y,2)
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N = 150000 atoms on a 432 x 50 x 50 lattice
—> Hilbert space of & 105%1%° dimensions!

This is the largest system | know of for which quantum dynamics has
been calculated from first principles.
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Scattering rate

12 ' L ' L ' L

rate bounded by
10+ momentum cutoff
(rate=0t) truncated Wigner

8- \Irﬁaélﬁa_ry_s?:é—tterlné length (
Y A
\/ / bosonic

Scattering rate [/us]
(@]
|

transient
enhanced |Inear | enhancement
production scattering
Ly g vl . L . o
10 100 1000

t [us]

In this regime the standard approximate methods appear to agree
rather “qualitatively”.
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1D Bose gas thermodynamics

Correlations in a grand canonical ensemble

Model:

e Uniform 1D interacting gas.
e In a thermal and diffusion bath: T, .

e [woO parameters:

- T = T /Tq where Tq = degeneracy temperature.
— y=1/2(p&)? interaction strength.

e Simulation in imaginary time: t — it, &(x) — /i&(x).
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