Topological Insulators and the Quantum Spin Hall Effect

Charles L. Kane, University of Pennsylvania

I. Introduction
 - Topological band theory and topological insulators

II. Two Dimensions : Quantum Spin Hall Effect
 - Time reversal symmetry and edge states
 - Experiment: Transport in HgTe quantum Wells

III. Three Dimensions : Topological Insulators
 - Topological Insulator Surface States
 - Experiment: Photoemission on Bi$_x$Sb$_{1-x}$, Bi$_2$Se$_3$, Bi$_2$Te$_3$

IV. Superconducting proximity effect, Majorana fermions
 - Majorana fermions
 - A route to topological quantum computing?

Thanks to Gene Mele, Liang Fu, Jeffrey Teo
The Insulating State

The Integer Quantum Hall State

IQHE with zero net magnetic field

Graphene with a periodic magnetic field \(B(\mathbf{r}) \)

\[B(r) = 0 \]

Zero gap, Dirac point

\[B(r) \neq 0 \]

Energy gap

\[\sigma_{xy} = e^2/h \]

\[E_g \sim 1 \text{ eV} \]

\[E_g = \hbar \omega_c \]

\[\sigma_{xy} = e^2/h \]
Topological Band Theory

The distinction between a conventional insulator and the quantum Hall state is a topological property of the manifold of occupied states

\[|\Psi(\vec{k})\rangle : \text{Brillouin zone } (T^2) \rightarrow \text{Hilbert space} \]

Classified by the TKNN (or Chern) topological invariant (Thouless et al, 1984)

\[n = \frac{1}{2\pi i} \int_{BZ} d^2k \cdot \left(\nabla_k u(k) \right) \times \left(\nabla_k u(k) \right) \]

Insulator : \(n = 0 \)
IQHE state : \(\sigma_{xy} = n e^2/h \)

The TKNN invariant can only change when the energy gap goes to zero

Edge States at a domain wall

Gapless Chiral Fermions
Topological Insulator: A New B=0 Phase

2D Time reversal invariant band structures have a \mathbb{Z}_2 topological invariant, $\nu = 0,1$

$\nu=0$: Conventional Insulator

$\nu=1$: Topological Insulator

$$E_{k^*=0}, E_{k^*={\pi}/a}$$

Edge States

Kramers degenerate at time reversal invariant momenta

$$k^* = -k^* + G$$

ν is a property of bulk bandstructure. Easiest to compute if there is extra symmetry:

1. S_z conserved: independent spin Chern integers: $n_\uparrow = - n_\downarrow$ (due to time reversal)

Quantum spin Hall Effect:

$$\nu = n_{\uparrow,\downarrow} \mod 2$$

2. Inversion (P) Symmetry: determined by Parity of occupied 2D Bloch states at $\Gamma_{1,2,3,4}$

$P|\psi_n(\Gamma_i)\rangle = \xi_n(\Gamma_i)|\psi_n(\Gamma_i)\rangle$

$\xi_n(\Gamma_i) = \pm 1$

$$(-1)^\nu = \prod_{i=1}^{4} \prod_{n} \xi_{2n}(\Gamma_i)$$
Two dimensions: Quantum Spin Hall Insulator

I. Graphene, Kane, Mele PRL '05

- Intrinsic spin orbit interaction
 \(\Rightarrow \) small (~10mK-1K) band gap
- \(S_z \) conserved: “| Haldane model |^2”
- Edge states: \(G = 2\frac{e^2}{h} \)

II. HgCdTe quantum wells

Theory: Bernevig, Hughes and Zhang, Science '06
Experiment: Konig et al. Science '07

- \(d < 6.3 \text{ nm} \):
 Normal band order
- \(d > 6.3 \text{ nm} \):
 Inverted band order

\(G \approx 2\frac{e^2}{h} \) in QSHI
3D Topological Insulators

There are 4 surface Dirac Points due to Kramers degeneracy

\[\Lambda_1 \quad \Lambda_2 \quad \Lambda_3 \quad \Lambda_4 \]

Surface Brillouin Zone

2D Dirac Point

\[E_k = \Lambda_a \quad k=\Lambda_a \]
\[E_k = \Lambda_b \quad k=\Lambda_b \]

How do the Dirac points connect? Determined by 4 bulk \(Z_2 \) topological invariants \(\nu_0 ; (\nu_1 \nu_2 \nu_3) \)

\(\nu_0 = 1 \) : Strong Topological Insulator

Fermi circle encloses odd number of Dirac points

Topological Metal

\(\nu_0 = 0 \) : Weak Topological Insulator

Fermi circle encloses even number of Dirac points

Related to layered 2D QSHI

\((\nu_1 \nu_2 \nu_3) \) : Miller indices for stacking direction

Determine location of surface Dirac Points
Bi$_{1-x}$Sb$_x$

Theory: Predict Bi$_{1-x}$Sb$_x$ is a topological insulator by exploiting inversion symmetry of pure Bi, Sb (Fu, Kane PRL'07)

Experiment: ARPES (Hsieh et al. Nature ’08)

- Bi$_{1-x}$Sb$_x$ is a Strong Topological Insulator $\nu_0; (\nu_1, \nu_2, \nu_3) = 1 ; (111)$
- 5 surface state bands cross E_F between Γ and M

Bi$_2$Se$_3$

ARPES Experiment: Y. Xia et al., Nature Phys. (2009).

- $\nu_0; (\nu_1, \nu_2, \nu_3) = 1 ; (000)$: Band inversion at Γ
- Energy gap: $\Delta \sim .3$ eV : A room temperature topological insulator
- Simple surface state structure:
 Similar to graphene, except only a single Dirac point
Unique Properties of Surface States

Spin polarized Fermi circle (points)
- “Half” an ordinary 2DEG (1DEG)
- Spin and velocity correlated
 - Charge Current ~ Spin Density
 - Spin Current ~ Charge Density

1D Edge States of QSHI
- Elastic backscattering forbidden
- No 1D Anderson localization
- Weak interactions irrelevant

2D Surface States of STI
- π Berry’s phase
- Weak antilocalization
- Impossible to localize (Klein paradox)

Exotic States when broken symmetry leads to surface energy gap:
Proximity Effects: Open energy gap at surface

Dirac Surface States: Protected by Symmetry

\[H_0 = \psi^\dagger (-i v \vec{\sigma} \cdot \vec{\nabla} - \mu) \psi \]

1. Magnetic: (Broken Time Reversal Symmetry)
 - Orbital Magnetic field:
 \[p \rightarrow p - eA \]
 - Zeeman magnetic field:
 \[M \psi^\dagger \sigma_z \psi \]
 - Half Integer quantized Hall effect:
 \[\sigma_{xy} = (n + \frac{1}{2}) \frac{e^2}{h} \]

2. Superconducting: (Broken U(1) Gauge Symmetry)
 - S-wave superconductor
 - Resembles spinless p+ip superconductor
 - Supports Majorana fermion excitations

Fu, Kane PRL 07
Qi, Hughes, Zhang PRB (08)

Fu, Kane PRL 08
Majorana Fermion

• Particle = Antiparticle : $\gamma = \gamma^\dagger$

• Real part of Dirac fermion : $\gamma = \Psi + \Psi^\dagger$; $\Psi = \gamma_1 + i \gamma_2$ “half” an ordinary fermion

• Mod 2 number conservation / Z_2 Gauge symmetry : $\gamma \Rightarrow \pm \gamma$

Potential Hosts :

Particle Physics :

• Neutrino (maybe) Allows neutrinoless double β-decay

Condensed matter physics : Possible due to pair condensation $\langle \Psi^\dagger \Psi^\dagger \rangle \neq 0$

• Quasiparticles in fractional Quantum Hall effect at $\nu=5/2$
• $h/4e$ vortices in p-wave superconductor Sr_2RuO_4
• s-wave superconductor / Topological Insulator

Current Status : NOT OBSERVED
Majorana Fermions and Topological Quantum Computation

• 2 separated Majoranas = 1 fermion: \(\Psi = \gamma_1 + i \gamma_2 \)

 2 degenerate states (full or empty)

 1 qubit

• 2N separated Majoranas = N qubits

• Quantum information stored non locally

 Immune to local sources decoherence

• Adiabatic “braiding” performs unitary operations

\[|\psi_a\rangle \rightarrow U_{ab} |\psi_b\rangle \]
Majorana Bound States on Topological Insulators

1. $\hbar/2e$ vortex in 2D superconducting state

Quasiparticle Bound state at $E=0$

Majorana Fermion γ_0 “Half a State”

2. Superconductor-magnet interface at edge of 2D QSHI

$m = |\Delta_S| - |\Delta_M|$

$E_{\text{gap}} = 2|m|$
1D Majorana Fermions on Topological Insulators

1. 1D Chiral Majorana mode at superconductor-magnet interface

\[\gamma_k = \gamma_{-k}^\dagger : \text{“Half” a 1D chiral Dirac fermion} \]

2. S-TI-S Josephson Junction

\[H = -i\hbar v_F \gamma \partial_x \gamma \]

Gapless non-chiral Majorana fermion for phase difference \(\phi = \pi \)

\[H = -i\hbar v_F \left(\gamma_L \partial_x \gamma_L - \gamma_R \partial_x \gamma_R \right) + i\Delta \cos(\phi/2) \gamma_L \gamma_R \]
Manipulation of Majorana Fermions

Control phases of S-TI-S Junctions

Tri-Junction:
A storage register for Majoranas

Create
A pair of Majorana bound states can be created from the vacuum in a well defined state $|0\rangle$.

Braid
A single Majorana can be moved between junctions. Allows braiding of multiple Majoranas

Measure
Fuse a pair of Majoranas. States $|0,1\rangle$ distinguished by
- presence of quasiparticle.
- supercurrent across line junction
A Z_2 Interferometer for Majorana Fermions

A Signature for Neutral Majorana Fermions Probed with Charge Transport

- Chiral electrons on magnetic domain wall split into a pair of chiral Majorana fermions
- "Z_2 Aharonov Bohm phase" converts an electron into a hole
- $\frac{dI_D}{dV_s}$ changes sign when N is odd.

$c^\dagger = \gamma_1 - i\gamma_2$
$c = \gamma_1 + i\gamma_2$

Fu and Kane, PRL ‘09
Akhmerov, Nilsson, Beenakker, PRL ‘09
Conclusion

• A new electronic phase of matter has been predicted and observed
 - 2D: Quantum spin Hall insulator in HgCdTe QW’s
 - 3D: Strong topological insulator in Bi$_{1-x}$Sb$_x$, Bi$_2$Se$_3$, Bi$_2$Te$_3$

• Superconductor/Topological Insulator structures host Majorana Fermions
 - A Platform for Topological Quantum Computation

• Experimental Challenges
 - Charge and Spin transport Measurements on topological insulators
 - Superconducting structures:
 - Create, Detect Majorana bound states
 - Magnetic structures:
 - Create chiral edge states, chiral Majorana edge states
 - Majorana interferometer

• Theoretical Challenges
 - Further manifestations of Majorana fermions and non-Abelian states
 - Effects of disorder and interactions on surface states