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Abstract. We consider the collision of two Bose Einstein condensates at supersonic velocities and focus
on the halo of scattered atoms. This halo is the most important feature for experiments and is also
an excellent testing ground for various theoretical approaches. In this study we find that the typical
reduced Bogoliubov description, commonly used, is often not accurate in the region of parameters where
experiments are performed. Surprisingly, besides the halo pair creation terms, one should take into account
the evolving mean field of the remaining condensate and on-condensate pair creation. We present examples
where the difference is clearly seen, and where the reduced description still holds. We also demostrate how
to investigate separately the effects of various physical processes that influence the properties of the halo.

1 Introduction

When two Bose-Einstein condensates (BECs) collide at
sufficiently high velocity, pairs of atoms are scattered out
of the condensates. After many scattering events, a dis-
tinct halo of atom pairs is formed in momentum space.
This was observed in many experiments [1-17] and ana-
lyzed in numerous theoretical works [1,7,11,18-34]. The
formation of a halo starts spontaneously and is analogous
to the generation of photon pairs in parametric down con-
version. Such photon pairs were used to observe Bell in-
equality violation [35], and can be applied for quantum
cryptography [36] or quantum teleportation [37]. In anal-
ogy, atoms formed in the collision of two BECs have a
potential application for precision measurements [38], in-
terferometry [2,39-42], or tests of quantum mechanics [43].

The simplest model that captures the formation
of a halo in the condensate collision is the “re-
duced Bogoliubov” model (RBM), used by many au-
thors [17-22,25,26,28,31,32]. In this formulation, the two
condensates counter-propagate at a constant relative ve-
locity and without change of shape. The wave-packets en-
ter in the Bogoliubov equation for the field of scattered
atoms as a classical source. The RBM can be used to cal-
culate various observables, such as the density of scat-
tered atoms or their second-order correlation functions,
which can be directly compared with the experimental
data. The predictions of the RBM are often in good agree-
ment with experiment [31], but there are cases where more
complete models have shown significant departures from
the RBM [1,29,32].
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Here we carry out the first systematic analysis of
the effect of the terms that are neglected in the RBM.
Surprisingly, it turns out that they can be very impor-
tant, and can qualitatively change the behaviour of the
halo, as well as the number of scattered particles by a fac-
tor of several. This is the major conclusion of the paper.
We also show how the stochastic method used is a con-
venient tool for taking apart the evolution of the system
piece by piece to identify the effect of the various physical
processes.

The paper is organised as follows. In Section 2 we in-
troduce both the RBM and full Bogoliubov models and
the numerical method of solving the equations of motion.
Two additional simplified formulations, also introduced
in Section 2, are used to investigate the properties of the
halo. The dependence of the halo shape on the model is
shown in Section 3.1 for two characteristic cases, whereas
Section 3.2 explains in detail the dependence of the halo
position on the degree of simplifications made. We also
indicate the range of interaction strength for which the
RBM is quantitatively accurate.

2 Bogoliubov approach to the scattering
of atoms in a BEC collision

2.1 Scattering in condensate collisions

Initially the gas is trapped by a harmonic potential. In
order to start the (half-) collision, a superposition of two
counter-propagating, mutually coherent, atomic clouds of
equal density is prepared by shining a Bragg pulse. The
trap is simultaneously turned off. The two fractions move
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apart with relative speed 2v,e. along the z axis, where
Urec 18 the atomic recoil velocity. If the relative velocity is
larger than the speed of sound at the condensate center,
the collision is supersonic, superfluidity breaks down and a
halo of scattered atoms is formed. The physical properties
of this halo are the main subject of this study.

In our approach we model the process of the halo for-
mation using a time dependent Bogoliubov method, where
the field operator is defined as

~ o~

W(X, t) = ¢(Xﬂt) + 5(Xa t)' (1)

Here, ¢(x,t) is the condensate wave function governed by
the GP equation

ihatgb(x, t) == < 9

Vo O ) o6t (2

It is normalized to N — the number of atoms in the con-
densate, which remains undepleted during the dynamics.
The coupling constant g relates to the scattering length a
through g = 47h%a/m, where m is a mass of an atom. The
field operator 5A(x, t) describes the non-condensed atoms
(both the quantum depletion and the scattered halo) and
satisfies the following equation

~

ih Bté(x, t) =

~

2
(- g0, 77+ 20100, ) .
g2 (x, )07 (x, ). (3)

From this equation, we can trace back an effective
Bogoliubov Hamiltonian:

Heog = /d?’ng(x) (—;;V2) g(x) (4a)
iy / 0 |6(x) 28 (x)5 (x) (4b)

+g / Px % (x) 61 (x)8T (x) + h.c.  (4¢)

Line (4a) stands for kinetic energy, while line (4b) re-
sults from the interaction of the condensate mean-field
with the scattered atoms. Finally (4c) describes the
creation/annihilation process of pairs of non-condensed
atoms.

Most salient features of BEC collisions are already
found for the case of initially spherically symmetric con-
densates. Before the numerical simulation of the collision,
we find the condensate wave-function as a ground state
of the Gross-Pitaevskii equation with harmonic trap of
frequency w,

2

pon) = (= gy, T2+ s 4 glon () ) nl). ()

Next, the trap is turned off and at the same time a set of
Bragg pulses is applied [14]. In the center-of-mass frame,
the initial state is then

#(x,0) = Agp(x) (eikoz + e‘ikoz) , (6)

where A is the normalization constant and kg = muyec/h
is the wave-vector associated with the recoil velocity. The
initial state of the non-condensed part is taken to be a
vacuum

3(x,0)[0) = 0. (7)
From this initial state the system evolves according to
equations (2) and (3).

2.2 Dimensionless parameters

We point out that in our approximate description
(Bogoliubov method), there is a universal scaling such
that the non-condensed field /5\()() is identical in all systems
having the same value of gN (or aN, where a is a scatter-
ing length). Hence the dynamics is described by the length
scale alN rather than by the scattering length a or the
number of particles N separately. Other important length
scales are ap, = \/ h/mw — the harmonic oscillator length,
and 1/kg. Alternatively, since there is no trap for ¢ > 0,
we can use the width of the initial condensate o instead of
ano- If we apply the Thomas-Fermi approximation [44], a
good choice of characteristic width o is the Thomas Fermi
radius Rrp = (15Ng/4mmw?)'/5. In conclusion: there are
three relevant length scales, hence our system can be char-
acterized by two dimensionless parameters. We choose:
B = koo and oo = aN/o (see [25,26,28,31]).

The first parameter § is independent of interactions
and has a kinetic character. It can be viewed as the num-
ber of fringes created by the Bragg pulses on the initial
condensate, or as a ratio of the dispersion time scale,
mao?/h to the collision timescale, (ma)/(hkg), see for in-
stance [25,26,28,31]. In realistic situations 3 > 1.

The second parameter « is proportional to the ratio of
the interaction energy per particle gN/o® to the kinetic
energy per particle in the initial condensate h?/(2mao?).
It is related to a®®") = mgN/(ch?r%/?) which has been
used previously [25,26,28,31], but differs by a numerical
factor: @ = (y/7/4)aP?). The ratio between a and
quantifies the strength and nature of scattering. It has
been shown that Bose enhancement of scattering occurs
for a 2 3 [26].

2.3 Simulation of dynamics using a positive-P
Bogoliubov method

The positive-P representation can be used to fully rep-
resent the Bogoliubov field § as an ensemble of complex

stochastic variable fields ¥(x,t) and 1 (x,t). The dynam-
ics of the system (3) can then be shown by standard
phase-space methods [45-48] to be equivalent to stochas-
tic Langevin equations which take the following form in
the Ito calculus:

2
i0x.t) = (g0 7+ 20l O ) v,
o, 2 0(x )" + Vihg $(x, DERx, 1),
~ h2 ~
07(x.0) = (=51, 7+ 20l O ) 1)
+90(x, )7 (x, 8) + /ihg $(x, )E(x, 1).

(82)

(8b)
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Here £(x,t) and { (x,t) are delta-correlated, independent,
real stochastic noise fields with zero mean. The second
moments are equal to

(€ DE )
(€, t)s(x', 1))

and

0
(ExE,T))
5o — x)3(t — 1.

Numerically, £ and £ are approximated by real Gaussian
random variables of variance 1/(AtAV) that are indepen-
dent at each point at the computational lattice (of volume
AV), and at each time step of length At.

Note that in the Stratonovich calculus, additional cor-
rection terms occur. The precise derivation of the stochas-
tic Bogoliubov method presented above has been given
in [49]. It has been previously used to simulate BEC col-
lisions [1,2].

Any physical quantity is obtained by substituting ot —

w* and & — 1 and changing from a quantum average of
the normally-ordered operator to a stochastic average [50],

<H§T(XJ)H/6\(X]C)> = hm <H1/J x;)" >st
j k

The braces (-)s; denote the statistical average over m,. re-
alizations. Observables in k-space follow from the Fourier
transformation. For example, the one-particle density
reads

p1(l, k') = (k)" G (k') + Re(wr (k)" (K)) o
The stochastic equations (8) strictly reproduce the full

quantum dynamics described by Heg when the number of
samples tends to infinity. For finite sample sizes, one ob-
tains an estimator for the full quantum dynamics, with an
uncertainty that is calculated by standard methods [48].

2.4 Partially reduced Bogoliubov models

A fortuitous “side-effect” of the method formulated above
is the possibility to systematically add or remove parts
of the effective Hamiltonian (4) and GP equation (2) to
understand their impact on the dynamics of the § field.
This includes a numerical simulation of the RBM. To do
this, we first write the condensate wavefunction as a sum
of left- and right-moving wavepackets,

¢(x,1) = ¢r(x, 1) + ¢r(x, 1), (9)
where ¢,/ (x,0) o< ¢o(x)e™*0* with the GP equation
52
ihOspr r(X,t) = (— vaz (10a)
+glor/r(x,1)? (10b)
+29 |0/ (x, )] (10¢)

+9¢R/L(Xat)*¢L/R(th)> (10d)

X¢L/R(x7t)‘
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The terms proportional to the coupling constant g can be
interpreted as the self-interaction of the wavepacket (10b)
and cross-interaction between different wavepackets (10c)
respectively. The remaining terms are in line (10d).

Next, the decomposition (9) is put into the Bogoliubov
Hamiltonian (4) giving

Hos = / #x 37 (x) (— ;;w) 3(x)
+2g [ dx 6100 + 0G0 T (500 (1)
49 [ Ex61)6n(5 (500 + he. (110
45 [ (00697 4+ 0r(07) 513" () + e (1)

(11a)

The resonant term (11lc) governs the process where two
atoms, one from ¢pr(x) and one from ¢y, (x), collide and
elastically scatter into the halo localized around the radius
k| ~ ko as in the usual RBM. The line (11d) leads to

creation of two atoms in the § field originating from one
wave-packet, and we call this here “off-resonant pairing”.
This incudes quantum depletion processes.

Note that the specific form of equations (10)—(11) al-
lows for removal of chosen terms. This way, one can inspect
their role in the dynamics of the system. For instance,
we can neglect all terms but the kinetic energy (11a) and
pair production (11¢) in the Bogoliubov Hamiltonian. This
simplification we call the pair production (PP) dynam-
ics. Within this approximation, the positive P formulation
takes the form:

272
e, t) = ="Vt

+29¢L (X7 t)¢R(x7 t)’[/;(X, t)*

+V/2ihgr(x, )dr(x,t) £(x,1), (12a)
Y
+29¢L (Xa t)¢R(Xa t)1/}(xa t)*

+/2ihgL(x, )R (x. ) E(x,

We can also simplify the GP equation (11) neglecting all
the nonlinear terms and approximating the kinetic energy
operator. As a result of this treatment we obtain the stiff
movement (SM) of the counter-propagating wave-packets,

i (x,t) = —

t). (12b)

2
el (R ) EACU ML

Bk .0
om <k0 + 2282) (bR(X, t). (13b)

The RBM, described in literature, consists of both the
PP (pair production) and SM (stiff movement) simplifica-
tions. Also, using alternative combinations of the approx-
imations described above, we can generate four different

ihat¢R(X,t) = —
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Fig. 1. (Color online) Cross-sections through the density
of non-condensed atoms in momentum space nnc(k) =
(6T (k)3(k)) in the k, = O plane after the end of the colli-
sion, for the bose enhanced case of o = 27.6, § = 31.6. The
labels A, B, C, D correspond to the four models introduced
in the text. Color scale varies between plots. The black circle
shows |k| = ko for reference. The red (white) contour is at 0.1
(107°) of the peak condensate density.

models described below. The shorthand below names the
kind of treatment for the condensate and non-condensate
followed by the relevant equations

A full GP equation (2) + full Bogoliubov (8)

B SM (13) + full Bogoliubov (8)

C SM (13) + PP (12) equation — what we call the RBM
D full GP equation (in the form (10)) + PP (12) equation.

In the following section we compare the distributions of
scattered atoms obtained using the four above models.

3 Results
3.1 The shape of the halo

We first investigate the dynamics of the system in two
characteristic cases, varying only «, while 8 = 31.6 is kept
constant. It has been previously shown, that for Gaussian
colliding clouds, significant Bose enhancement of scatter-
ing occurs when a(®®%) /3 ~ 2 or greater, i.e. a > .
Figures 1 and 2 show the cross-section through the halo
of scattered atoms in the k, = 0 plane at the end of the
collision, for the case of appreciable (a = 27.6) and neg-
ligible (v = 9.2) bosonic enhancement of scattering. Den-
sity profiles of the halo in these two cases are shown in
Figure 3.

When the dynamics of the 6 field is described by the
simplified models C and D, the density of scattered atoms
is spherically symmetric. On the other hand, this sym-
metry is lost within models A and B, where the halo of
atoms is weakened near the condensates. This effect is
due to the Bogliubov mean field (11b) and “off-resonant
pairing” terms (11d). Notice that for larger interaction

Complete

1 2-2
k;)"kl]

Fig. 2. (Color online) As Figure 1, but for the case of & = 9.2,
[ = 31.6 where bosonic stimulation of scattering is negligible.

density [a.u.]

Fig. 3. (Color online) Cross-sections through the halo of scat-
tered atoms along the k, axis after the end of the collision
for « = 27.6 (a) and @ = 9.2 (b). The curves are calculated
using the models A (red), B (green), C (black) and D (blue).
Triple lines indicate the best statistical estimate and the +1o
statistical uncertainties in the mean.

strength — and consequently larger o — these phenomena
are more pronounced. Moreover, models A and B predict
some non-condensed atoms appearing on top of the BECs
(in the same location as the BECs). The latter effect re-
sults from the term (11d) only.

3.2 Halo radius

In momentum space we denote the location of the maxi-
mum of the halo density by kmax. This quantity, discussed
also in [1], varies between models A—D, as can be seen
in Figures 1—3 in more detail. A shift of the position
of the halo is obtained from an energy conservation ar-
gument when the BECs are modelled with two counter-
propagating plane-waves [1,51]. The energy of a parti-
cle released from the condensates depends on the form
of the GP equation we use to describe it. The full GP
equation, with n — the mean density of the system, gives
h?k¢/2m + 3 gn, while the SM (13) gives a purely kinetic
value h?k2/2m. On the other hand the energy needed to
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0 0.02 /B 0.0 0.06
Fig. 4. (Color online) Dependence of the halo peak posi-
tion Emax on «/B%, calculated with A (red circles), B (green
squares), C (black triangles) and D (blue x). Error bars indi-

cate the £1o statistical uncertainties in the mean.

place a particle in a noncondensed mode with momentum
hk is equal to h2k? /2m+2gn in the case of full Bogoliubov
and h?k?/2m in the case of the PP equation (12). Hence,
using energy conservation we obtain

R2k2 _ Rk§ 1
A 2m = am ~ 29"
m2k? Rk
B 2m — 22m2 —2g9n
C B2 k2 h=kg
2m 22m2
Rk _ h°ky | 3
D 9m = 2m T 297

This simplified model gives quite good agreement with the
results presented in Figure 3.
Notice that in all models (k/kg)? is a linear function

of the parameter gn 522"]:2. Recalling the definitions of «
0

and (3, we obtain a shift proportional to «/3?. To ver-
ify this conjecture, in Figure 4 we plot (kmax/ko)? as a
function of «/3? for all four models. We observe that for
growing o/ (and thus growing «, as we keep constant
B = 31.6), there is some deviation from the linear be-
haviour for models A and D. What these two models have
in common is the full evolution of the condensates, which
might make the picture of plane wave collisions with a
time-independent density difficult to uphold. We also find
that the linear model is in quite good agreement with
the numeric results of Figure 4 if we take n to be half of
the maximal density in the Thomas-Fermi approximation:
N = Nmax/2, where nyax = (15/87)N/R3.;» (the factor of
a half is arbitrary).

The “skiing effect” [1,52] should also be mentioned:
Scattered atoms do not move freely after the initial pair
creation, but roll-off the mean-field potential provided by
the condensate (in models A and B). In this way, they
recover part of the velocity lost when transferring from the
condensate to the scattered field. This effect is probably
a major contributor to the flattening out of the plots for
model A and B at small a/3? in Figure 4.

Overall, for large interaction parameters «, the pri-
mary source of deviation for the simplified methods
(B=D) from the physical result (A-red) is an incorrect
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treatment of the mean field felt by the scattered atoms.
Model D also deviates very strongly for large a values
(data not shown) because the tails of the condensate
broaden near the end of the collision and produce a bogus
stimulated scattering for this model.

Finally, we note that for small enough «, the discrep-
ancy between the RBM and full Bogoliubov treatment is
negligible, as expected. The region of agreement (a < [)
matches approximately the region where stimulated scat-
tering (Bose enhancement) is absent, although investiga-
tion with various values of 3 would be necessary to confirm
or refute a link.

4 Conclusions

We have carried out a systematic analysis of the impact
of the terms that are neglected in the simple RBM, often
used to describe BEC collisions. It turns out that for in-
teraction parameters a above a certain level, these terms
are in fact crucial, and can qualitatively change the be-
haviour. The stochastic Bogoliubov method that we em-
ploy is a convenient tool for identifying the effect of the
various physical processes. By taking apart the dynamics
piece by piece, the processes responsible for the shift of the
halo radius were identified (the mean field terms for the
condensate and scattered atoms), as well as those which
lead to the depletion of the halo along the collision axis
(the mean field and off-resonant pairing terms (11d) for
the Bogoliubov field).

The RBM model is still quantitatively correct when
the interaction strength, as quantified by «, is sufficiently
small.
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of Polish Government Research Grants for 2007-2011, P. D.
for 2010—2013 and by the EU contract PERG06-GA-2009-
256291. J. C. was supported by Foundation for Polish Sci-
ence International TEAM Programme co-financed by the EU
European Regional Development Fund.
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