Dynamics of quantum correlations in BECs from first principles

Piotr Deuar Peter Drummond Karen Kheruntsyan

Australian Centre for Quantum Atom Optics University of Queensland, Brisbane

First-principles simulations: Preview

- 1. How the simulations work (a few equations)
- 2. 1D gas dynamics: correlation waves *(pictures)*
- 3. 3D gas dynamics: BEC collision *(pictures)*
- 4. 1D gas thermodynamics *(pictures)*

Interacting Bose gas model

$$\widehat{H} = \int d^3 \mathbf{x} \left\{ -\frac{\hbar^2}{2m} \widehat{\Psi}^{\dagger}(\mathbf{x}) \nabla^2 \widehat{\Psi}(\mathbf{x}) + \frac{g}{2} \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}^{\dagger}(\mathbf{x}) \widehat{\Psi}(\mathbf{x}) \widehat{\Psi}(\mathbf{x}) \right\}$$

- $\widehat{\Psi}(\mathbf{x})$ is the anihilating Bose field operator at point \mathbf{x} .
- This is the usual cold dilute boson gas.
- Can add *external potential, losses*, or *non-local interactions*: $\frac{1}{2}\int d^3\mathbf{y} U(\mathbf{x}-\mathbf{y}) \ \widehat{\Psi}^{\dagger}(\mathbf{x}) \ \widehat{\Psi}^{\dagger}(\mathbf{y}) \ \widehat{\Psi}(\mathbf{x}) \ \widehat{\Psi}(\mathbf{y})$ if we like.
- We go to a lattice with spacing Δx:
 Δx less than healing length ξ,
 Δx more than s-wave scattering length a_s.

First principles: direct method

State:

$$\widehat{\rho} = \sum_{\widetilde{n}\widetilde{m}} C_{\widetilde{n}\widetilde{m}} e^{i\theta_{\widetilde{n}\widetilde{m}}} |\widetilde{n}\rangle\langle\widetilde{m}|$$

Each configuration:

$$\widetilde{n} = \{\ldots, n_{(x,y,z)}, \ldots\}$$

- $|\widetilde{n}\rangle$, $|\widetilde{m}\rangle$ are number states. At each point **x** there are exactly n_x atoms.
- About N^M configurations \tilde{n} for N particles on M lattice points.
- Real variables $C_{\widetilde{n}\widetilde{m}}$ and $\theta_{\widetilde{n}\widetilde{m}}$. One for each configuration.
- For macroscopic *N* you can't even store this, let alone do dynamics.

First principles: positive P method

$$\widehat{\rho} = \int P(\widetilde{\alpha}, \widetilde{\beta}) ||\widetilde{\alpha}\rangle \langle \widetilde{\beta}|| e^{\widetilde{\alpha} \cdot \widetilde{\beta}^*} d\widetilde{\alpha} d\widetilde{\beta}$$

- $P(\widetilde{\alpha}, \widetilde{\beta})$ is real & positive: A probability.
- $||\widetilde{\alpha}\rangle$, $||\widetilde{\beta}\rangle$ are coherent states
- Variables are continuous.
- There are only 2M complex variables, however many particles.
- Can sample this on a computer. The more samples, the better accuracy.

$$\widehat{\rho} = \sum_{\widetilde{n}\widetilde{m}} C_{\widetilde{n}\widetilde{m}} e^{i\theta_{\widetilde{n}\widetilde{m}}} |\widetilde{n}\rangle\langle\widetilde{m}|$$

- Configurations discrete, basis orthogonal
 → Heaps of variables (several for each *configuration*)
- Deterministic.

$$\widehat{\mathbf{\rho}} = \int P(\widetilde{\mathbf{\alpha}}, \widetilde{\mathbf{\beta}}) ||\widetilde{\mathbf{\alpha}}\rangle \langle \widetilde{\mathbf{\beta}}|| e^{\widetilde{\mathbf{\alpha}} \cdot \widetilde{\mathbf{\beta}}^*} d\widetilde{\mathbf{\alpha}} d\widetilde{\mathbf{\beta}}$$

- Configurations continuous, basis non-orthogonal
 → Few variables (several for each *lattice point*)
- Stochastic.

Dynamical equations

$$\frac{d\alpha(\mathbf{x})}{dt} = i\frac{\hbar}{2m}\nabla^2\alpha(\mathbf{x}) - i\left(\frac{g}{\hbar\Delta V}\right) \,\alpha(\mathbf{x})^2 \,\beta(\mathbf{x})^* + i\sqrt{\frac{ig}{\hbar\Delta V}} \,\alpha(\mathbf{x}) \,\xi(\mathbf{x})$$

Plus identical form for $\frac{d\beta(\mathbf{x})}{dt}$ but with independent noise.

- Just mean field GP equations plus noise.
- $\xi(\mathbf{x})$ is a real Gaussian noise

$$\langle \xi(\mathbf{x},t) \xi(\mathbf{y},t') \rangle = \delta(t-t') \delta_{\mathbf{x},\mathbf{y}}$$

- ΔV is the volume per lattice point
- Full quantum evolution.

1D BEC dynamics

What goes on in a BEC when the interaction strength changes?

Basic model:

- At $t \leq 0$: Uniform non-interacting BEC.
- t > 0 Repulsive interactions turned on.
- Achieved by e.g.
 - Exploiting a Feshbach resonance
 - OR: changing transverse width

 $\xi = \hbar/\sqrt{2m\rho g}$ is the healing length $t_{\xi} = \hbar/2\rho g = m\xi^2/\hbar$ is a healing "time"

Detail: Structure only in correlations

Correlation values scale as:

$$[g^{(n)}-1] \propto \frac{1}{\rho\xi} \propto \sqrt{\frac{a_s}{\rho\sigma}}$$

Double Bogoliubov velocity

Dimensionless units: $v^2 = k^2 + 1/2$

Velocity distribution (Bogoliubov calculation)

Could this be observed in present experiments? e.g. After initial disturbance: — Change a_s back to ≈ 0 , — Or release narrow sides of trap. Then observe free-flight velocity distribution.

First-principles / Bogolibbov

Discrepancies appear due to strong interactions when

 $\rho\xi \lesssim \mathcal{O}(1)$

i.e. one or less atoms per healing length.

BEC collision in 3D

How do the scattered atoms behave?

-150000 atoms of ²³Na in a BEC. -Initial trap $f = 20 \times 80 \times 80$ Hz -Trap turned off at $t \ge 0$ -At t = 0 Bragg laser pulse gives coherent kick $2v_Q = 20$ mm/s to 50% of atoms -Initial conditions: assume $T \approx 0$

Similar setup to MIT experiment Vogels *et al* PRL **89**, 020401 and approximate calculation Norrie *et al* PRL **94**, 040401.

(experiment had 30 million atoms, and also four-wave mixing)

Velocity distribution after 316µs

N = 150000 atoms on a $432 \times 50 \times 50$ lattice \implies *Hilbert space of* $\approx 10^{5 \times 10^6}$ *dimensions!*

This is the largest system I know of for which quantum dynamics has been calculated from first principles.

Evolution of Velocity distribution

Scattering rate

In this regime the standard approximate methods appear to agree rather "qualitatively".

Evolution of Correlations among scattered atoms

1D Bose gas thermodynamics

Correlations in a grand canonical ensemble

Model:

- Uniform 1D interacting gas.
- In a thermal and diffusion bath: T, μ .
- Two parameters:
 - $\tilde{T} = T/T_d$ where T_d = degeneracy temperature. - $\gamma = 1/2(\rho\xi)^2$ interaction strength.
- Simulation in *imaginary time:* $t \to it$, $\xi(x) \to \sqrt{i}\xi(x)$.

Regimes attained

"Imaginary time" paths shown

Thankyou

• cond-mat/0507023 (All the simulations)

References:

- cond-mat/0412174
 (1D dynamics correlation waves)
- Phys. Rev. Lett. 92, 040405 (2004) (1D thermodynamics)