First-principles Quantum Simulations of Many-mode Open Interacting Bose Gases Using Stochastic Gauge Methods

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE UNIVERSITY OF QUEENSLAND IN JUNE 2004

Piotr Paweł Deuar, BSc. (Hons)

School of Physical Sciences

Statement of Originality

Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge and belief, original and has not been submitted in whole or in part for a degree in any university.

Piotr P. Deuar

Peter D. Drummond

Statement of Contribution by Others

The original concepts of the gauge P representation and of (drift) stochastic gauges were due to Peter Drummond, as was the suggestion to investigate boundary term removal and thermodynamics of uniform 1D gases. The concepts in Section 5.7 and Subsection 6.1.4, are also due to Peter Drummond, but are included because they are important for a background understanding.

The XMDS program [http://www.xmds.org/] (at the time, in 2001, authored by Greg Collecutt and Peter Drummond) was used for the calculations of Chapter 6, while the calculations in the rest of the thesis were made with programs written by me but loosely based on that 2001 version of XMDS.

The exact Yang & Yang solutions in Figure 11.10 were calculated with a program written by Karen Kheruntsyan.

Piotr P. Deuar

Peter D. Drummond

Acknowledgements

Above all I thank Prof. Peter Drummond, my principal Ph.D. supervisor. You led by example, and showed me what true scientific work is all about — along with the sheer glee of it. Our many physics discussions were always extremely illuminating and productive. Thank you for your patience (which I hope not to have stretched too thin) and positive attitude.

I also owe much to Drs. Bill Munro and Karen Kheruntsyan, my secondary supervisors in the earlier and later parts of my candidature, respectively. Your assistance through this whole time has been invaluable. I would also like to thank Dr. Margaret Reid, who first introduced me to real scientific work in my Honours year.

My thanks go also to my fellow Ph.D. students (mostly now Drs.) at the physics department, for the innumerable discussions and intellectually stimulating atmosphere. Especially Damian Pope, Timothy Vaughan, Joel Corney, and Greg Collecutt by virtue of the greater similarity of our research. It is much easier to write a thesis with a good example — thank you Joel. I am also conscious that there are many others at the department who have assisted me in innumerable ways.

From outside of U.Q., I thank especially Prof. Ryszard Horodecki from Gdańsk University both for your outstanding hospitality and the opportunity of scientific collaboration. I also thank Dr. Marek Trippenbach and Jan Chwedeńczuk from Warsaw University for stimulating discussions during the final stages of my thesis.

More personally, I thank my wife Maria, for her support and above all her extreme tolerance of the husband engrossed in physics, particularly while I was writing up.

Publications by the Candidate Relevant to the Thesis but not forming part of it

Some of the research reported in this thesis has been published in the following refereed publications:

- P. Deuar and P. D. Drummond. Stochastic gauges in quantum dynamics for many-body simulations. *Computer Physics Communications* 142, 442–445 (Dec. 2001).
- P. Deuar and P. D. Drummond. Gauge P-representations for quantumdynamical problems: Removal of boundary terms. *Physical Review A* 66, 033812 (Sep. 2002).
- P. D. Drummond and P. Deuar. Quantum dynamics with stochastic gauge simulations. Journal of Optics B — Quantum and Semiclassical Optics 5, S281–S289 (June 2003).
- P. D. Drummond, P. Deuar, and Kheruntsyan K. V. Canonical Bose gas simulations with stochastic gauges. *Physical Review Letters* **92**, 040405 (Jan. 2004).

This is noted in the text where appropriate.

Abstract

The quantum dynamics and grand canonical thermodynamics of many-mode (one-, two-, and three-dimensional) interacting Bose gases are simulated from first principles. The model uses a lattice Hamiltonian based on a continuum second-quantized model with two-particle interactions, external potential, and interactions with an environment, with no further approximations. The interparticle potential can be either an (effective) delta function as in Bose-Hubbard models, or extended with a shape resolved by the lattice.

Simulations are of a set of stochastic equations that in the limit of many realizations correspond exactly to the full quantum evolution of the many-body systems. These equations describe the evolution of samples of the gauge P distribution of the quantum state, details of which are developed.

Conditions under which general quantum phase-space representations can be used to derive stochastic simulation methods are investigated in detail, given the criteria: 1) The simulation corresponds exactly to quantum mechanics in the limit of many trajectories. 2) The number of equations scales linearly with system size, to allow the possibility of efficient first-principles quantum mesoscopic simulations. 3) All observables can be calculated from one simulation. 4) Each stochastic realization is independent to allow straightforward use of parallel algorithms. Special emphasis is placed on allowing for simulation of open systems. In contrast to typical Monte Carlo techniques based on path integrals, the phase-space representation approach can also be used for dynamical calculations.

Two major (and related) known technical stumbling blocks with such stochastic simulations are instabilities in the stochastic equations, and pathological trajectory distributions as the boundaries of phase space are approached. These can (and often do) lead to systematic biases in the calculated observables. The nature of these problems are investigated in detail.

Many phase-space distributions have, however, more phase-space freedoms than the minimum required for exact correspondence to quantum mechanics, and these freedoms can in many cases be exploited to overcome the instability and boundary term problems, recovering an unbiased simulation. The stochastic gauge technique, which achieves this in a systematic way, is derived and heuristic guidelines for its use are developed.

The gauge P representation is an extension of the positive P distribution, which uses coherent basis states, but allows a variety of useful stochastic gauges that are used to overcome the stability problems. Its properties are investigated, and the resulting equations to be simulated for the open interacting Bose gas system are derived.

The dynamics of the following many-mode systems are simulated as examples: 1) Uniform one-dimensional and two-dimensional Bose gases after the rapid appearance of significant two-body collisions (e.g. after entering a Feshbach resonance). 2) Trapped bosons, where the size of the trap is of the same order as the range of the interparticle potential. 3) Stimulated Bose enhancement of scattered atom modes during the collision of two Bose-Einstein condensates. The grand canonical thermodynamics of uniform one-dimensional Bose gases is also calculated for a variety of temperatures and collision strengths. Observables calculated include first to third order spatial correlation functions (including at finite interparticle separation) and momentum distributions. The predicted phenomena are discussed.

Improvements over the positive P distribution and other methods are discussed, and simulation times are analyzed for Bose-Hubbard lattice models from a general perspective. To understand the behavior of the equations, and subsequently optimize the gauges for the interacting Bose gas, single- and coupled two-mode dynamical and thermodynamical models of interacting Bose gases are investigated in detail. Directions in which future progress can be expected are considered.

Lastly, safeguards are necessary to avoid biased averages when exponentials of Gaussian-like trajectory distributions are used (as here), and these are investigated.

Contents

List of Figures			xv
\mathbf{Li}	st of	Tables	xvi
\mathbf{T}	hesis	Rationale and Structure	1
	Rati	ionale	1
	Stru	icture	6
1	Intr	roduction: Quantum many-body simulations	8
	1.1	Hilbert space complexity	9
	1.2	Bulk properties are the key	10
	1.3	Sampling system configurations	11
	1.4	Path integral Monte Carlo and static thermal calculations	13
	1.5	phase-space evolution methods	14
	1.6	Open systems and the mode formulation $\ldots \ldots \ldots \ldots \ldots \ldots$	15
2	\mathbf{Sys}	tem of choice: Open interacting Bose gases	19
	2.1	Motivation	20
	2.2	Field model with binary interactions	23
	2.3	Reduction to a lattice model	23
	2.4	Locally interacting lattice model	26
	2.5	Open dynamic equations of motion	28
	2.6	Thermodynamic equations of motion	30

\mathbf{P}_{i}	Part A Phase-space distribution methods for many-mode					
qı	quantum mechanics32			32		
3	Gen	eralize	ed quantum phase-space representations	33		
	3.1	Introd	uction	33		
	3.2	Repres	sentation of a density matrix	34		
		3.2.1	Properties of the distribution	35		
		3.2.2	Splitting into subsystems	36		
		3.2.3	Dual configuration space of off-diagonal kernels	36		
		3.2.4	An example: the positive P distribution	38		
	3.3	Stocha	astic interpretation of the distribution $\ldots \ldots \ldots \ldots \ldots$	39		
		3.3.1	Calculating observables	39		
		3.3.2	Assessing estimate accuracy	40		
		3.3.3	Calculating non-static observables	41		
		3.3.4	Overcomplete vs. orthogonal bases	43		
		3.3.5	Positive P distribution example continued	46		
		3.3.6	Non-uniqueness of distributions	47		
	3.4	Equati	ions of motion	49		
		3.4.1	Master equation to Fokker-Planck equation	50		
		3.4.2	Fokker-Planck equation to stochastic equations	53		
		3.4.3	Ensuring positivity of diffusion for analytic kernels	55		
		3.4.4	Positive P example: dilute lattice Bose gas equations	57		
	3.5	Conve	nience for parallel computation	58		
	3.6	Summ	ary of representation requirements	59		
4	Sto	chastic	gauges	62		
	4.1	Genera	alized kernel stochastic gauges	63		
	4.2	Weigh	ting stochastic gauges	65		
	4.3	Drift s	stochastic gauges	67		
		4.3.1	Mechanism	67		
		4.3.2	Real drift gauges, and their conceptual basis	70		
		4.3.3	Complex gauges	73		

		4.3.4	Weight spread	74
	4.4	Diffusi	ion stochastic gauges	80
		4.4.1	Noise matrix freedoms with general and complex analytic kernels	81
		4.4.2	Standard form of diffusion gauges for analytic kernels	83
		4.4.3	Real standard diffusion gauges and noise mixing	85
		4.4.4	Imaginary standard diffusion gauges and statistics	86
		4.4.5	Non-standard diffusion gauges and further freedoms	87
		4.4.6	Distribution broadening gauges	88
		4.4.7	Diffusion from different physical processes	91
	4.5	Summ	ary of standard gauges	91
5	The	gauge	P representation	94
	5.1	Proper	rties of the representation	95
	5.2	Observ	vables	96
	5.3	Dynar	nics of locally-interacting Bose gas	98
	5.4	Comp	arison to Gross-Pitaevskii semiclassical equations	101
	5.5	Exten	ded interparticle interactions	102
	5.6	Therm	nodynamics of interacting Bose gas	107
	5.7	Comp	arison with historical distributions	110
6	Bou	indary	term errors and their removal	113
	6.1	Bound	lary term errors of the first kind	114
		6.1.1	Origin and general form	114
		6.1.2	Symptoms indicating boundary term errors	116
		6.1.3	Moving singularities in a complex phase-space	118
		6.1.4	Generic presence in many-mode simulations	119
		6.1.5	Boundary terms in the gauge P representation	120
	6.2	Bound	lary term errors of the second kind	122
		6.2.1	Mechanism and overview	122
		6.2.2	Example: un-normalized positive P representation	123
		6.2.3	In the gauge P representation	126
		6.2.4	Locally-interacting Bose gas calculations	129

	6.2.5	Unresolved issues
6.3	Remo	val of the errors using kernel gauges
	6.3.1	Conceptual justification
	6.3.2	Practical implementation using drift gauges
	6.3.3	Ito vs. Stratonovich moving singularities
6.4	Remov	val example 1: Two-particle absorber
	6.4.1	The single-mode model
	6.4.2	Two-boson absorber
	6.4.3	One- and two-boson absorber
	6.4.4	Driven two-boson absorber
	6.4.5	Relevance to interacting Bose gas
6.5	Remo	val example 2: Single-mode laser
	6.5.1	The laser model
	6.5.2	Initial conditions
	6.5.3	Drift gauged equations
	6.5.4	Correcting for the moving singularity
	6.5.5	Non-optimal initial conditions
6.6	Summ	ary of main boundary term results

Part B Development of gauges for interacting Bose gases

7	Gaı	iges fo	r single-mode interacting Bose gas dynamics	156
	7.1	Motiv	ation	. 156
	7.2	The si	ingle-mode interacting Bose gas	. 157
		7.2.1	Physical model	. 157
		7.2.2	Stochastic gauge P equations	. 158
		7.2.3	Anharmonic oscillator	. 159
		7.2.4	Behaviour of the positive P simulation	. 161
		7.2.5	Coupling to other modes and moving singularities	. 164
	7.3	Drift g	gauges: Removal of instability	. 165

7.	4 Expo	nentials of Gaussian random variables
7.	5 Optin	nization of diffusion gauges
	7.5.1	Aims
	7.5.2	Variables to be optimized
	7.5.3	Optimization of g''
	7.5.4	Important special cases
	7.5.5	Suggested approximate form of diffusion gauge
	7.5.6	Relationship between target time and mode occupation 180
	7.5.7	Boundary term issues
	7.5.8	Particle gain
7.	6 Estim	ates of simulation times
7.	7 Nume	erical investigation of improvement
	7.7.1	Procedure
	7.7.2	Features seen
7.	8 Diffus	sion gauges on their own
	7.8.1	Motivation
	7.8.2	Optimization of g'' and comments $\ldots \ldots 195$
	7.8.3	Numerical investigation of performance
7.	9 Comp	parison to recent related work
	7.9.1	The work [1] of Carusotto, Castin, and Dalibard
	7.9.2	The work [2] of Plimak, Olsen, and Collett
	7.9.3	The work [3] of Deuar and Drummond
7.	10 Gauge	e recommendation
7.	11 Sumn	nary
D	ynamics	s of two coupled Bose gas modes 206
8.	1 The r	nodel
8.	2 Case	1: Coupling to a vacuum mode
	8.2.1	Description
	8.2.2	Procedure
	8.2.3	Features seen

		8.2.4	Comparison to Fock state stochastic wavefunctions \ldots	. 217
	8.3	Case 2	2: Coherent mixing of two identical modes	. 218
		8.3.1	Description	. 218
		8.3.2	Features seen	. 218
	8.4	Analys	sis and Conclusions	. 222
9	Sing	gle-mo	de interacting Bose gas thermodynamics	227
	9.1	The si	ngle-mode model	. 228
		9.1.1	Quantum description	. 228
		9.1.2	Gauge P stochastic equations	. 228
		9.1.3	Exact solution	. 229
	9.2	Movin	g singularities and removal with gauges	. 230
		9.2.1	Moving singularity	. 230
		9.2.2	Minimal drift gauge	. 231
		9.2.3	Radial drift gauge	. 233
	9.3	Nume	rical simulations	. 234
	9.4	Chemi	cal potential as a free gauge parameter	. 237
	9.5	Summ	ary	. 240
Pa	art (C E	xamples of many-mode simulations	241
10	Mar	ny-moo	de dynamics	242
	10.1	Simula	ation procedure	. 243
	10.2	Lattic	e size and simulation performance	. 246
		10.2.1	Scaling due to interparticle scattering	. 246
		10.2.2	Effect of kinetic interactions	. 247
		10.2.3	Lattice size and diffusion gauge usefulness	. 250
		10.2.4	Drift gauges and many-mode dynamics	. 251
	10.3	Correl	ation functions	. 253
	10.4	Exam	ple 1: Correlation waves in a uniform gas	. 254
		10.4.1	The system	. 254

		10.4.2	Correlation waves in a one-dimensional gas	. 255
		10.4.3	Lattice dependence of simulation time	. 261
		10.4.4	Diffusion gauge dependence of simulation time	. 261
		10.4.5	Two-dimensional gas	. 263
	10.5	Examp	ble 2: Extended interactions in a uniform gas	. 264
	10.6	Examp	ble 3: Correlations in a trap	. 266
	10.7	Examp	ble 4:Bosonic enhancement of scattered atoms	. 270
		10.7.1	The Vogels <i>et al</i> four wave-mixing experiment	. 270
		10.7.2	Simulating Bose-enhanced scattering into initially	
			empty modes	. 271
		10.7.3	Comparison to imaginary scattering length estimate	. 274
	10.8	Summ	ary	. 276
11	The	n no de	memies of a one dimensional Dass ma	278
11		v	mamics of a one-dimensional Bose gas	
	11.1		imensional uniform Bose gas at finite temperature	
			Exact solutions	
			Correspondence with trapped gases	
	11.0		Uniform gas regimes	
	11.2		tion details	
			Overview	
			Drift Gauge	
			Importance sampling	
			Momentum cutoff	
			Chemical potential at intermediate temperatures	
	11.9		Scaling of weight variance	
	11.3	-	al regimes simulated	
			Parameter targeting	
	11 4		Regimes attained	
	11.4		vable predictions	
			Spatial correlation functions	
		11.4.2	Momentum distributions	. 295

	11.4.3 Comparison to exact Yang & Yang solution	297		
12	12 Conclusions			
	12.1 Overview of main results	299		
	12.2 Future directions of improvement	303		
Bi	bliography	314		
\mathbf{A}	Exponentials of Gaussian random variables	315		
в	Some details of Stochastic Calculus	318		
\mathbf{C}	Quotients of means or random variables	321		

List of Figures

2.1	Articles on BECs per year
6.1	Unbounded integrands in an un-normalized P representation 127
6.2	Comparison of two-boson absorption simulations
6.3	Steady state expectation values of boson number
6.4	Simulation with both one- and two-particle absorption $\ldots \ldots \ldots 145$
6.5	Driven two-boson absorber simulations
6.6	Single-mode laser simulation
7.1	Sample size growth for exponentials of a Gaussian random variable . 170
7.2	Discrepancy between exact g''_{opt} and its approximation
7.3	Maximum useful simulation time
7.4	Comparison of target time and actual simulation time
7.5	Uncertainty in $G^{(1)}(0,t)$ for various gauges
7.6	Phase correlations using various gauges
7.7	Discrepancy between $g_{\rm opt}''$ and its approximation for $\mathcal{G}=0$ scheme $~$. . 196
7.8	Comparison of target time and actual simulation time for $\mathcal{G} = 0$ schemes 198
7.9	Uncertainty in $G^{(1)}(0,t)$ for various gauges in $\mathcal{G} = 0$ schemes 198
7.10	Comparison of drift gauge to that in Carusotto $et al[1] \dots \dots \dots \dots 201$
8.1	Simulation times for coupling to vacuum mode
8.2	Coupling to vacuum mode: $n_0 = 1$
8.3	Coupling to vacuum mode: $n_0 = 17 \dots $
8.4	Coupling to vacuum mode: $n_0 = 200 \dots \dots$
8.5	Coupling to vacuum mode: $n_0 = 10^4$

8.6 Coupling to vacuum mode t_{sim} vs. t_{opt}
8.7 Simulation times for mixing of two identical modes
8.8 Mixing of two identical modes $t_{\rm sim}$ vs. $t_{\rm opt}$
8.9 Mixing of two identical modes $\omega_{12} = 0.0005 \dots \dots$
8.10 Mixing of two identical modes $\omega_{12} = 5$
8.11 Mixing of two identical modes $\omega_{12} = 500 \dots \dots \dots \dots \dots \dots \dots 223$
9.1 Deterministic phase space for single-mode thermodynamics 232
9.2 Efficiency of two gauges
9.3 Mean occupation and two-body correlations
9.4 Mode occupations at low temperature
9.5 Performance of un-gauged and mean field calculations
9.6 Dependence of efficiency on starting occupation $\overline{n}_0 \ldots \ldots \ldots \ldots 239$
9.7 Dependence of efficiency on form of μ_e
10.1 Evolution of second order correlations $g^{(2)}$ in a uniform 1D gas 256
10.2 Second order correlations $g^{(2)}$ at short times in a uniform 1D gas 257
10.3 Evolution of velocity distribution in a uniform 1D gas
10.4 Correlation functions in a uniform 1D gas
10.5 Correlation functions in a dense uniform 1D gas
10.6 Simulation time vs. lattice spacing / occupation in uniform 1D gas $$. 262 $$
10.7 Improvement of uniform 1D gas simulation time with diffusion gauges 262
10.8 Correlation functions in 2D uniform gases
10.9 $\overline{g}^{(2)}(x)$ in a uniform 1D gas with extended interparticle interactions . 265
10.10 Uniform 1D gas with extended interparticle interactions at $t=35t_{\xi}$. 265
10.11Correlation functions in a breathing trapped condensate
10.12 Local two-particle correlations in the breathing trapped condensate $% 10.12 Local$. 269
10.13Scattered atoms in a condensate collision
10.14 Velocity distribution of atoms during condensate collision
11.1 Physical regimes attained for the uniform interacting 1D Bose gas $\ . \ . \ 291$
11.2 Correlations in a classical gas

11.3	Correlations in a decoherent degenerate quantum gas	3
11.4	Correlations in a fermionized gas (1)	1
11.5	Correlations in a fermionized gas (2)	5
11.6	Correlations in a transition gas	3
11.7	Three-particle correlations in a fermionized gas (2)	3
11.8	Momentum distribution in a transition gas	7
11.9	Momentum distribution in the far tails	3
11.10	Comparison of density and energy to exact solution	3
A.1	Finite sample estimates with multiplicative noise	3
C.1	Error estimates with several subensemble sizes	2

List of Tables

1.1	Comparison of quantum dynamics simulation methods	16
1.2	Comparison of quantum thermodynamics calculation methods $\ . \ . \ .$	17
4.1	Tally of drift gauge freedoms	74
4.2	Tally of standard gauge freedoms	92
4.3	Tally of diffusion gauge freedoms	93
5.1	Properties of several representations for the interacting Bose gas	112
7.1	Maximum useful simulation time	189
7.2	Empirical fitting parameters for simulation time	189

Thesis Rationale and Structure

Rationale

It is a common view that first-principles quantum simulations of mesoscopic dynamics are intractable because of the complexity and astronomical size of the relevant Hilbert space. The following quotes illustrate the significance of the problem: include[4, 5]:

"Can a quantum system be probabilistically simulated by a classical universal computer? ... the answer is certainly, No!" (Richard P. Feynman, 1982).

"One is forced to either simulate very small systems (i.e. less than five particles) or to make serious approximations" (David M. Ceperley, 1999).

This is certainly true if one wishes to follow all the intricate details of a wavefunction that completely specifies the state of the system. Hilbert space size grows exponentially as more subsystems (e.g. particles or modes) are added, and methods that calculate state vectors or density matrix elements bog down very quickly. Path integral Monte Carlo methods also fail because of the well-known destructive interference between paths that occurs when one attempts dynamics calculations.

Such a situation appears very unfortunate because for many complex physical systems a reliable simulation method is often the only way to obtain accurate quantitative predictions or perhaps even a well-grounded understanding. This is particularly so in situations where several length/time/energy scales or processes are of comparable size/strength, or when non-equilibrium phenomena are important.

The need for reliable quantum dynamics simulations can be expected to become ever more urgent as more mesoscopic systems displaying quantum behavior are accessed experimentally. A pioneering system in this respect are the Bose-Einstein condensates of alkali-atom gases realized in recent years [6, 7, 8, 9].

There is, however, a very promising simulation method using phase-space representations that works around this complexity problem. In brief, a correspondence is made between the full quantum state and a distribution over separable operator kernels, each of which can be specified by a number of variables *linear* in the number of subsystems (e.g. modes). If one then samples the operator kernels according to their distribution, then as the number of samples grows, observable averages of these operators approach the exact quantum values, i.e. "emerge from the noise". In principle one could reach arbitrary accuracy, but in practice computer power often severely limits the number of samples. Nevertheless, if one concentrates only on bulk properties, and is prepared to sacrifice precision beyond (typically) two to four significant digits, many first-principles quantum mesoscopic dynamics results can be obtained. The mesoscopic region can be reached because simulation time scales only log-linearly¹ ($N_{\text{var}} \log N_{\text{var}}$) with variable number N_{var} , and so still scales log-linearly with system size. Some initial examples of calculations with this method, particularly with the positive P representation [10, 11] based on a separable coherent state basis, are many-mode quantum optics calculations in Kerr dispersive media[12, 13] evaporative cooling of Bose gases with repulsive delta-function interactions [14, 15], and breathing of a trapped one-dimensional Bose gas[1].

In summary, first-principles mesoscopic quantum dynamics is hard, but some progress can (and has) been made in recent years. In broad terms, the aim of the work reported in this thesis is to advance the phase-space simulation methods some more. The investigation here is carried out in several directions:

¹This is because discrete Fourier transforms, usually required for kinetic energy evaluation, can be calculated on timescales proportional to $N_{\text{var}} \log N_{\text{var}}$. For some particularly demanding models, the scaling may be log-polynomial in N_{var} due to an increased number of terms in the equation for each variable if there is complicated coupling between all subsystem pairs, triplets, etc. In any case, simulation time never scales exponentially, as it would for brute force methods based on density matrix or state vector elements.

1. Stochastic gauges Many phase-space distributions have more phase-space degrees of freedom than the minimum required for exact correspondence to quantum mechanics. Each such degree of freedom leads to possible modifications of the stochastic equations of motion by the insertion of arbitrary functions or *gauges* in an appropriate way. While the choice of these gauge functions does not influence the correspondence to quantum mechanics in the limit of infinitely many samples, it can have an enormous effect on the efficiency and/or statistical bias of a simulation with a finite number of samples. (Hence the use of the word "gauge", in analogy with the way electromagnetic gauges do not change the physical observables but can have an important effect on the ease with which a calculation proceeds). In particular, non-standard choices of these gauge functions can lead to enormous improvements in simulation efficiency, or can be essential to allow any unbiased simulation at all.

Here, a systematic way to include these freedoms is derived and ways of making an advantageous gauge choice are considered in some detail. As a corollary, some results present in the literature [2, 1, 3] are found to be examples of non-standard gauge choices.

The gauge P representation, which is a generalization of the successful positive P representation based on a coherent state basis to allow a variety of useful gauges, is explained. Application of it to interacting Bose gases is developed.

2. Removal of systematic biases using stochastic gauges. Two major (and related) stumbling blocks for phase-space distribution methods have been instabilities in the stochastic equations, and pathological trajectory distributions as the boundaries of phase space are approached. These occur for nonlinear systems and can (in fact, apart from special cases, do) lead to overwhelming noise or systematic biases in the calculated observables, preventing dependable simulations. To date this has been "problem number one" for these methods. In this thesis it is shown how appropriate stochastic gauges can be used to overcome the instability and boundary term problems in a wide range of models, recovering an unbiased simulation, and opening the way for reliable simula-

tions. Heuristic ways of achieving this in general cases are considered in detail, and examples are given for known cases in the literature.

- 3. Improvement of efficiency using stochastic gauges The stochastic gauge method also has the potential to significantly improve the efficiency of simulations when appropriate gauges are chosen. In particular, the time for which useful precision is obtained can be extended in many cases by retarding the growth of noise. This is investigated for the case of gauge P simulations of interacting Bose gases and some useful gauges obtained. The regimes in which improvements can be seen with the gauges developed here are characterized. Heuristic guidelines for gauge choice in more general representations and models are also given. Example simulations are made.
- 4. General requirements for usable distributions in open systems Another aim here is to determine what are the bare necessities for a phase-space distribution approach to be successful, so that other details of the representation used (e.g. choice of basis) can be tailored to the model in question. This can be essential to get any meaningful results, as first-principles mesoscopic simulations are often near the limit of what can be tractably calculated. To this end, general features of the correspondence between quantum mechanics and stochastic equations for the variables specifying the operator kernels are considered in some detail.

Particular concern is given to simulating open systems, as most experimentally realizable systems do not exist in isolation and will have significant thermal and also particle-exchange interactions with external environments. These must usually be taken into account for an accurate description. (The alternative is to make wholesale approximations to the model whose precise effect is often difficult to ascertain).

5. Application to thermodynamic calculations A separate issue are static calculations of thermodynamic equilibrium ensembles. These have traditionally been the domain of quantum Monte Carlo methods, the most versatile of which have been those based on the path integral approach. While path integral methods are generally not useful for dynamical calculations because destructive interference between the paths occurs extremely rapidly, masking any dynamics, good results can be obtained for static thermodynamic ensemble calculations. If the model is kind, even $\mathcal{O}(10^4)$ particles or modes can be successfully simulated, if one again concentrates on bulk properties and only several significant digits.

Phase-space representations that include dynamically changing trajectory weights can also be used for thermodynamics calculations. The thermal density matrix is evolved with respect to inverse temperature after starting with the known high temperature state. (Such simulations are sometimes said to be "in imaginary time" because of a similarity between the resulting equations and the Schrödinger equation after multiplying time by i). This approach appears competitive with path integral Monte Carlo methods in terms of efficiency, but offers two distinct advantages: Firstly, all observables can in principle be calculated in a single simulation run, which is not the case in path integral methods. These latter require separate algorithms for e.g. observables in position space, momentum space, or observables not diagonal in either. Secondly, a single simulation run gives results for a range of temperatures, while in path integral methods a new simulation is needed for each temperature value.

6. Demonstration with non-trivial examples Lastly, but perhaps most importantly, one wishes to demonstrate that the results obtained actually are useful in non-trivial cases. Simulations of dynamics and thermodynamics in a variety of mesoscopic interacting systems are carried out, and their physical implications considered. The emphasis will be foremost on simulations of interacting Bose gases. It is chosen to concentrate on these because they are arguably the systems where quantum effects due to collective motion of atoms are most clearly seen and most commonly investigated by contemporary experiments. This refers, of course, to the celebrated Bose-Einstein condensate experiments on cold, trapped, rarefied, alkali-metal gases. (For a recent

overview see, for example, the collection of articles in Nature Insight on ultracold matter [16, 17, 18, 19, 20].) As these gases are an extremely dynamic field of research the need for first-principle simulation methods appears urgent here.

The "holy grail" of quantum simulations, which would be a universally-applicable black-box tractable simulation method², probably does not exist. However, simulations are of such fundamental importance to reliable predictions in mesoscopic physics that any significant progress has the potential to be a catalyst for far-ranging discoveries (and in the past often has).

Structure

This thesis begins with two introductory chapters, which explain in more detail the background issues. That is, Chapter 1 discusses the fundamentals of why many-body quantum simulations are difficult, compares several approaches, and motivates the choice to work on the mode-based phase-space representation simulation methods considered in this thesis. Chapter 2 summarizes the interacting Bose gas model that will be considered in all the simulation examples, and discusses under what circumstances a first-principles rather than a semiclassical calculation is needed to arrive at reliable predictions.

The body of the thesis is then divided into three parts of a rather different nature. Part A investigates what general properties of a phase-space representation are needed for a successful simulation, and explains the gauge P representation, which will be used in later parts. Part B calibrates this method on some toy problems relevant to the interacting Bose gas case, while Part C applies them to non-trivial mesoscopic systems (dynamics and thermodynamics of interacting Bose gases).

Accordingly, Chapter 3 presents a generalized formalism for phase-space representations of mixed quantum states and characterizes the necessary properties for an exact correspondence between quantum mechanics and the stochastic equations.

 $^{^2 \}mathrm{In}$ Newtonian dynamics this is just the usual "start with initial conditions and integrate the differential equations".

The stochastic gauge technique, which forms the basis of the rest of the developments in this thesis, is developed in Chapter 4. In Chapter 5, properties of the gauge P representation are investigated, and its application to interacting Bose gases developed. In Chapter 6 it is explained how stochastic gauges can be used to overcome "technical difficulty number one": the systematic "boundary term" biases that otherwise prevent or hinder many attempted phase-space distribution simulations. Some relevant technical issues regarding stochastic simulations have been relegated to Appendices.

One- and two-mode toy models are used in Part B to check correctness of the method, and to optimize the gauge functions in preparation for the target aim of simulating multi-mode systems. These models are the single-mode interacting Bose gas dynamics in Chapter 7, the dynamics of two such Rabi-coupled modes in Chapter 8, and grand canonical single-mode thermodynamics in Chapter 9.

Finally, Chapters 10 and 11 give examples of nontrivial many-mode simulations of many-mode interacting Bose gas dynamics and grand canonical thermodynamics, respectively.

Chapter 12 summarizes and concludes the work along with some speculation on fruitful directions of future research.