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Abstract

The quantum dynamics and grand canonical thermodynamics of many-mode (one-,

two-, and three-dimensional) interacting Bose gases are simulated from first princi-

ples. The model uses a lattice Hamiltonian based on a continuum second-quantized

model with two-particle interactions, external potential, and interactions with an

environment, with no further approximations. The interparticle potential can be

either an (effective) delta function as in Bose-Hubbard models, or extended with a

shape resolved by the lattice.

Simulations are of a set of stochastic equations that in the limit of many realiza-

tions correspond exactly to the full quantum evolution of the many-body systems.

These equations describe the evolution of samples of the gauge P distribution of the

quantum state, details of which are developed.

Conditions under which general quantum phase-space representations can be

used to derive stochastic simulation methods are investigated in detail, given the

criteria: 1) The simulation corresponds exactly to quantum mechanics in the limit

of many trajectories. 2) The number of equations scales linearly with system size, to

allow the possibility of efficient first-principles quantum mesoscopic simulations. 3)

All observables can be calculated from one simulation. 4) Each stochastic realization

is independent to allow straightforward use of parallel algorithms. Special emphasis

is placed on allowing for simulation of open systems. In contrast to typical Monte

Carlo techniques based on path integrals, the phase-space representation approach

can also be used for dynamical calculations.

Two major (and related) known technical stumbling blocks with such stochastic

simulations are instabilities in the stochastic equations, and pathological trajectory

distributions as the boundaries of phase space are approached. These can (and



often do) lead to systematic biases in the calculated observables. The nature of

these problems are investigated in detail.

Many phase-space distributions have, however, more phase-space freedoms than

the minimum required for exact correspondence to quantum mechanics, and these

freedoms can in many cases be exploited to overcome the instability and boundary

term problems, recovering an unbiased simulation. The stochastic gauge technique,

which achieves this in a systematic way, is derived and heuristic guidelines for its

use are developed.

The gauge P representation is an extension of the positive P distribution, which

uses coherent basis states, but allows a variety of useful stochastic gauges that are

used to overcome the stability problems. Its properties are investigated, and the

resulting equations to be simulated for the open interacting Bose gas system are

derived.

The dynamics of the following many-mode systems are simulated as examples:

1) Uniform one-dimensional and two-dimensional Bose gases after the rapid appear-

ance of significant two-body collisions (e.g. after entering a Feshbach resonance). 2)

Trapped bosons, where the size of the trap is of the same order as the range of the

interparticle potential. 3) Stimulated Bose enhancement of scattered atom modes

during the collision of two Bose-Einstein condensates. The grand canonical thermo-

dynamics of uniform one-dimensional Bose gases is also calculated for a variety of

temperatures and collision strengths. Observables calculated include first to third

order spatial correlation functions (including at finite interparticle separation) and

momentum distributions. The predicted phenomena are discussed.

Improvements over the positive P distribution and other methods are discussed,

and simulation times are analyzed for Bose-Hubbard lattice models from a general

perspective. To understand the behavior of the equations, and subsequently optimize

the gauges for the interacting Bose gas, single- and coupled two-mode dynamical

and thermodynamical models of interacting Bose gases are investigated in detail.

Directions in which future progress can be expected are considered.

Lastly, safeguards are necessary to avoid biased averages when exponentials of

Gaussian-like trajectory distributions are used (as here), and these are investigated.
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Thesis Rationale and Structure

Rationale

It is a common view that first-principles quantum simulations of mesoscopic dy-

namics are intractable because of the complexity and astronomical size of the rele-

vant Hilbert space. The following quotes illustrate the significance of the problem:

include[4, 5]:

“Can a quantum system be probabilistically simulated by a classical uni-

versal computer? . . . the answer is certainly, No!” (Richard P. Feynman,

1982).

“One is forced to either simulate very small systems (i.e. less than

five particles) or to make serious approximations” (David M. Ceper-

ley, 1999).

This is certainly true if one wishes to follow all the intricate details of a wavefunc-

tion that completely specifies the state of the system. Hilbert space size grows

exponentially as more subsystems (e.g. particles or modes) are added, and meth-

ods that calculate state vectors or density matrix elements bog down very quickly.

Path integral Monte Carlo methods also fail because of the well-known destructive

interference between paths that occurs when one attempts dynamics calculations.

Such a situation appears very unfortunate because for many complex physical

systems a reliable simulation method is often the only way to obtain accurate quan-

titative predictions or perhaps even a well-grounded understanding. This is par-

ticularly so in situations where several length/time/energy scales or processes are

of comparable size/strength, or when non-equilibrium phenomena are important.
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The need for reliable quantum dynamics simulations can be expected to become

ever more urgent as more mesoscopic systems displaying quantum behavior are ac-

cessed experimentally. A pioneering system in this respect are the Bose-Einstein

condensates of alkali-atom gases realized in recent years[6, 7, 8, 9].

There is, however, a very promising simulation method using phase-space repre-

sentations that works around this complexity problem. In brief, a correspondence

is made between the full quantum state and a distribution over separable operator

kernels, each of which can be specified by a number of variables linear in the num-

ber of subsystems (e.g. modes). If one then samples the operator kernels according

to their distribution, then as the number of samples grows, observable averages of

these operators approach the exact quantum values, i.e. “emerge from the noise”.

In principle one could reach arbitrary accuracy, but in practice computer power of-

ten severely limits the number of samples. Nevertheless, if one concentrates only on

bulk properties, and is prepared to sacrifice precision beyond (typically) two to four

significant digits, many first-principles quantum mesoscopic dynamics results can be

obtained. The mesoscopic region can be reached because simulation time scales only

log-linearly1 (Nvar logNvar) with variable number Nvar, and so still scales log-linearly

with system size. Some initial examples of calculations with this method, particu-

larly with the positive P representation[10, 11] based on a separable coherent state

basis, are many-mode quantum optics calculations in Kerr dispersive media[12, 13]

evaporative cooling of Bose gases with repulsive delta-function interactions[14, 15],

and breathing of a trapped one-dimensional Bose gas[1].

In summary, first-principles mesoscopic quantum dynamics is hard, but some

progress can (and has) been made in recent years. In broad terms, the aim of the

work reported in this thesis is to advance the phase-space simulation methods some

more . The investigation here is carried out in several directions:

1This is because discrete Fourier transforms, usually required for kinetic energy evaluation,
can be calculated on timescales proportional to Nvar logNvar. For some particularly demanding
models, the scaling may be log-polynomial in Nvar due to an increased number of terms in the
equation for each variable if there is complicated coupling between all subsystem pairs, triplets,
etc. In any case, simulation time never scales exponentially, as it would for brute force methods
based on density matrix or state vector elements.
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1. Stochastic gauges Many phase-space distributions have more phase-space

degrees of freedom than the minimum required for exact correspondence to

quantum mechanics. Each such degree of freedom leads to possible modi-

fications of the stochastic equations of motion by the insertion of arbitrary

functions or gauges in an appropriate way. While the choice of these gauge

functions does not influence the correspondence to quantum mechanics in the

limit of infinitely many samples, it can have an enormous effect on the efficiency

and/or statistical bias of a simulation with a finite number of samples. (Hence

the use of the word “gauge”, in analogy with the way electromagnetic gauges

do not change the physical observables but can have an important effect on the

ease with which a calculation proceeds). In particular, non-standard choices

of these gauge functions can lead to enormous improvements in simulation

efficiency, or can be essential to allow any unbiased simulation at all.

Here, a systematic way to include these freedoms is derived and ways of making

an advantageous gauge choice are considered in some detail. As a corollary,

some results present in the literature[2, 1, 3] are found to be examples of

non-standard gauge choices.

The gauge P representation, which is a generalization of the successful positive

P representation based on a coherent state basis to allow a variety of useful

gauges, is explained. Application of it to interacting Bose gases is developed.

2. Removal of systematic biases using stochastic gauges. Two major (and

related) stumbling blocks for phase-space distribution methods have been in-

stabilities in the stochastic equations, and pathological trajectory distributions

as the boundaries of phase space are approached. These occur for nonlinear

systems and can (in fact, apart from special cases, do) lead to overwhelming

noise or systematic biases in the calculated observables, preventing dependable

simulations. To date this has been “problem number one” for these methods.

In this thesis it is shown how appropriate stochastic gauges can be used to over-

come the instability and boundary term problems in a wide range of models,

recovering an unbiased simulation, and opening the way for reliable simula-
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tions. Heuristic ways of achieving this in general cases are considered in detail,

and examples are given for known cases in the literature.

3. Improvement of efficiency using stochastic gauges The stochastic gauge

method also has the potential to significantly improve the efficiency of simu-

lations when appropriate gauges are chosen. In particular, the time for which

useful precision is obtained can be extended in many cases by retarding the

growth of noise. This is investigated for the case of gauge P simulations of

interacting Bose gases and some useful gauges obtained. The regimes in which

improvements can be seen with the gauges developed here are characterized.

Heuristic guidelines for gauge choice in more general representations and mod-

els are also given. Example simulations are made.

4. General requirements for usable distributions in open systems An-

other aim here is to determine what are the bare necessities for a phase-space

distribution approach to be successful, so that other details of the representa-

tion used (e.g. choice of basis) can be tailored to the model in question. This

can be essential to get any meaningful results, as first-principles mesoscopic

simulations are often near the limit of what can be tractably calculated. To

this end, general features of the correspondence between quantum mechanics

and stochastic equations for the variables specifying the operator kernels are

considered in some detail.

Particular concern is given to simulating open systems, as most experimentally

realizable systems do not exist in isolation and will have significant thermal and

also particle-exchange interactions with external environments. These must

usually be taken into account for an accurate description. (The alternative is

to make wholesale approximations to the model whose precise effect is often

difficult to ascertain).

5. Application to thermodynamic calculations A separate issue are static

calculations of thermodynamic equilibrium ensembles. These have tradition-

ally been the domain of quantum Monte Carlo methods, the most versatile
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of which have been those based on the path integral approach. While path

integral methods are generally not useful for dynamical calculations because

destructive interference between the paths occurs extremely rapidly, masking

any dynamics, good results can be obtained for static thermodynamic ensem-

ble calculations. If the model is kind, even O (104) particles or modes can be

successfully simulated, if one again concentrates on bulk properties and only

several significant digits.

Phase-space representations that include dynamically changing trajectory weights

can also be used for thermodynamics calculations. The thermal density matrix

is evolved with respect to inverse temperature after starting with the known

high temperature state. (Such simulations are sometimes said to be “in imag-

inary time” because of a similarity between the resulting equations and the

Schrödinger equation after multiplying time by i). This approach appears

competitive with path integral Monte Carlo methods in terms of efficiency,

but offers two distinct advantages: Firstly, all observables can in principle be

calculated in a single simulation run, which is not the case in path integral

methods. These latter require separate algorithms for e.g. observables in posi-

tion space, momentum space, or observables not diagonal in either. Secondly,

a single simulation run gives results for a range of temperatures, while in path

integral methods a new simulation is needed for each temperature value.

6. Demonstration with non-trivial examples Lastly, but perhaps most im-

portantly, one wishes to demonstrate that the results obtained actually are

useful in non-trivial cases. Simulations of dynamics and thermodynamics in

a variety of mesoscopic interacting systems are carried out, and their phys-

ical implications considered. The emphasis will be foremost on simulations

of interacting Bose gases. It is chosen to concentrate on these because they

are arguably the systems where quantum effects due to collective motion of

atoms are most clearly seen and most commonly investigated by contemporary

experiments. This refers, of course, to the celebrated Bose-Einstein conden-

sate experiments on cold, trapped, rarefied, alkali-metal gases. (For a recent
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overview see, for example, the collection of articles in Nature Insight on ul-

tracold matter [16, 17, 18, 19, 20].) As these gases are an extremely dynamic

field of research the need for first-principle simulation methods appears urgent

here.

The “holy grail” of quantum simulations, which would be a universally-applicable

black-box tractable simulation method2, probably does not exist. However, sim-

ulations are of such fundamental importance to reliable predictions in mesoscopic

physics that any significant progress has the potential to be a catalyst for far-ranging

discoveries (and in the past often has).

Structure

This thesis begins with two introductory chapters, which explain in more detail the

background issues. That is, Chapter 1 discusses the fundamentals of why many-body

quantum simulations are difficult, compares several approaches, and motivates the

choice to work on the mode-based phase-space representation simulation methods

considered in this thesis. Chapter 2 summarizes the interacting Bose gas model

that will be considered in all the simulation examples, and discusses under what

circumstances a first-principles rather than a semiclassical calculation is needed to

arrive at reliable predictions.

The body of the thesis is then divided into three parts of a rather different nature.

Part A investigates what general properties of a phase-space representation are

needed for a successful simulation, and explains the gauge P representation, which

will be used in later parts. Part B calibrates this method on some toy problems

relevant to the interacting Bose gas case, while Part C applies them to non-trivial

mesoscopic systems (dynamics and thermodynamics of interacting Bose gases).

Accordingly, Chapter 3 presents a generalized formalism for phase-space repre-

sentations of mixed quantum states and characterizes the necessary properties for

an exact correspondence between quantum mechanics and the stochastic equations.

2In Newtonian dynamics this is just the usual “start with initial conditions and integrate the
differential equations”.
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The stochastic gauge technique, which forms the basis of the rest of the devel-

opments in this thesis, is developed in Chapter 4. In Chapter 5, properties of the

gauge P representation are investigated, and its application to interacting Bose gases

developed. In Chapter 6 it is explained how stochastic gauges can be used to over-

come “technical difficulty number one”: the systematic “boundary term” biases that

otherwise prevent or hinder many attempted phase-space distribution simulations.

Some relevant technical issues regarding stochastic simulations have been relegated

to Appendices.

One- and two-mode toy models are used in Part B to check correctness of the

method, and to optimize the gauge functions in preparation for the target aim

of simulating multi-mode systems. These models are the single-mode interacting

Bose gas dynamics in Chapter 7, the dynamics of two such Rabi-coupled modes in

Chapter 8, and grand canonical single-mode thermodynamics in Chapter 9.

Finally, Chapters 10 and 11 give examples of nontrivial many-mode simulations

of many-mode interacting Bose gas dynamics and grand canonical thermodynamics,

respectively.

Chapter 12 summarizes and concludes the work along with some speculation on

fruitful directions of future research.


