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Many-mode Quantum Simulations

• Recent experiments are probing the 1D Bose
Gas.[Orze l et. al. 2001; Görlitz et. al. 2001].

• The smaller number of relevant modes in
1D allows better chance of a first-principles
simulation, rather than just mean-field or
perturbation theory.

• Many properties of 1D bose gas are unknown. In
fact, for thermal interacting bosons, only exact
result is density and total energy (with no trap).
[Yang&Yang 1969].

• Many-body simulations are notoriously difficult
because of the rapid growth of Hilbert space with
number of bodies.

• “Can a quantum system be probabilistically
simulated by a classical universal computer? . . . If
you take the computer to be the classical kind
. . . the answer is certainly, No!” (Richard P.
Feynman Simulating Physics with Computers)
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Efficiency of Numerical Methods

For M modes, E significant eigenstates per
mode.

Number of

Method Complex Stochastic?

Equations

Direct
Solution of (EM)2 No
Denity Matrix
Quantum EM Yes
Trajectories
Positive P 2M Yes
representation
Hermitian P 2M + 1 Yes
representation

The stochastic methods require averaging over a
number of realisations to obtain physical quantities.

The P distribution methods are clearly the only
practical methods for many modes.
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Hermitian P representation

• Expand density matrix in off-diagonal coherent-
state projection operators with a quantum phase

ρ̂ =

∫

P (~α, ~β,Ω)
|~α >< ~β|∗

< ~β∗|~α >
eΩ d2M~α d2M ~β d2Ω

+ hermitian conjugate

• P (~α, ~β,Ω) is a positive, normalised distribution
function which exists for all density matrices.

• Master equation for ρ̂ can be made equivalent to
a Fokker-Planck pde. for P , and subsequently to
a system of stochastic equations for the variables
~α, ~β,Ω.

• Avoids the technical difficulties of positive P
representations at low mode occupation.

3



Dynamics

∂ρ̂

∂t
= −

i

h̄

[

Ĥ, ρ̂
]

+ L̂ {ρ̂}

L̂: Losses

Thermodynamics

∂ρ̂u
∂τ

= −
1

2

[

Ĥ

h̄
− µ(τ)N̂ , ρ̂u

]

+

τ = h̄/(kBT )

• ρ̂u is the equilibrium state at temperature T .

• P representation is equivalent to density matrix,
so can easily transfer from time-dependent to
temperature-dependent calculations.
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Quantum model of a BEC

Neutral atoms in d = 1, 2,or3 dimensions:

Ĥ =

∫

ddx

[

h̄2

2m
∇Ψ̂†(x)∇Ψ̂(x)

Kinetic Energy, mass m

+V (x)Ψ̂†(x)Ψ̂(x)

Trapping Potential V (x)

+Ψ̂†(x)R̂(x)+Ψ̂(x)R̂†(x)

Localized Loss at rate ∝Tr[R(x)]

+
1

2

∫

ddyU(x− y)Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)

Boson-Boson Interaction U(x− y).

]
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Stochastic equations

• Full quantum equations like the Gross-Pitaevskii
(GP) mean-field equations, with appropriate noise
terms added.

• Having a quantum phase in the basis operators
of the distribution allows us to insert arbitrary

functions (STOCHASTIC GAUGES) which we
can fiddle to make the equations behave nicely,
without changing the observeables.

• Previous difficulties with positive P simulations
at low mode occupations fixed by judicious
introduction of stochastic gauges.
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1 mode: Zero chemical potential
µ = 0
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Circles: positive P simulation

Blue line: hermitian P gauge simulation.

Green line: exact calculation (truncated
number-state basis).
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1 mode: Non-zero chemical
potential µ = −γU .
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Circles: positive P simulation, γ = 0.1;

Blue line: hermitian P gauge simulations;

Green line: exact calculations (truncated
number-state basis).
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1 mode: Cat state evolution

Despite the noise, the Hermitian P simulation
preserves extremely fragile quantum features such
as the parity of a mesoscopic “cat” state.

|ψ(0) >= 1√
2
[ | αo > ± | − αo > ]
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Initially, state contains average of 990 bosons:

Red: Odd “cat” - only odd numbers of photons

Blue: Even “cat” - only even numbers of photons

Green: Coherent state
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Preliminary 1D calculations
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1D Bose gas energy per particle. Variables scaled.

Number of particles in simulation around 100.

’+’ – exact results from Yang&Yang solution.

solid line – stochastic gauge simulation.

Energy for 1/T < 0.3 is known to be
under-estimated due to a fixed momentum cutoff.
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Summary

• Can make many-body simulations scale linearly
with number of modes.

• Solved the technical problems inherent at low
mode occupations.

• Dynamical calculations of evaporative cooling
implemented [See Poster by Tim Vaughan].

• BEC Thermodynamics? - work in progress.
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