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Chapter 12

Conclusions

12.1 Overview of main results

As with the thesis, the main results obtained can be divided into three parts:

1. Theoretical background work regarding general phase-space distri-

butions. The first aim here has been to specify what freedoms are available

to the broadly conceived phase-space distribution approach when it is to be

used for first-principles simulations of mesoscopic quantum mechanics. The

considerations of Chapter 3 led to a set of necessary requirements for any

useful simulation, summarized in Section 3.6. Some fundamental expressions

(e.g. observable estimators) have been given for general representations (i.e.

choices of kernel). The usefulness of a given representation (which is closely

related to basis choice) is highly system dependent, and so it is hoped that the

results and considerations of Chapter 3 will aid in matching representations

to problems.

With a given representation, often there still remains a wide range of stochas-

tic equations that simulate the same physical problem, but strongly differ in

efficiency. The stochastic gauge formalism developed in Chapter 4 describes

the freedoms available in a systematic way. At the coarsest level there are two

main kinds: Those that arise when making the correspondences from mas-

ter to Fokker-Planck equations (kernel gauges), and from Fokker-Planck to
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stochastic equations (diffusion gauges). Some analysis of these freedoms for

general gauge choices has also been made. Uses have been found to include

(a) Improvement of efficiency by tailoring the shape of the distribution of

random variables to improve sampling.

(b) Removal of biases due to a broad class of so-called boundary term errors,

which are due to instabilities or divergences in the stochastic equations.

(c) Allowance for calculations of grand canonical ensemble properties by the

inclusion of a dynamically varying (with simulation steps) weight.

Part of the freedoms (e.g. real diffusion gauges) have been determined to

not be useful. The stochastic gauge formalism includes in a systematic way

several recent developments[2, 1, 65, 3, 66, 56, 61] as special cases. A relatively

restricted set of gauges that still allows the uses listed above has been identified

in Section 4.5 as the “standard gauges”.

The causes and symptoms of boundary term errors (sampling biases that do

not abate in the infinite sample number limit), have been considered in consid-

erable detail in Chapter 6. These have been major obstacles for many phase-

space simulations in the past. Two kinds of processes have been identified

as causing these — either arising when making the correspondence between

master and Fokker-Planck equations (first kind), or when calculating observ-

able estimates using the simulated random variables (second kind). Several

warning symptoms of these errors, which can be identified by inspection of the

stochastic equations prior to simulation, have been identified.

It has been found that appropriate choices of drift stochastic gauges (a class of

Kernel gauge) can be used to remove the biases and instabilities in many (or

possibly all) cases of boundary term errors of the first kind. This is demon-

strated in several simple examples where boundary term errors have been

known to occur, and also used in some subsequent many-mode calculations

where required. Heuristic guidelines for appropriate gauge choice have been

found and given in Section 6.3.2.
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2. Investigation of gauge P representation and development of gauges

for use with interacting Bose gases. This representation is an extension of

the successful positive P representation based on coherent states. The added

complex weight factor is shown to allow the use of the standard gauges to

improve simulations, remove possible boundary term bias, and extend the

range of physical models that can be simulated (thermodynamic calculations).

The emphasis here has been almost exclusively on simulations of open Bose

gases with binary interactions. Equations for dynamics and thermodynam-

ics calculations have been obtained (including non-delta-function interparticle

potentials). Part B searched for useful choices of gauges for dynamics and

thermodynamics calculations, given the constraint that they be local (i.e. de-

pendent only on variables at a single lattice point). This constraint is not

optimal, but is a basic starting point for possible further investigation. Both

diffusion and drift gauges that improve simulations under appropriate condi-

tions were found. Diffusion gauges were able to significantly improve sampling

and useful simulation times in dynamics calculations, while drift gauges are

essential for any accurate thermodynamic calculation, and were found to also

give sampling improvement in dynamics under some conditions (See Chap-

ter 8).

Analyses were made of the expected behavior of multi-mode simulations, and

subsequently confirmed in the actual calculations. In dynamics calculations,

simulation time is found to be limited by properties of the most highly occu-

pied lattice point, and a robust estimate of this time for positive P simulations

is given by (10.4). Relative to this positive P simulation time, it was found

that simulation time improvement with diffusion gauges occurs when lattice

spacing is greater than the healing length in the gas. Local drift gauges were

found to give even more improvement in simulation time but for a much nar-

rower range of systems in which two-body collision effects dominate kinetic

processes, as in some simulations in Chapter 8. Thermodynamic simulations

were made possible with judicious use of a drift gauge. It was also found that
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simulation precision at a target temperature and chemical potential was depen-

dent (sometimes strongly) on the (otherwise free) choice of chemical potential

at higher temperatures.

3. Simulations of many-mode interacting Bose gases Several nontrivial

mesoscopic systems of open interacting Bose gases have been simulated. These

were dynamics of:

• Uniform 1D and 2D gas with effectively local scattering. Wave behavior

occurring in the two- or three-particle correlations (but not density) was

found, and displays some interesting properties (e.g. movement of main

wavefront at
√
2 the speed of sound).

• Uniform 1D gas with extended nonlocal interparticle interactions. Corre-

lation wave behavior was also seen, but with different properties than for

the locally-interacting gas. Simulation time was found to increase signifi-

cantly with respect to a locally-interacting gas with the same interaction

energy density.

• Trapped 1D gas with extended interactions on the length scale of the

trap. Strong interplay between the scattering and breathing of the atom

cloud in the trap was seen.

• Scattering of atoms from colliding BECs in 3D. Bosonic enhancement of

initially empty modes was seen in a physical situation similar to the Vogels

et al four wave mixing experiment[41] (the difference was that there were

less atoms in the simulation). Additionally, a significant suppression of

the spontaneous scattering process compared to the imaginary scattering

length estimate is predicted.

Also:

• Calculations of grand canonical ensembles were made for the uniform 1D

gas at temperature T and chemical potential µ. Physical regimes reached

included the nondegenerate strongly interacting fermionized regime, and

the quantum degenerate decoherent regime. Spatial correlation functions
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of first g(1)(x), second g(s)(x and third order g(3)(x, y) have been calculated

as well as momentum distributions. A transition regime where enhanced

atom pairing occurs at a preferred interparticle distance has been found.

This occurs when the de Broglie thermal wavelength λT is of the same

order as the 1D scattering length a1D (effectively the “size” of the atom

for scattering processes). The pairing was found to occur at distances

≈ λT/2 for the parameters simulated.

These simulations can be tractable even with very large numbers of modes or par-

ticles in the system given the right conditions, as evidenced by Section 10.7, where

there were 1009 152 lattice points and 150 000 atoms on average.

Situations where there are several length scales of similar order, or processes of

similar strength are of particular interest for first-principles simulations because it

is difficult to make accurate quantitative predictions otherwise. The calculations in

Sections 10.6 and 10.7 and the thermodynamics calculations were of this type, and

were seen to be amenable to simulation using the gauge P method. In fact, even in

a perturbative regime (e.g. the correlation phenomena at low intensity can probably

be treated by Bogoliubov approximation approach), the equations are convenient to

use: One simply repeatedly simulates a GP equation with noise and takes appropri-

ate averages. All quantum effects are included to within statistical precision. The

caveat is that simulation time is limited. Nevertheless, many phenomena can still

be seen, and simulation time can be extended with appropriate gauges under some

conditions.

12.2 Future directions of improvement

The local diffusion gauges developed here give significant improvements only when

the lattice is relatively sparse, and/or scattering interactions are dominant. A way

to overcome these limitations might be found by using nonlocal diffusion gauges

that would depend on neighboring, or preferably all, lattice amplitudes αn, βn.

A possible starting point would be to consider optimizing diffusion gauges in the
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opposite regime of strong kinetic interactions and weak scattering. The equations for

such a model are probably best considered in Fourier space where kinetic processes

take on a simpler form.

Another major issue is the reduction of simulation time with system size due to

increasing weight or z0 spread when drift gauges are used. (As was discussed in Sec-

tion 10.2.4). A starting point here may be to determine why the lattice-dependent

diffusion gauge (10.26) did not give the expected simulation time improvements

(10.28). If the expected M−1/4 scaling could be achieved, many useful mesoscopic

simulations should become accessible with a drift gauge. Such a drift-gauged sim-

ulation would be free of moving singularities, and possibly also extend simulation

time as was seen for the drift gauged one- and two-mode systems.

A completely different but potentially very promising approach is to use non-

coherent state kernels for the representation. Certainly in many low temperature

regimes this would be a more efficient approach if viable representations could be

found because the low temperature ground and low excited states are often far from

coherent states. Some preliminary attempts with squeezed state kernels give mixed

results[104].

For thermodynamics calculations of properties at and around a target tempera-

ture and chemical potential, an important outstanding issue is to characterize the

influence of the choice of µ(T ) at intermediate temperature values. It is conceiv-

able that a good choice of µ(T ) may give dramatic improvement in precision and

significantly extend the physical region that can be simulated. Some precision and

simulation time improvement should also be obtained by using a more sophisticated

importance sampling technique than the rough method used in Chapter 11. Some

preliminary results indicate that using a Metropolis sampling algorithm[105] extends

the reachable γ, T̃ regime[106].


