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Chapter 10

Many-mode dynamics

Part C of this thesis investigates the performance of the gauge P representation

(including the special case of the positive P with Gn = 0) for many-mode calcula-

tions. Specifically, the interacting Bose gas. Chapter 10 will consider simulations

of many-mode dynamics, while Chapter 11 concerns calculations of grand canonical

ensembles.

Regarding dynamics, it will be seen that an un-gauged simulation (equivalent

to positive P) can already give many useful results, while under some conditions

the diffusion gauges of Chapter 7 can be applied directly (i.e. without any addi-

tional gauge improvements for kinetic coupling) to lengthen the simulation time and

improve precision.

The particular example systems simulated in this chapter do not have particle

losses, which is a “worst case” in terms of simulation time and stability, as has been

discussed in Section 7.2.4. This is also the case in which nonclassical phenomena are

most pronounced. It is worth pointing out, however, that the gauge P representation

method allows the addition of damping and/or losses in a completely straightforward

way by adding some linear terms of the forms (5.18), or (5.21) into the stochastic

equations. Chapter 11, on the other hand, considers simulations where the particle

number strongly varies during the simulation.

The stochastic wavefunction method of Carusotto et al [1] and gauge P represen-

tation methods share many common features, but the former is applicable only to
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explicitly particle-conserving systems. That method has been used to calculate the

evolution of the width of an atomic cloud with extended interactions in a similar

breathing trap arrangement to the example calculation of Section 10.6 here.

10.1 Simulation procedure

To simulate dynamics with the gauge P representation, one starts from the equations

(5.17) to (5.21). For an M -mode system, there are then 2M +1 complex stochastic

differential equations. The Wiener stochastic increments were implemented using

Gaussian noises of variance ∆t, independent at each time step of length ∆t.

For efficiency reasons, it is convenient to use a split-step algorithm to evolve

the kinetic energy part of the terms ωnm in Fourier space, while doing the rest of

the evolution in position space. For notational convenience let us define the dual

coherent state amplitudes (of the bra vector in the kernel (5.4)) as

α′n = β∗n. (10.1)

If the label z is allowed to stand for either α or α′, then the (discrete) Fourier space

variables are

z̃ñ =
(2π)D/2

V

∑

n

e−ikñ·xnzn, (10.2)

where V is the volume spanned by the spatial lattice. Expanding ωnm as per (2.13)

and (2.14), the kinetic evolution in momentum space takes the form

dα̃ñ = − i
2
|kñ|2α̃n dt+ . . . (10.3a)

dα̃′ñ = − i
2
|kñ|2α̃′n dt+ . . . (10.3b)

after some algebra. (The remainder of the terms denoted by “. . . ” will be evaluated

in position space.) The split-step simulation algorithm is then, for each trajectory

out of S:

1. Initialize variables choosing randomly either from explicitly known initial con-

ditions, or by passing variables from a trajectory in a previous calculation (e.g.

a thermal grand canonical ensemble as will be calculated in Chapter 11).
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2. For each time step ∆t,

(a) Transform variables to α̃ñ, α̃
′
ñ in Fourier space {ñ}.

(b) Evolve variables forward by a time step ∆t by applying the change (10.3)

due to kinetic terms.

(c) Accumulate any moments of variables in momentum space required for

observable estimates.

(d) Transform variables to αn, α
′
n in normal space {n}.

(e) Evolve variables (including weight Ω) forward by a time step ∆t by ap-

plying the rest of the evolution due to interparticle collisions, particle

gains or losses, and external potential. This last appears as diagonal lin-

ear frequency terms, which now have the form ωnn = V ext
n /~ after kinetic

processes have been moved to Fourier space.

(f) Accumulate any moments of variables in normal space required for ob-

servable estimates.

In the case when there is no particle gain from the environment (but losses to

a zero temperature heat bath can be tolerated), the differential equations for all

the variables αn, α
′
n, Ω, take on an exponential and local form dzj ∝ zj (j is here

a generic variable label). It is then convenient to change to logarithmic variables

log(αn), log(α′n), and z0 = log Ω. The radial and tangential evolution are then

simulated separately, which is found to lead to superior numerical stability. This

allows one to use larger time steps. Efficiency is improved despite the need to

change back to the non-logarithmic amplitude variables αn, α
′
n to make the Fourier

transform.

The integration algorithm used was a semi-implicit half-step iterative method,

(κ = 1
2
in the notation of (B.10) in Appendix B). The variable increments used

(dαn, dz0 etc.) are in the Stratonovich calculus. This algorithm has been found by

Drummond and Mortimer[82] to have much superior stability to a plain first order

method (although it is still first order in ∆t).
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During a simulation, several indicators were monitored to make sure no sampling

biases occur. These indicators were

1. Excessive variance in logarithmic variables. All or most of the evolution

for the interacting Bose gas occurs in an exponential fashion as per dzj ∝ zj,

when written in terms of variables that are averaged to obtain observable

estimates. As described in Appendix A, bias may occur if the variance of

log |zj| exceeds O (10).

2. Sudden spiking, which may be an indicator of boundary term errors in the

simulations with no drift gauge. This is described by Gilchrist et al [64]. Some

care had to be taken not to confuse this spiking with the far more benign

kind caused by too-small ensemble sizes S, which occurs when evaluating

quotients of variable moments (as described in Appendix C). A characteristic

distinguishing feature between these is what happens to the time of first spiking

when the ensemble size is changed.

• Boundary term related spiking becomes more severe and/or first occurs

at slightly earlier times as the number of trajectories S is increased. This

is because as S increases, trajectories closer to the divergent moving

singularity (and hence spiking sooner) become included in the ensemble.

• Subensemble-size related spiking abates and/or first occurs at later times

as the number of trajectories in an ensemble S is increased, due to better

precision in evaluating the denominator in the quotient.

3. Change in mean with ensemble size. A robust and widely applicable

indicator of possible bias is when means of variables or of their functions

change in a systematic manner (with statistical significance) as the ensemble

size S is increased.

On the whole, reasonably precise observable estimates were not brought into ques-

tion by any of the above indicators, apart from some unusual situations. (An ex-

ample of such a pathological simulation were thermodynamic calculations of ideal

gases, where no noise occurs during the evolution. See Section 11.2.3.) Typically,
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worrying symptoms were seen only at times when noise had already obscured any

observable estimates.

10.2 Lattice size and simulation performance

A lattice simulation will be equivalent to the continuum system provided that 1)

the lattice encompasses the entire system (i.e. the volume spanned by the lattice is

large enough) and 2) all relevant features are resolved (i.e. the lattice is fine enough).

Once in this limit, all simulations will converge to the same physical predictions in

the many trajectories limit S → ∞ (provided there are no boundary term errors).

However, the rate of convergence turns out to be affected by the size of the lattice

spacing. This affects the useful simulation time.

Before considering some example simulations in Sections 10.4 to 10.7, the effect

of lattice size on the simulation time is investigated.

10.2.1 Scaling due to interparticle scattering

To get a rough feel for the issue, let us see what happens in an un-gauged (positive

P) simulation when the kinetic coupling is negligible, and the scattering process

dominates. Consider the case of local rather than extended (Un) interactions. Each

lattice point represents an effective volume ∆V =
∏

d∆xd, and the mean occupation

is nn ≈ ρ(xn)∆V for a system with density ρ(x). The self-interaction strength is

χ = g/2~∆V from (2.19).

At large mean lattice point occupations n, the simulation time for a single mode

using the positive P is given from Table 7.1 by tsim ≈ 1.27/χn2/3, based on nu-

merical calculations. This is also in agreement with the analytic result (7.85). At

low occupations the empirical fits of Table 7.2 can be used instead. Since single-

mode simulation time decreases in absolute terms with mode occupation, then the

expected simulation time is limited by the most highly occupied mode:

tsim .
2.5~(∆V )1/3

g(max[ρ(x)])2/3
. (10.4)

Kinetic processes and external potentials have been ignored for the time being,
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although at least the kinetic mode coupling will reduce the useful simulation time

below this level, as was seen in the calculations of Chapter 8. The expression (10.4)

(or its extensions to include the empirical fits (7.89)at low mode occupation) is

qualitatively borne out in the simulations presented later in this chapter.

Summarizing, finer lattices lead to shorter simulations, scaling as (∆V )1/3

in the strong interaction limit.

10.2.2 Effect of kinetic interactions

Let us now consider the effect of the kinetic interactions. The simplest case is a

uniform coherent gas with density ρ, scattering strength g, and lattice point vol-

ume ∆V . Also, no environment interactions, no external potential, and a constant

standard diffusion gauge g′′ applied to each mode separately.

When this is implemented as described in Chapter 7 and Section 4.4.2 (e.g. as

in (8.4)), the evolution of the amplitudes of a single spatial mode n is given (via

(5.17), (2.13) and n̆n = αnα
′∗
n) by

dαn = −iE (α)n dt− iV ext
n αn dt/~− 2iχαnn̆n dt+ dX(α)

n (10.5a)

dα′n = −iE (α′)n dt− iV ext
n α′n dt/~− 2iχα′nn̆

∗
n dt+ dX(α′)

n . (10.5b)

The quantities E (z)n (with z representing either α or α′) contain the kinetic interac-

tions, and from (5.17), (2.13), and (2.14),

E (z)n =
~∆V
2mV

∑

m,ñ

zm|kñ|2eikñ·(xn−xm), (10.6)

where V is the entire lattice volume. The direct noise terms are explicitly

dX(α)
n = i

√
2iχαn

[
cosh g′′ dWn + i sinh g′′ dW̃n

]
(10.7a)

dX(α′)
n = i

√
2iχα′n

[
−i sinh g′′ dWn − cosh g′′ dW̃n

]
. (10.7b)

Let us write the E (z)n in terms of a mean E (z) and a fluctuating part δE (z)n of mean

zero:

E (z)n (t) = E (z)(t) + δE (z)n (t). (10.8)
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Similarly the solution of (10.5) will have a constant and fluctuating part:

zn(t) = z(t) + δzn(t). (10.9)

Since the initial conditions are uniform and coherent then both z and E (z) are the

same for all modes and trajectories. Also, because there are no external forces on

this system,

z(t) =
√
neiθ(t) =

√
ρ∆V eiθ(t) (10.10)

with some real phase θ(t).

If (temporarily) the influence of the kinetic terms was ignored, then the analysis

of the logarithmic variances of a single mode from Sections 7.5.3 or 7.8.2 would

apply, and the variance of log |zn| would be given by (7.65) or (7.92). (Compare zn to

the definition of GL in (7.51)). In particular, at short times the dominant fluctuating

contribution would be due directly to the noise terms rather than amplification of

n̆n fluctuations by the nonlinear drift term. From (7.53) and (7.15), then

 logαn(t)

logα′n(t)


 ≈ 1

2
log n− 2iχnt+

√
χ

2



e
−g′′ [iζ+n (t)− ζ−n (t)]


 +

−


 eg′′ [iζ−n (t)− ζ+n (t)]



 ,

(10.11)

where the ζ±n (t) are time-correlated Gaussian random variables defined as in (7.56)

and (7.57), and are independent for each mode n. At short enough times that

var [Re {log zn(t)}] . 1 , one would have

zn(t) ≈ z(t) [1 + log zn(t)− iθ(t)]
= z + δdirectzn(t),

(10.12)

where θ(t) = −2χnt, and zn represents either αn or α′n.

In reality there is also, a fluctuating contribution from the other modes mediated

by the kinetic interactions so that the total short time fluctuations are

δzn(t) ≈ δdirectzn(t) + δkineticzn(t). (10.13)

In the Ito calculus, where Wiener increments are uncorrelated with variables at the

same time step, the direct and kinetic fluctuations at t are un-correlated, and so the
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variance of fluctuations will be

var [ |δzn(t)| ] = var
[
|δdirectzn(t)|

]
+ var

[
|δkineticzn(t)|

]
. (10.14)

One expects that as long as the first term (due to the direct noise terms dX
(z)
n )

dominates the fluctuations, then the single-mode analysis of Chapter 7 is accurate.

In such a regime:

• The diffusion gauge (7.107) (or (7.94) for the case of Gn = 0) will be well

optimized.

• The simulation times of Table 7.1 and 7.2 are accurate (at least for Gn = 0

simulations — see Section 10.2.4).

• The diffusion gauges (7.107) or (7.94) will give improvements of simulation

time while the mean mode occupation is high (i.e. n = ρ∆V À 1 ).

Let us estimate the relative size of these two fluctuation contributions at short

times. Using (10.12) and (10.11), the properties (7.57) of the ζ±n , one finds

var
[
|δdirectzn(t)|

]
≈ ρgt cosh 2g′′

~
. (10.15)

Also, directly from the equations (10.5) and (10.8)

δkineticzn(t) = −i
∫ t

0

δE (z)n (t′) dt′. (10.16)

Using (10.6), and substituting in for zm with the approximate (direct noise only)

short time expression zm ≈ z + δdirectzm, one obtains

var
[
|δkineticzn(t)|

]
=

(
~∆V
2mV

)2 ∫ t

0

dt′
∫ t

0

dt′′
∑

m,m′,ñ,ñ′

〈
δdirectz∗m′(t′′)δdirectzm(t′)

〉
stoch

×|kñ|2|kñ′ |2e−ikñ′ ·(xn−xm′ )eikñ·(xn−xm). (10.17)

Since the direct noise at each lattice point in the locally-interacting model is inde-

pendent, then

〈
δdirectz∗m′(t′′)δdirectzm(t′)

〉
stoch

= δm,m′

ρg cosh 2g′′min[t′′, t′]

~
, (10.18)
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similarly to (10.15), and the same for all modes. After performing the integrations

over t′ and t′′, and simplifying the Fourier transforms, one obtains

var
[
|δkineticzn(t)|

]
= var

[
|δdirectzn(t)|

] ~2t2∆V

12m2V

∑

ñ

|kñ|4. (10.19)

For a D-dimensional system with many modes, one can approximate

∑

ñ

|kñ|4 ≈
V

(2π)D

∫
|k|4 dDk

=
V

(2π)D
c1(k

max)

(
(2π)D

5∆V

)(
π

(∆V )1/D

)4

= c1(k
max)

V π4

5(∆V )1+4/D
, (10.20)

where c1(k
max) is a shape factorO (1) that depends on the ratios between momentum

cutoffs kmax
d for the various lattice dimensions. For example in 1D, c1 = 1, while

for 2D and 3D when the momentum cutoffs in each dimension are equal, one has

c1 = 31
9
, and c1 = 61

3
. Using (10.20), one obtains the final estimate

var
[
|δkineticzn(t)|

]
≈ var

[
|δdirectzn(t)|

] ~2t2π4c1
60m2(∆V )4/D

. (10.21)

It can be seen that: the fluctuations due to kinetic terms

• become relatively more important with time, and

• are more dominant for fine lattices (i.e. when ∆V is small).

10.2.3 Lattice size and diffusion gauge usefulness

If the kinetic coupling remains weak (in relative terms) for the duration of a un-

gauged or diffusion-gauged simulation, then one expects that the local diffusion

gauges (7.94) are fairly well optimized, and will give simulation time improvements.

Let us investigate under what conditions this is expected to occur based on (10.21).

Firstly, simulation times were found in Chapter 7 to be significantly improved

when the mean particle occupation per mode is n & 1. The expected single-mode

simulation time was found to be tsim ≈ O (10) /χ
√
n — see Table 7.1. It will be
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convenient to write the lattice interaction strength χ = g/2~∆V in terms of the

healing length

ξheal =
~√

2mρg
. (10.22)

This is the minimum length scale over which a local density inhomogeneity in a

Bose condensate wavefunction can be in balance with the quantum pressure due to

kinetic effects (e.g. it is the typical size of a quantized vortex in a BEC[42, 44],

or the typical size of a density correlation disturbance, as will be seen here). The

healing length is discussed in more detail e.g. in Dalfovo et al [31], p. 481.

In terms of ξheal, the diffusion gauged simulation time is tsim ≈ O (40) (ξheal)2m
√
n/~.

From (10.21), the kinetic fluctuations are expected to be weak (var
[
|δkineticzn(t)|

]
¿

var
[
|δdirectzn(t)|

]
) up to this time provided that

80

3
c1n

(
πξheal

(∆V )1/D

)4

¿ 1. (10.23)

The quantity (∆V )1/D = ∆x is the geometric mean of the lattice spacing. One sees

that simulation time improvement using a local gauge diffusion gauge occurs only

when

∆x & ξhealn1/4c3

& O
(
ξheal

)
(10.24)

with c3 = π(3/80c1)
1/4 ≈ O (1) a weakly lattice shape dependent constant. (The

second line follows since improvements occur only for n & 1.)

That is, the local diffusion gauges (7.107) or (7.94) can be expected to

give simulation time improvements only if the lattice spacing is of the

order of the healing length or greater.

10.2.4 Drift gauges and many-mode dynamics

As has been noted in Section 7.8.1, drift gauged simulations additionally encounter

a scaling problem in many-mode systems because the single log-weight variable z0

accumulates fluctuations from all modes.
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One has the Ito equation for the log-weight:

dz0 =
∑

n

{
Gn

[
dWn −

1

2
Gn dt

]
+ G̃n

[
dW̃n −

1

2
G̃n dt

]}
, (10.25)

with independent contributions from each mode. In a uniform gas on M = V/∆V

modes each with occupation n, the contribution from each mode is identical on

average, and the variance of real and imaginary parts of dz0 will scale as var [z0] ∝M .

Because z0 appears as Ω = ez0 in observable estimates, there is a limit (7.43) to how

large the variance of Re {z0} can be if any precision is to be retained in the simulation

(see Section 7.4). At short times var [Re {z0}] ∝ tM , which leads to a reduction of

simulation time tsim ∝ 1/M in this case.

In the simulations with drift gauge (7.105) the diffusion gauge g ′′ acts to trade-off

fluctuations in the amplitudes ∝ eg
′′
with fluctuations in the log-weight ∝

√
Me−g

′′
.

This indicates that when many modes are present, a more advantageous trade-

off might be achieved by increasing g′′ relative to the single-mode expression than

(7.107).

Let us investigate this. With M identical modes in a uniform gas, the changes

in the optimization of Section 7.5.3 can be easily tracked. The last term of (7.60)

for each mode is M times greater, and so the ∝ |n0|2 term in (7.65) also acquires

a factor M . This factor also appears in the third-order (in Vg) term of the cubics

(7.67) and (7.72). In the end, the new optimization gives

g′′n =
1

6
log
{
8M |n̆n(t)|2χtrem + a

3/2
2 (n̆n(t), γntrem)

}
(10.26)

instead of the single-mode expression (7.107). Simulation time can be estimated as

in Section 7.6. At short times

var [GL] =
χt

2

(
Vg +

1

Vg

)
+ 2M(χVgtn

′
0)

2 (10.27)

(compare to (7.80)), while for large particle number Vg ≈ 1/2(n′20χtM)1/3. One

obtains

tsim ≈
(20/3)3/2

M1/4χ
√
n′0
≈ O

(
40 tcoh
M1/4

)
. (10.28)

so simulation appears to be reduced by a factor of M−1/4 as compared to the single-

mode case (Much better than a 1/M reduction with the single-mode expression

(7.107)).
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Unfortunately there is some further noise process that limits simulation times

with drift gauged dynamics simulations on large lattices. A preliminary trial with

a uniform 1D gas on a 50 point lattice with ∆x1 = ∆V = 10 ξheal, and n = 1000

bosons per lattice point was tried, but numerical simulations with the gauge (10.26)

did not show improvement to simulation times over the Gn = 0 case. (Nor did a

combination of drift gauge (7.30) with (7.107) or g ′′n = 0.) Only some improvement

of precision at very small times ¿ tsim was seen. Presumably kinetic effects lead

to a large increase in z0 fluctuations in this regime in comparison with what is

expected for M uncoupled modes, and neither the original optimization not the

above re-optimization of g′′n gives improvement.

A combination of local drift and diffusion gauges was seen to give improvement

under some conditions in Chapter 8. There it was concluded that the kinetic coupling

needs to be relatvely weak for this to occur, but details remain to be investigated.

Simulations shown in the remainder of this chapter were made with zero drift gauge,

and diffusion gauges only.

10.3 Correlation functions

In most experimentally realized Bose gas systems, low order local observables such

as density or energy are often well described by approximate theories such as Gross-

Pitaevskii (GP) equations (for a BEC), or statistical approaches in a high tem-

perature gas. Multi-particle correlations are not well described by these theories,

however, and so are of more interest for first-principles calculations. In terms of

local lattice annihilation/creation operators those correlation functions that will be

considered here are:

1. First order:

g(1)(xn,xm) =
〈â†nâm〉√

〈â†nân〉〈â†mâm〉
. (10.29)

This is a phase-dependent correlation function. Its magnitude |g(1)| tells one

the degree of first-order spatial coherence, while its phase gives the relative

phase of the wavefunction at spacing xn − xm.
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2. Second order:

g(2)(xn,xm) =
〈â†nâ†mânâm〉
〈â†nân〉〈â†mâm〉

. (10.30)

This two-particle number correlation function is not phase dependent, and

always real positive. It describes the likelihood of finding two particles at a

spacing xm − xm from each other, relative to what is expected of a coherent

field. For a bunched field, g(2)(x,x) > 1 (e.g. a thermal state has g(2)(x,x) =

2), while antibunching is evidenced by g(2)(x,x) < 1.

3. Third order:

g(3)(xn,xm,xm′) =
〈â†nâ†mâ†m′ ânâmâm′〉
〈â†nân〉〈â†mâm〉〈â†m′ âm′〉

. (10.31)

This three-particle correlation function describes the likelihood of particles at

xn, xm, and xm′ (ralative to a coherent field). The rate of three-body processes

is proportional to g(3)(x,x,x) (or, if the effective radius of particles is r, three

body processes will depend on values of g(3)(x,x+ ε1,x+ ε2), where |εj| . r.)

For example in a BEC, the rate of three-body recombination, which can limit

the condensate’s lifetime, is proportional to g(3)(x,x,x)[48].

For the uniform gas, average values of these (over all space of M lattice points) are

of relevance:

g(j)(x) =
1

M

∑

m

g(j)(xm,xm + x) (10.32a)

g(3)(x,y) =
1

M

∑

m

g(3)(xm,xm + x,xm + y). (10.32b)

10.4 Example 1:

Correlation waves in a uniform gas

10.4.1 The system

This system consists of a uniform gas of bosons with density ρ and interparticle

s-wave scattering length as. The lattice is chosen with a spacing ∆xd À as so that
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interparticle interactions are effectively local at each lattice point with effective field

interaction strength g given by (2.16) or (2.19), depending on the dimensionality of

the system. Coupling strength between lattice points, χ, is then given by (2.18).

Periodic boundary conditions are assumed. The results obtained from a simulation

will be invariant of lattice size provided the lattice spacing is fine enough to resolve

all occupied momenta, and the lattice volume V is large enough to encompass all

phenomena.

The initial state is taken to be a coherent wavefunction, which is a stationary

state of the ideal gas with no interparticle interactions (i.e. g = 0). Subsequent

evolution is with g > 0, so that there is a disturbance at t = 0 when interparticle

interactions are rapidly turned on. Physically, this kind of disturbance can be cre-

ated in a BEC by rapidly increasing the scattering length at t ≈ 0 by e.g. tuning

the external magnetic field near a Feshbach resonance.

The behavior of a uniform gas can tell us a lot about what goes on in more

complicated inhomogeneous systems. If the density of a system is slowly varying

on length scales of Lρ or less, then any uniform gas phenomena of spatial extent

Lρ or smaller will also be present in the inhomogeneous system. In a trapped gas,

for example, uniform gas phenomena that occur on length scales of the order of a

fraction of the trap size or smaller.

10.4.2 Correlation waves in a one-dimensional gas

The evolution of some of the quantum correlations that appear in a one-dimensional

gas with density ρ = 100/ξheal is shown in Figures 10.1, 10.2, and 10.4, based on

Gn = 0 simulations. Figure 10.3 also shows the momentum distribution of particles

at times after being excited by the disturbance at t = 0.

Time is given in units of the timescale

tξ =
m(ξheal)2

~
=

~
2ρg

(10.33)

(the “healing time”), which is approximately the time needed for the short-distance

(O
(
ξheal

)
) inter-atomic correlations to equilibrate after the disturbance (see Fig-

ure 10.4(a)).
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Figure 10.1: Evolution of g(2)(x) in a uniform 1D gas with density ρ = 100/ξheal. Shading

indicates relative magnitude of g(2)(x), with light regions indicating high values > 1, and dark

indicating low values < 1. The diagram is a composite of data from three simulations with different

lattices: ∆x = 0.12ξheal, 500 lattice points and S = 3000 for t ∈ [0, tξ] and |x| ∈ [0, 29ξheal].

∆x = 0.24ξheal, 250 points and S = 104 for t ∈ [tξ, 3tξ]. |x| ∈ [0, 29ξheal], and ∆x = ξheal, 200

points and S = 104 for the rest of the data. These changes in resolution are responsible for the

apparent slight discontinuities in the data. The apparent weak cross-hashing superimposed on the

plot at long times and/or large distances is due to finite sample size and/or lattice discretization

effects and is not statistically significant. Magnitudes of g(2) are shown in Figure 10.4.
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Figure 10.2: Short time evolution of g(2)(x) in a 1D gas with density ρ = 100/ξheal. From

a simulation with S = 3000 trajectories, 500 points and ∆x = 0.12ξheal.
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Figure 10.3: Distribution of velocity in the uniform 1D gas of spatial density ρ = 100/ξheal

at several times t after the initial disturbance. Plotted is the velocity density ρ̃ per unit volume of

the gas. Velocities v are given in units of
√
2cBEC, which is the speed of the strongest correlation

wave. The background density of stationary atoms has been omitted. Triple lines indicate error

bars at one standard deviation significance. S = 104 trajectories, ∆x = ξheal, 100 lattice points.
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Figure 10.4: Correlation functions in a uniform 1D gas with density ρ = 100/ξheal. solid

lines show g(2), dashed lines show g(3), dotted lines show |g(1)|. Triple lines indicate error bars

at one standard deviation significance. Subplot (a): Time dependence of local correlations. (b):

Correlations at time t = tξ. (c): Time dependence of correlations at distance x = 4ξheal. (d):

Long time correlations at t = 8tξ. Data in (a), (b), and t < 1.25tξ in (c) are from a simulation

with ∆x = 0.24ξheal and 250 points, while the rest is from a ∆x = ξheal simulation with 200 points.

S = 104 trajectories in both cases.

Perhaps the most interesting feature noted in the simulations is the propagating

wave train that appears in the two-particle correlations. These waves are seen only

in the two- (or more) particle correlations, while the density always remains uniform

(by symmetry, since there are no gains or losses in this model), and shows no sign

of any wave behavior. This “correlation wave” is best seen in the time-dependent

behavior of g(2)(x) in Figure 10.1.

Once some initial transient effects at times t . O (tξ) after the disturbance die
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out (these are shown in Figure 10.2), the long time behavior of first and second

order correlations appears as follows:

• At distances O
(
ξheal

)
, antibunching occurs — See e.g. Figures 10.1, 10.4(b),

10.4(d).

• Enhanced two-particle correlations occur at a quite well-defined interparticle

spacing, which increases at a constant rate: ≈
√
2 ξheal per tξ. This is a factor

√
2 faster than the low-momentum sound velocity in a BEC, obtained from

the Bogoliubov dispersion law:

cBEC =
√
ρg/m. (10.34)

See e.g. Dalfovo et al [31] p. 481.

• There are also many weaker correlations (and anti-correlations) at larger dis-

tances that move apart at increasingly faster rates, as seen in Figure 10.1.

These leading correlation wavelets are particularly well visible in Figure 10.4(b).

The leading disturbances appear to move at ≈ 20cBEC for the ρ = 100/ξheal

system, although this is only clearly seen in this simulation for times . 1.5tξ

when transient effects may still be significant.

• Looking at the momentum spectrum of the particles (Figure 10.3), there are

peaks, but their position changes with time (towards lower momenta), and

in particular there is no peak corresponding to any particles travelling at the

speed of the main (trailing) correlation wave.

• The peak to peak width of these correlation waves is of the order of several

healing lengths for the times simulated, although some slow spreading is seen.

• At long times & O (tξ) at distances shorter than the strongest trailing correla-

tion wave with velocity
√
2cBEC, but longer than the healing length, long range

second order coherence (g(2)(x) = 1) between particles reappears.

• Long range phase coherence |g(1)(x)| decays with time due to the scattering

processes. (approximately linearly, at least while |g(1)| ≈ O (1)). See e.g. the
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shorter time behavior of Figure 10.4(c), and the long distance behavior of

Figure 10.4(b) and (d).

• However, in the (2nd order) coherent neighborhood that appears after the last

correlation wave has passed, phase coherence decays only up to a certain value

(see Figure 10.4(c) after the last g(2) correlation wave has passed. This steady

state phase coherence value drops off approximately linearly with distance, as

seen especially in Figure 10.4(d).

• The third-order correlation g(3) function also displays some wave behavior at

similar times and distances as g(2)(x). This is visible e.g. in Figure 10.4(c).

The uniform one-dimensional gas is peculiar in some respects, one of these being

that as density increases, the system becomes more like an ideal gas[86, 87]. From

(10.4) and (10.33) the expected simulation time in units of the healing time tξ is

tsim ≈ 5n1/3tξ, (10.35)

at high lattice point occupation n. To resolve the correlation waves (with width

≈ ξheal), one requires ∆x ≈ ξheal, which gives the scaling

tsim
tξ
∝
(
ρ ξheal

)1/3
. (10.36)

That is, at lower densities, it is more difficult to observe the long time correlation

wave behavior that evolves on the tξ timescale. This is borne out in Figure 10.6(b),

and is the reason why the relatively weak correlations in the ρ = 100/ξheal have been

investigated here in most detail.

Lower density simulations were also carried out for ρ = 1/ξheal and ρ = 10/ξheal.

Qualitatively the same kind of correlation wave behavior was seen for these densities

up to simulation time, but the correlations are much stronger. Some examples for

ρ = 1/ξheal are shown in Figure 10.5.

When the length and time scales are given in density-dependent dimensionless

units x/ξheal and t/tξ, the scaling of correlations in the simulated parameter regimes

was closely approximated by

g(j) ∝ ξheal

ρ
. (10.37)
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Figure 10.5: Correlation functions in a uniform 1D gas with density ρ = 1/ξheal. solid

lines show g(2), dashed lines show g(3), dotted lines show |g(1)|. Triple lines indicate error bars

at one standard deviation significance. Subplot (a): Time dependence of local correlations. (b):

Correlations at time t = tξ. Simulations with ∆x = 0.5ξheal, 50 lattice points, and S = 104

trajectories.

10.4.3 Lattice dependence of simulation time

The observed scaling of simulation time with lattice spacing ∆x and lattice occu-

pation n = ρ∆x is shown in Figure 10.6, and compared to the expected un-gauged

times when kinetic effects are ignored. The estimated times shown in gray are based

on the empirical relationship (7.89) with the positive P (i.e. un-gauged) fitting pa-

rameters given in Table 7.2. It can be seen that for the physical regimes simulated,

this empirical estimate of simulation time is very good also for many-mode simu-

lations. (Most of the residual variation in tsim is due to statistical effects of finite

sample size).

10.4.4 Diffusion gauge dependence of simulation time

From the analysis of Section 10.2.3, it is expected that diffusion gauges will give

significant improvements once ∆x & ξheal. This is confirmed in Figure 10.7, which

shows the dependence of simulation time on topt for some simulations using the

gauge (7.94). At large lattice spacings, significant gains can be made with the local

diffusion gauge, while for spacing of the order of the healing length the improvement
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Figure 10.6: Scaling of useful simulation time with lattice spacing ∆x and mean lattice point

occupation n = ρ∆x. Data points for simulations of 1D gases of densities 100/ξheal, 10/ξheal, and

1/ξheal, are shown with circles, triangles, and squares, respectively. S = 104 trajectories.

Also shown for comparison as light lines are expected simulation times based on the empirical

relationship (7.89) for the single-mode positive P. The dotted line in subplot (b) gives the

high-occupation estimate (10.35).
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Figure 10.7: Improvement of simulation time with diffusion gauges Simulation times as

a function of the target time topt when using the diffusion (only) gauge (7.94). All simulations are

of a ρ = 100/ξheal gas. In subplot (a): ∆x = ξheal with S = 104 trajectories, and in (b), and

∆x = 10ξheal with O (500) trajectories.
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Figure 10.8: Correlation functions in 2D uniform gases at times 4tξ and tξ for gases

of density 100/(ξheal)2 and 1/(ξheal)2, respectively. Coordinates in dimension d are denoted xd.

Simulations used a lattice spacing of ∆xd = ξheal, 30× 30 lattice points, and S = 104 trajectories.

is small. Note the similarity of Figure 10.7(b) to the single-mode case Figure 7.8(a).

In both cases simulation time increases steadily while topt ≤ max[tsim], but drops off

sharply once the critical topt is reached (topt ≈ 80tξ in this case).

10.4.5 Two-dimensional gas

Simulation of a two-dimensional gas is also straightforward using the equations

(5.17). Some examples of calculated correlation functions for 2D uniform gases with

densities ρ = 100/(ξheal)2 and ρ = 1/(ξheal)2 are shown in Figure 10.8. Correlation

wave behavior similar to the 1D case is seen.
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10.5 Example 2:

Extended interactions in a uniform gas

The simulation of a gas with extended interparticle interactions is also possible with

the gauge P representation, as described in Section 5.5. One uses the equations

(5.17) but with scattering effects modified to become the nonlinear terms (5.47) and

noise terms given by (5.46) and (5.45).

A Gaussian interparticle potential

U(x) =
g

σU
√
2π

exp

[−x2
2σ2U

]
. (10.38)

is assumed for the interparticle potential in this example. The bulk interaction

energy density in a system with density varying much slower in x than U(x) is u =

1
2V

∫
U(x − y)Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y)dxdy ≈ ρ2

2

∫
U(x)dx. The potential (10.38) has

been normalized so that u is the same as for a local-only “delta-function” interaction

with strength g.

The simulated second order correlation function is shown in Figures 10.9 and 10.10

for a potential of standard deviation σU = 3ξheal. Density was again chosen ρ =

100/ξheal, so that at large length scales À σU , the behavior of the gas approaches

the behavior of the locally-interacting model shown in Section 10.4.2 and Fig-

ures 10.1, 10.2, and 10.4.

Correlation wave phenomena are seen in this system as well, but with significant

differences to the locally interacting gas of Section 10.4.2:

• The antibunching at short distance scales occurs out to a range O (σU) rather

than ξheal, and takes on approximately a Gaussian form. See Figure 10.10(a)

and (b), and compare to the linear (in x) growth of g(2)(x) in Figure 10.4(a).

• The strongest positive correlation wave moves at approximately the speed of

sound cBEC, not at the faster rates seen in the locally-interacting gas.

• A train of weaker correlation waves is created (at least two more wavefronts

are seen in Figure 10.9), but these form behind the strongest leading wavefront
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Figure 10.9: Evolution of g(2)(x) in a uniform 1D gas with extended interparticle interactions

(10.38): σU = 3ξheal. Gas of density ρ = 100/ξheal. Simulation was on a lattice with spacing

∆x = ξheal, 200 lattice points (thus with 20 000 total particles on average), and S = 104 trajectories.
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Figure 10.10: Correlations at t = 35tξ for the uniform 1D gas with extended interparticle

interactions. Gas and simulation parameters as in Figure 10.9. Triple lines indicate error bars at

one standard deviation. The form of the interparticle potential is shown to scale in (a).
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rather than in front of it, and these secondary waves appear to also move at

the sound velocity.

• Some decaying oscillations of g(2)(0) occur.

Phase coherence (Figure 10.10(c)) decays in similar fashion to the locally-interacting

gas.

The differences in the long time behavior between this system and the locally

interacting gas may be reconciled despite the potential having the same coarse-

grained interaction strength g. An assumption made to arrive at an effectively

locally-interacting gas was that the s-wave scattering length as = mg/4π~2 is much

smaller than all relevant length scales – in this case e.g. ξheal. This is satisfied for

the simulations in Section 10.4.2, but the equivalent quantity here (which is σU) is

not smaller than ξheal.

As in the gas with only local interactions on the lattice, long time behavior is

best observed with high density but small correlations as in Figure 10.9. Much

stronger correlations can be simulated, but for shorter times (scaling will again be

tsim ∝ n1/3).

Lastly, a convenient feature of these extended interaction simulations is that the

useful simulation time is found to be significantly longer than for a system with local

interactions of the same coarse-grained strength g. For example in the ρ = 100/ξheal

system, tsim ≈ 46tξ for the σU = 3ξheal gas, while the locally-interacting gas had

tsim ≈ 17tξ (Note that g = ~/2ρtξ).

10.6 Example 3: Correlations in a trap

Simulations in an external trapping potential V ext pose no particular problem. For

example, the following system was simulated:

• Bosons are prepared in a harmonic trap with trapping potential

V ext(x) =
1

2
mω2

hox
2, (10.39)
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which has a harmonic oscillator length aho =
√

~/mωho. Initially they are

in the coherent zero temperature ground state obtained by solving the Gross-

Pitaevskii mean field equations1. The mean number of atoms in the trap in

this example is N = 10.

• The bosons experience two-body interactions with an effective Gaussian inter-

particle potential (10.38) with radius σU = aho, and a strength g = 0.4~ahoωho.

• At t = 0, breathing of the atomic cloud is induced by switching to a more

confined harmonic potential with double the trapping frequency: i.e. V ext →
1
2
m(2ωho)

2x2.

Some data from the simulation are shown in Figures 10.11 and 10.12.

This model is in a regime where qualitative results are hard to achieve using

approximate methods because several length scales from different processes are of the

same order: Trap width is aho, initial cloud width is ≈ 2aho, interparticle scattering

range is also aho.

Phenomena seen in this the simulation include:

• The two-particle density correlations g(2)(0, x) display different behaviors in

the contracting and expanding phase. See Figure 10.11(a).

– When the particle cloud is contracting, antibunching appears at the cen-

ter of the trap, while during the later part of the contraction there is an

enhanced likelihood of pairs of atoms with one in the outer region of the

cloud and one in the center.

– During expansion, on the other hand, the particles tend to bunch in the

center of the trap (i.e. there is increased likelihood of two particles at

small separation), while pairs of particles with one in the tails, one in the

center are suppressed.

1i.e. the stationary state of (5.17) with noise terms removed. — see Section 5.4 for more on the
correspondence between the deterministic part of the gauge P equations and the Gross-Pitaevskii
equations.
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Figure 10.11: Contour plots of the evolution of correlations and boson density in

the trapped Bose gas described in Section 10.6. Correlations shown are between bosons in the

center of the trap, and those a distance x from the center. (a): Contours of density correlations

g(2)(0, x) with a spacing of 0.01. Solid lines indicate g(2) > 1, dashed g(2) < 1. (b): contours

of mean density ρ(x) with spacing of 1/aho. (c): contours of phase coherence |g(1)(0, x)| ≤ 1 with

spacing 0.01 (note: g(1)(0, 0) = 1). (d): contours of the relative condensate phase ∠g(1)(0, x) with

spacing π/10. Solid lines indicate 0 < ∠g(1) < π, dashed −π < ∠g(1) < 0. ∠g(1) = 0 contour

omitted. Light broad lines are contours of density at 5% of the central value, and indicate the

approximate extent of the boson cloud. Simulation with S = 104 trajectories on a 60 point lattice

with ∆x = 0.2aho. Note that aho is the harmonic oscillator length of the initial cloud, while aho/2

is the width of the narrower trap at t > 0 with frequency 2ωho.
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Figure 10.12: Local two-particle correlations in the center of the trap for the breathing

condensate described in Section 10.6. Triple lines indicate error bars at one standard deviation.

Parameters as in Figure 10.11.

• This bunching during the expansion and antibunching during the contraction

appear counter-intuitive. The reason for this appears to be a time lag before

the dominant effect makes itself felt in the correlations. This results in the

bunching trailing the contraction by a significant part of the breathing period.

Initially, the cloud is stationary, and during the contraction phase, there is a

long period of time when the atoms are laregly in free fall, and interparticle

repulsion dominates the correlations causing antibunching despite the contrac-

tion. Eventually, the atoms become squashed together leading to bunching,

but this occurs only at the end of the contraction phase. Bunching now re-

mains for a large part of the expansion phase before it is finally overcome by

the interparticle repulsion.

• The oscillations of g(2)(0, 0) (i.e. bunching at the center of the trap) due to

the breathing of the atomic cloud become more pronounced with time — see

Figure 10.12. This may indicate a resonance between the breathing and the

repulsion, although it is also possible that this is a transient initial effect.

• Coherence between the center of the trap and outlying regions of the cloud

deteriorates as time proceeds – compare the first and second contraction phase

in Figure 10.11(c).
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10.7 Example 4:

Bosonic enhancement of atoms scattered from

colliding condensates

10.7.1 The Vogels et al four wave-mixing experiment

In a recent experiment of Vogels et al [41] at MIT, strong coherent four-wave mixing

between components of a Bose-Einstein condensate at different velocities was ob-

served. The matter wave components were created by applying Bragg pulses to an

initially stationary trapped condensate so as to impart a velocity 2vcm to approxi-

mately half of the atoms. (vcm is their velocity with respect to the center of mass).

A small seed population (O (1%) of all the atoms) moving at velocity vs was also

created. Bose-enhanced scattering of the atoms during the half-collision of the two

main wavepackets led toO (10×) coherent amplification of the of the seed population

and the creation of a fourth coherent population at velocity v4 = 2vcm − vs.
As the wavepackets move through each other, scattering of atom pairs occurs

into velocities v and 2vcm − v, with energy conservation favoring |v| ≈ vcm. If

the seed wavepacket is present at some |vs| ≈ vcm then scattering of atoms into its

modes is preferred due to Bose enhancement, analogously to stimulated emission in

photonic systems.

In the experiment the initially empty momentum modes also acquired sufficient

density after some time, so that Bose enhancement of scattering occurred into these

non-seed modes as well. These momentum modes (which are much more numerous

than the seed wave) eventually competed with the seed wavepacket and limited its

growth.

A first-principles method could be desirable to quantitatively describe the effect

of the initially empty modes in this system. Such a calculation is difficult with ap-

proximate methods as both single-particle effects (to occupy the empty modes in the

first place), and subsequent amplification of the coherent many-particle wavefunc-

tion are involved. The first process can be estimated with perturbative methods,

and the second with mean field GP equations, but combining the two has been
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difficult.

Experimental parameters (relevant to the subsequent simulation described in

the next subsection) were : ≈ 30 000 000 atoms of 23Na (as = 2.75nm, m =

3.82× 10−26kg) in the initial wavepacket. This was created in an axially symmetric

longitudinal trap with frequencies ω/2π of 20Hz in the longitudinal and 80Hz in the

axial directions. This trap is subsequently turned off, and the two main wavepackets

created with the Bragg pulse move at a velocity ±vcm relative to the center of mass,

with vcm ≈ 10mm/s.

10.7.2 Simulating Bose-enhanced scattering into initially

empty modes

To study the enhanced scattering into the initially empty modes, an un-gauged

positive P representation simulation was made with similar parameters as the Vogels

et al experiment. There were two differences:

• In the simulation there were 1.5 × 105 atoms (on average), while there were

≈ 3× 107 atoms in the experiment. This smaller atom number was needed to

achieve a long enough simulation time to see significant Bose enhancement of

the scattered modes.

• In the simulation no seed wave was placed.

The simulation was carried out in the center-of-mass frame, and the initial coherent

wavefunction was taken to be

ψ(x) = ψGP(x)
√
2 cos

(
mvcm · x

~

)
, (10.40)

where ψGP(x) is the coherent T = 0 ground state solution of the Gross-Pitaevskii

(GP) equation in a trap of the same dimensions as in the experiment, and the

full number of atoms. The Bragg pulse used to impart velocity to the moving

wavepacket was of short duration ≈ 40µs, and so to a good approximation no

significant evolution of the condensate took place during the pulse, hence (10.40) is

a good approximation to the state of the system just after the pulse. The initial
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Figure 10.13: (a): Total number of scattered atoms N scat, and (b): rate of scattering in the

colliding BEC system of Section 10.7. solid line: scattered atoms calculated as described in

Section 10.7.2, from a positive P simulation. Triple lines indicate uncertainty at one standard

deviation. dashed line: Estimate obtained with the imaginary scattering length method[88].

wavepackets move in the longitudinal direction ±vcm = [±vcm1 , 0, 0]. The simulation

was on a 438 × 48 × 48 lattice with S = 200 trajectories, and lattice spacing of

∆x1 = 0.2209µm in the longitudinal, and ∆x2,3 = 0.4921µm in the axial directions.

Simulation time is O (6days) on a PC of 2002 vintage.

Figure 10.13 shows the change of scattering rate with time, and the total number

of scattered atoms for this simulation. Since the overlap between the two wavepack-

ets travelling at ±vcm decreases as they move apart, and the rate of scattering into

empty modes is proportional to this overlap, then the increasing scattering rate in

the simulation is clear evidence of the beginning of Bose enhancement of

the initially empty modes.

An interesting technical difficulty occurs when estimating the number of scat-

tered atoms. Just as in a real experiment, the atoms in the first-principles calculation

are not labeled as “scattered” or “non-scattered”. Some of them are scattered back

into momentum modes already occupied by the initial wavepackets, and cannot be

separated from the unscattered atoms by counting. To nevertheless make an esti-

mate of scattering rate, a similar procedure was used to what would be needed for

experimental data. It was aimed to count only those atoms with momenta beyond

the coherent wavepackets. Explicitly, momentum modes with longitudinal veloci-
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ties differing by less than 1mm/s from ±vcm1 , and with radial velocities of less than

2.3mm/s in both orthogonal directions are excluded from the count. (For compari-

son, the rms velocity deviation of atoms from ±vcm = [±vcm1 , 0, 0] in the condensates

is initially about 0.13mm/s and 0.5mm/s in the longitudinal and radial directions,

although some later spreading occurs). This gives a scattered atom count N scat
1 .

Furthermore, in a mean field GP equation calculation, there appear some atoms

at momenta that would be counted as “scattered” with the above counting method.

(These occur mainly in the far tails of the wavepacket momentum distribution due

to spreading with time, and also at velocities ±3vcm due to the stimulation of a weak

scattering process v&v → 3v&− v when v ≈ ±vcm to a state with short lifetime

(due to lack of energy conservation). Initially their number is O (200) initially,

growing to O (3000) at the end of the simulation). These GP background atoms,

which are not due to the spontaneous scattering process of interest or its Bose

enhancement, are subtracted away from theN scat
1 count obtained previously to arrive

at the final scattered atoms estimate N scat shown in Figure 10.13.

To check how well the expression (10.4) assesses simulation time a priori, let

us see what estimate it gives in this more complex system. The peak density

in the middle of the initial cloud in the Thomas-Fermi approximation is ρTF0 =

~ωho(15Nas/aho)
2/5/2g. The maximum density is well approximated by twice this

Thomas-Fermi peak density (the factor of two arises because the initial condi-

tion (10.40) has local density peaks with twice the local average density). Using

max[ρ(x)] = 2ρTF0 in (10.4), one obtains an expected simulation time of 0.6ms,

which agrees fairly well with the observed simulation time of 0.78ms. The extra

simulation time as compared to the estimate may be due to the decrease of peak

density with time as the wavepackets move apart.

Lastly, the local diffusion gauges (7.94) and (7.107) of Chapter 7 were not ex-

pected (nor found) to give significant simulation time improvements for this calcula-

tion, because the healing length is larger than the lattice spacing. (Using ρTF0 again,

one obtains ξheal ≈ 0.6µm. The small lattice size used is needed to resolve the phase

oscillations in the moving condensate.
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10.7.3 Comparison to imaginary scattering length estimate

The first-principles scattering rate is also compared to that obtained using the imag-

inary scattering length technique[88] (see Figure 10.13). This approximate method

applies to colliding BECs when (among other conditions) their relative velocity is

much larger than the momentum spread in a single wavepacket. (Here, the packet

velocity relative to the center of mass is ≈ 10mm/s in the longitudinal direction,

while the initial velocity spread in this direction is ≈ 0.13mm/s rms). Scattering

losses from the condensate wavefunction to empty modes are estimated from the

GP equations by making the replacement

as → a′s = as(1− i|k|as), (10.41)

where k = mvcm/~. a′s enters the GP equations as

g =
4π~2a′s
m

(10.42)

in the (now complex) scattering strength, which leads to particle loss form the

wavefunction.

In Figure 10.13, one immediately sees that the scattering rate is significantly

overestimated with this method. This difference is due to suppression of scattering

to momenta lying close to the primary direction of motion ±vcm, which is not taken

into account in the imaginary scattering length approximation.

In Figure 10.14, marginals of the (positive P) simulated momentum distribution

are plotted, and in particular, density of the velocity component v1 in the longi-

tudinal direction is shown in subplot (c). One sees that the density of scattered

atoms decreases (slowly) as |v1| → vcm1 , whereas if the scattering was to an isotropic

spherical shell of momenta, this linear density would rise towards vcm1 .

This suppression of scattering has been predicted by Bach et al [89] when con-

sidering the scattering from two plane waves under the Bogoliubov approximation.

They found that the suppression of scattering was dependent on the ratio rE of ki-

netic single-particle energy due to the plane wave motion with respect to the center

of mass, and the interaction energy per particle. This ratio was

rE = m|vcm|2/2gρ, (10.43)
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Figure 10.14: Velocity distribution of atoms at a time t = 0.783ms after the end of the Bragg

pulse that separates the two condensate wavepackets. Subplot (a) shows the combined distribution

of longitudinal velocity v1 and velocity in one axial direction v2, after summing over all v3 values.

Density of atoms grows as shading darkens, with no shading corresponding to vacuum. The

high spatial frequency noise is due finite sample (S = 200) uncertainty rather than actual atoms.

Subplot (b) shows the atom distribution in the axial directions, with summing over all longitudinal

velocity values v1. Subplot (c) shows the distribution of longitudinal atom velocity ρ̃(v1). The

noise is due to finite sample effects, and shows the degree of uncertainty in the calculated values.

Data are from the positive P simulation described in Section 10.7.2.
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where ρ was the spatial density of each plane wave component. The suppression

of scattering in the ±vcm directions becomes less significant at large rE, but is still

strong when rE ≈ O (10). For the system simulated here, rE can be estimated by

using ρTF0 as an estimate for ρ in (10.43), and gives rE ≈ 5, well in the regime where

scattering along the direction ±vcm direction is suppressed.

A reduction of the magnitude of scattered particle momenta from the condensate

values was also predicted in Ref. [89] and is also seen in the simulation here (Note

how the circle of scattered atoms in Figure 10.14(c) lies at a slightly smaller radius

in momentum space than the condensates.)

10.8 Summary

The above examples demonstrate that qualitative predictions of dynamics can be

made with the gauge P representation (or the special case of the positive P represen-

tation) for a wide range of many-mode interacting Bose gas systems. This includes

predictions for spatial correlation functions (including non-local and/or high order)

as well as local observables such as densities. Processes simulated included interac-

tion with external trap potentials and two-body scattering under the influence of an

extended interparticle potential, or of one acting only locally at each lattice point as

in a Bose-Hubbard model. Spatial and momentum densities and their fluctuations

have also been previously calculated for a lossy system with local interactions by

Corney and Drummond [46, 15] using the un-gauged method. There, the onset of

condensation in an evaporative cooling simulation was seen.

The examples in this chapter show that such first-principles simulations can be

tractable even with very large numbers of modes or particles in the system given the

right conditions. This is evidenced by example 4 above, where there were 1009 152

lattice points and on average 150 000 atoms.

Situations where there are several length scales of similar order, or processes of

similar strength are of particular interest for first-principles simulations because it

is difficult to make accurate quantitative predictions otherwise. The examples of

Sections 10.6 and 10.7 shown that predictions for systems in such regimes can be

made with the present method.
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Improvement of simulation times by use of local diffusion gauges was seen in

Section 10.4. This occurs when the lattice spacing is of the order of the (local)

healing length or greater. This confirms what was expected from the analysis of

Section 10.2.3.

In Section 10.2.1, an analytic estimate of useful simulation time with the un-

gauged positive P method was derived. This was subsequently seen to be quite

accurate both in the uniform gas with local interactions, and in the more complex

colliding condensates system of Section 10.7. The simulation time is seen to scale

as (∆V )1/3 with the effective volume of a lattice point ∆V , so that coarse-grained

simulations last longer. There is a tradeoff between a fine enough lattice to include

all relevant processes, and one coarse enough for the simulation to last long enough

to see the desired phenomena. The analysis of Section 10.2.2 also shows that ki-

netic coupling between spatial modes (which can also reduce simulation time) is

more dominant for fine lattices. Simulations with Gaussian extended interparticle

interactions (10.38) were seen in Sections 10.5 and 10.6 to last at least several times

longer than those with the same bulk interaction energy density.

Some of the phenomena predicted by the example simulations include:

• The propagation of correlation disturbances (“correlation waves”) in a coher-

ent gas without any corresponding density waves, and at a velocity ≈
√
2 times

faster than the speed of sound. (Section 10.4)

• The complex interaction between the breathing motion of a condensate in a

trap and the interparticle correlations in the condensate. (Section 10.6)

• Bosonic enhancement of initially empty momentum modes during the collision

of two condensates. (Section 10.7)

• Suppression of spontaneous scattering processes in these colliding condensates

in the direction of motion. (Section 10.7.3)


