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Jan A. Krzywda





Academic Achievements

Up to date the author has published seven scientific papers and a single
preprint [1–8] [1]: J. A. Krzywda and Ł. Cywiński,

‘Adiabatic electron charge transfer
between two quantum dots in presence of
1/f noise’, Physical Review B 101 (2020)
[2]: J. A. Krzywda and Ł. Cywińński,
‘Interplay of charge noise and coupling
to phonons in adiabatic electron transfer
between quantum dots’, Physical Review
B 104 (2021)
[3]: V. Langrock, J. A. Krzywda, N. Focke,
I. Seidler, L. R. Schreiber, and Ł. Cywiński,
‘Blueprint of a scalable spin qubit shuttle
device for coherent mid-range qubit
transfer in disordered Si/SiGe/SiO$_2$’,
(2022)
[4]: J. Krzywda, P. Szańkowski, and Ł. Cy-
wiński, ‘The dynamical-decoupling-based
spatiotemporal noise spectroscopy’, New
Journal of Physics 21 (2019)
[5]: J. Krzywda, P. Szańkowski, J.
Chwedeńczuk, and Ł. Cywiński,
‘Decoherence-assisted detection of en-
tanglement of two qubit states’, Physical
Review A 98 (2018)
[6]: P. Szańkowski, G. Ramon, J. Krzywda,
D. Kwiatkowski, and Ł. Cywiński, ‘Envi-
ronmental noise spectroscopy with qubits
subjected to dynamical decoupling’,
Journal of Physics: Condensed Matter 29
(2017)
[7]: J. Krzywda, Ł. Cywiński, and P.
Szańkowski, ‘Localization of a magnetic
moment using a two-qubit probe’,
Physical Review A 96 (2017)
[8]: J. Krzywda and K. Roszak, ‘Phonon-
mediated generation of quantum
correlations between quantum dot qubits’,
Scientific Reports 6 (2016)

. This thesis is mostly based on two research papers on
charge transfer between semiconductor quantum dots in presence of
a realistic environment [1, 2]. It presents and extends these results to
include spin dephasing during shuttling of a spin qubit between two
quantum dots. The theory developed in the thesis has become also
useful in writing of a recent preprint, in which the blueprint of realistic
spin qubit shuttle in Si/SiGe device was proposed [3]. This work has
been done in collaboration within the international QuantERA Si-QuBus
consortium. The relation between the thesis and [3] is explained in the
closing chapter.

Apart from the above works on spin qubit shuttling in semiconductor
quantum dots, during his PhD the author has published a paper on char-
acterizing spatial and temporal correlations of environmental noise using
decoherence of a many-qubit register [4]. This was a final achievement
of author’s work on a previous research subject, which concentrated on
the characterizing and utilizing noise correlations in two-qubit quantum
registers [5, 7, 8]. The author has been also involved in writing a topical
review on the possibility of using single qubits as a spectrometers of
environmental noise [6].

The author acknowledge financial support from the National Science
Centre (NCN), Poland, under:

▶ QuantERA Si-QuBus programme (Grant No. 2017/25/Z/ST3/03044),
▶ ETIUDA doctoral scholarship (Grant No. 2020/36/T/ST3/00569),
▶ PRELUDIUM grant (Grant No. 2021/41/N/ST3/02758),





Abstract in English

The main purpose of the thesis is to understand potential threats present during coherent shuttling of a
semiconductor quantum dot based spin qubit. As long-distance electron transport can be realized by multiple
transitions between quantum dots in an array, we have concentrated here on a single event electron transfer
between two quantum dots. The main difficulty of the analysis lies in the complexity of the environment in
which the spin qubit is embedded. Apart from nuclear spin noise, which directly affects spin coherence, the
experiments in semiconductor quantum dot show a combination of low- and high-frequency environmental
charge noise. It can be attributed to lattice vibrations, and random fluctuations of electric fields, which are
expected to influence the motion of the charge. Additionally, finite correlation between charge and spin
degree of freedom, activated by non-zero spin-orbit coupling, is expected to make the spin degree of freedom
sensitive to these environmental noises, and affect the state of the shuttled spin qubit. As coherent shuttling
is necessary for building large, scalable quantum processor based on quantum dots, this thesis is devoted
to quantification of both charge transfer error, and spin dephasing during electron transfer between two
realistically described quantum dots.

The charge can be moved between the dots using change of voltages controlling the dots. For slow-enough
change, the electron stays in the lowest-energy state, which is moved between the dots. According to Landau-
Zener model, such an adiabatic evolution takes place if the sweep is slow enough in comparison to tunnel
coupling. However, we show that in presence of realistic environment, charge transfer error can increase
also for slower sweeps. We describe how the function of charge transfer error becomes non-monotonic as a
function of sweep rate in realistic models of silicon quantum dots, and compare this result with a typically
monotonic behaviour in gallium-arsenide quantum dots.

In the second part of the thesis we add the spin degree of freedom, and analyze to what extent the electron
shuttling modifies coherence of spin qubit in a superposition state. The presence of spin-orbit coupling leads
to a correlation between spin and charge degrees of freedom, and the driving of the system in presence of this
correlation leads to perturbation of the spin state by the electron motion. In this way, the spin qubit that is
relatively protected from environmental noises when it is stationary, becomes sensitive to spatially-dependent
environmental fields (phonons, charge noise). This leads to non-deterministic evolution, and hence spin
dephasing. We show that dephasing of the spin qubit is activated by non-zero difference in dot-dependent
Zeeman splitting, and non-zero tunnel coupling with spin-flip, both of which are make the spin sensitive to
spatio-temporal correlations of the environmental noise. We use realistic models of Si and GaAs quantum
dots in presence of their typical environments, to predict achievable electron spin qubit transfer fidelities.





Abstrakt po polsku
Celem pracy doktorskiej jest zrozumienie zagrożeń stojących na drodze do realizacji koherentnego transportu
elektronu w komputerze kwantowym zbudowanym z półprzewodnikowych kropek kwantowych. Koncentruję
się na procesie tunelowania elektronu wzdłuż łańcucha kropek kwantowych, rozważając pojedyńcze
przejście pomiędzy dwoma kropkami. Głównym wyzwaniem jest złożoność realistycznego otoczenia kubitu
spinowego, na które składają się spiny jądrowe, bezpośrednio sprzęgające się ze spinem elektronu, ale
też, jak pokazują eksperymenty przeprowadzane w bramkowanych kropkach kwantowych, wysoko i
niskoczęstotliwościowe fluktuacje pól elektrycznych (szum ładunkowy), oraz drgania sieci krystalicznej
(fonony). Obecność niekontrolowanych pól elektrycznych nie tylko wpływa na ruch elektronu, ale także,
w obecności skończonego odziaływania spinowo-orbitalnego, modyfikuje jego stan spinowy. Ponieważ
koherentna komunikacja pomiędzy oddalonymi rejestrami kwantowymi jest konieczna dla konstrukcji
skalowalnego komputera kwantowego, praca ta poświęcona jest realistycznemu oszacowaniu błędu transferu
ładunku, oraz utraty koherencji spinowej wywołanej przemieszczeniem się elektronu pomiędzy dwoma
kropkami kwantowymi.

Transport ładunku wywołany jest za pomocą zmienianego w czasie napięcia na bramkach, które kontrolują
potencjał kropek kwantowych. Ruch elektronu wymuszany jest poprzez zmianę odstrojenia energii stanów
podstawowych kropek, podczas której elektron powinien pozostać w stanie podstawowym, którego położenie
zmienia się pomiędzy kropkami. Z rozwiązania modelu Landaua-Zenera wiemy, że wystarczająco powolna
zmiana odstrojenia prowadzić będzie do udanego transferu ładunku. Jak jednak pokazuję w tej pracy, w
wyniku sprzęzenia elektronu z otoczeniem, prawdopodobieństwo pozostawienia ładunku w początkowej
kropce może także rosnąć dla wolniejszych przejść. Opisuję wyniki pokazujące, że błąd transferu ładunku
jest opisany niemotoniczną funkcją czasu przejścia w realistycznym modelu podwójnej kropki kwantowej w
krzemie, zaś w arsenku galu monotonicznie zanika z rosnącym czasem przejścia.

W drugiej części pracy dodaję spinowy stopień swobody, analizując wpływ transferu na fazę pomiędzy
stanami spinowymi. Pokazuję, że wymuszona ewolucja ładunkowego stopnia swobody, w obecności
sprzężenia spinowo-orbitalnego prowadzi do chwilowej korelacji spinu i ładunku. W rezultacie, częściowa
zmiana charakteru kubitu ze spinowego na ładunkowy wystawia jego stan na wpływ fononów oraz szumu
ładunkowego. Prowadzi to do defazowania stanów spinowych, którego charakter wrażliwy jest na czasowo-
przestrzenne korelacje szumu. W rozprawie prezentuję mechanizmy utraty fazy przesyłanego kubitu, które
zachodzą w obecności: różnicy rozszczepień Zeemana w kropkach oraz niezachowującego spin sprzężenia
tunelowego pomiędzy kropkami. Głównym wynikiem jest oszacowanie błędu transferu ładunku, oraz
ilości utraty koherencji kubitu spinowego, w wyniku przejścia elektronu pomiędzy dwoma kropkami w
realistycznych układach opartych na krzemie i arsenku galu.
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1: The typical size of the qubit in semicon-
ductor quantum dot is ∼ 100𝑛𝑚, which
compared with typical size of supercon-
ductor qubit ∼ 100𝜇m [19] shows almost
three orders of magnitude difference.

2: present in the semiconductor nanos-
tructures in form of Johnson and 1/f noise
[26, 27]
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Quantum information processing is attractive from the point of view
of solving classically hard problems, which include database search [9]
and prime number factorization [10], but also simulating dynamics of
the systems which are subject to quantum mechanical laws [11]. Recently,
largest working devices consisting of a few tens of qubits, are realized
in superconducting microstructures [12, 13] and trapped ions [14]. They
already allow to show the so-called “ quantum supremacy” over state-
of-the art classical simulation in some artificially created problems [15],
and allow for efficient simulation of small molecules [16]. However, any
real-life benefit from quantum computers requires at least hundreds (if
not many orders of magnitude more) of controlled qubits with sufficiently
long coherence times [17, 18]. For this reason there is an ongoing effort
to create large, scalable architecture for both quantum computing and
quantum simulation.

1.1 Spin qubits

The architecture on which we concentrate in this thesis, is based on the
semiconductor spin qubits. It takes advantage of encoding quantum
information on the internal degree of freedom (spin) of a single elec-
tron. The electron itself is trapped in an electrically defined potential
well, known as the quantum dot (QD). Semiconductor spin qubits offer
relatively small sizes of the physical qubit1 , and allow for leveraging
achievements of the already existing semiconductor industry [20].

There already exists roadmaps for building scalable semiconductor
quantum devices. Most of them uses silicon electron spin qubits [21–23].
However proposals involving germanium and silicon holes also exist [24].
Concentrating on the electron spins, we now summarize recent progress
in Si and GaAs spin qubits, and the way in which they fulfil the Vincenco
criteria [25] for efficient and scalable quantum computation.

Source of errors

The main reason for which large scalable quantum computers based
on semiconductor devices have been not constructed yet, is the envi-
ronment of spin qubits, the presence of which is a natural consequence
of embedding a controllable two-level system in a solid-state physical
material.

Using internal states of the electron allows to exploit naturally weak
coupling between the spin and electric field, that includes its random
fluctuations2 . In absence of significant spin-orbit coupling, a spin qubit
remains sensitive only to magnetic noise, generated by the spinful nuclei
in the semiconductor lattice. Historically first spin qubits, developed in
GaAs nanostructures, suffered from hyperfine coupling to nuclear spins,
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3: Most relevant nanostructures involve
Si/SiGe heterostructures and SiMOS
nanostructures resembling a single elec-
tron transistor [30].
4: Note that this process would not work
for GaAs, since no spinless isotopes of Ga
and As exist.

5: See [20, 30, 33] for the reviews on the
semiconductor spin qubits.

6: Most often identified with computa-
tional states of the qubit.

7: which is often termed a charge qubit.

8: intrinsic or synthetic due to spatial de-
pendence of the spin Hamiltonian

which significantly limited their coherence to nanosecond timescale [28,
29]. More recently, spin qubits in silicon-based nanostructures3 allow to
take advantage of the process of isotopic purification [31], which is used to
gradually get rid of spinful nuclei4 . As a result, measured coherence times
of spin qubits in Si-based quantum dots are orders of magnitude larger
than in GaAs. However, being the group IV semiconductor, Si introduces
additional ground state degeneracy due to presence of multiple minima
of conduction band, known as the valley states [20]. Their presence poses
new challenges to quantum information processing in Si-devices [32].

In absence of nuclear spins performance of a semiconductor qubit is
limited by its interaction with uncontrolled environmental fields in form
of magnetic and charge noise, as well as lattice vibrations (phonons).5
These interactions lead to two physically distinguishable processes: that
of energy dissipation, and of loss of definite phase between the qubit
states, i.e. dephasing.

Dissipation

Dissipation follows from the possibility of energy exchange between the
environment and the qubit, and leads to modification of the probability
of occupying qubit’s energy eigenstates.6 In a semiconductor spin qubit,
the energy transfer is mediated by the lattice vibrations (phonons) and
Coulomb interaction (charge noise). Typical time scale on which the
excited state of the qubit relaxes to the ground state is given by relaxation
time 𝑇1. In general, the relaxation time is reported to be relatively short
for orbital eigenstates [34, 35] and orders of magnitude longer for the
relaxation between spin eigenstates [36, 37]. As a result, superposition of
spin states (a spin qubit) is expected to be much more robust against envi-
ronmental noise in comparison to the superposition of orbital states. 7 The
main reason for such a difference is that the spin does not couple directly
to position-dependent electric fields generated by lattice deformations,
or other sources of charge noise. Only in presence of spin-orbit coupling8

, a spin qubit can become sensitive to such fields, due to presence of
correlation between spin and orbital degrees of freedom.

Dephasing

The power of quantum information processing lies in the exploiting quan-
tum interference effect, which requires preservation of phase relations in
superpositions of states of qubits [38]. For this reason, loss of a definite
phase between the states, known as the dephasing, is as dangerous
to quantum computation as energy relaxation of the qubits. However,
contrary to the dissipative evolution, the process of dephasing does not
require exchange of energy with the environment. For spin qubits based
on III-V materials (such as GaAs), or natural silicon, the dephasing time
of freely evolving spin qubit is limited by low-frequency noise coming
from nuclear spins [29, 33, 39–41], while in isotopically purified Si the
charge noise (affecting the spin due to presence of spin-orbit couplings)
is the dominant source of dephasing [42–44]
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9: compared to energy splitting of the
qubit, see Chapter 4 for in-depth discus-
sion

10: that in principle can protect against
sufficiently rare bit- and phase-flip errors.

11: formed by the semiconductor het-
erostructure or the interface between two
semiconductors.

12: Note that for box model of 𝐿 = 20nm
the energy gap between ground and ex-
cited state is given by 𝐸 ≈ 1meV, which
corresponds to temperature of 𝑇 ≈ 10K.

13: see logic gates below

14: Evolution without active control of the
qubit,

15: The natural Si has the abundance of
about 4.7% of spinful 29Si nuclei,

Error mitigation and correction

There are several methods to minimize the influence of non-controlled
evolution of the qubits. Dephasing due to low-frequency9 noise can be
significantly limited by active control of the qubit in form of dynamical
decoupling [6, 45]. A more general method of dealing with unwanted
errors is quantum error correction,10 which employs redundancy and
entanglement in encoding of quantum information [46–49]. Note that
error correction approach additionally increases the number of physical
qubits needed to realize a given computational task.

Realisation of spin qubit

In this thesis we concentrate on a spin qubit based on a single electron in
a single QD, known as the Loss-DiVincenzo qubit [21]. In gate-defined
quantum dots the electron from a 2-dimensional electron gas (2DEG)11 is
trapped by electric potential controlled by voltages applied to metallic
gates above the 2DEG. There are alternative ways of trapping the electron
in other semiconductor nanostructures, which include point defects [50],
shallow donors [51], or self-assembled QDs [52], but we do not consider
them in this thesis.

Apart from using a spin of a single electron, quantum information in
the gate-defined QDs can be encoded and processed using two levels
of multi-electron systems, which include singlet-triplet qubit in double
QDs [53–55], and exchange-only qubits in triple QDs [56, 57].

Initialization

The initialization is performed by state dependent tunneling from the
reservoir of electron to the ground energy state inside the quantum dot
[58]. It requires sufficiently low temperature to minimize occupation of
higher energy state12 . Once the electron tunnels into the quantum dot,
its state can be modified by coherent control13 [59–61].

Coherence time

Phase coherence between the states of the qubit should be sustained
for much longer then any of the elementary unitary operations, called
logic gates [62]. Without significant spin-orbit coupling, an electron spin
qubit is sensitive to nuclear field (so-called Overhauser field), and hence
its coherence time is expected to increase as number of spinful nuclei in
the volume occupied by the electron wavefunction decreases. For this
reason, coherence times measured in a free induction decay experiment14
in isotopically purified15 Si are 𝑇∗

2 ≈ 10𝜇s [32, 43, 63], which is much
longer than 𝑇∗

2 ≈ 10ns measured in GaAs [55, 64]. Since dephasing in
GaAs is dominated by slow nuclear noise, the presence of refocusing in a
spin-echo type experiment allows to extend the coherence times of spin
qubits in GaAs to 𝑇echo > 1𝜇s [28, 64, 65].

In absence of magnetic noise, coherence times are limited by ubiquitous in
semiconductor devices random fluctuations of electric field, that couple
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16: see [68] for original Rabi proposal.

17: Exchange interaction between nearby
electrons (the wavefunctions of which
have nonzero overlap) is a consequence of
Coulomb interaction between them and
Pauli Exclusion principle. For the two
qubits of the same spin splitting it is equiv-
alent to Heisenberg interaction

𝐻heis =
𝐽

2
𝝈1 · 𝝈2 , (1.1)

where 𝐽 is the exchange constant.

18: in form of superexchange interaction
[77, 78],

to the spin qubit by the spin-orbit interaction. For this reason, coherence
times of electron spin qubits are lower in presence of synthetic spin-orbit
interaction, which is generated by the magnetic field gradients [66, 67].

Logic gates

The universal set of quantum gates has to be realizable. For instance the
set can consist of single qubit gates (rotations around each axis) and a
two-qubit gate (CNOT) [62].

Single qubit gates in single-electron semiconductor spin qubits are
realized by transverse pulses of ac field, that are resonant with the Zeeman
splitting of the spin.16 The pulses can be time-dependent magnetic field
or time-dependent electric field (that couples to the qubit via spin-orbit
interaction), with the latter allowing for faster control and more flexible
design. The all-electrical control has been recently demonstrated in Si [39,
69], and earlier in GaAs [70, 71]. However in order to affect a spin qubit
state with electric field, alocal magnetic field gradient or intrinsic spin-
orbit coupling is needed. As mentioned above, their presence effectively
correlates spin and orbit degree of freedom, and to some extent exposes
the spin qubit to fluctuations of electric fields.

Two-qubit gates were realized in Si [72–75] and GaAs [55, 71]. Their
operation exploits exchange interaction17 , which however requires the
two electrons to occupy neighbouring dots [76, 77]. Recent attempts to
extend its range18 are not expected to work beyond a distance of few
quantum dots.

Readout

In a semiconductor spin qubit, the commonly used method of readout
of its state is the so-called spin-to-charge conversion, which correlates
position of the electron charge with its spin state. The two most rele-
vant realizations are the energy-dependent tunneling to the reservoir
dot [61], and qubit tunneling to a dot already occupied with a single
electron, which exploits Pauli Exclusion Principle [55]. Recently, also
reflectometry methods has been used, which relate phase and amplitude
of transmitted/reflected signal to the state of the qubit [79].

1.2 The problem with coherent communication

From the above it is clear that an effective operation of the QD-based
spin qubits requires their close proximity (due to need for two-qubit
gates). At the same time, the initialization and coherent control of the
qubits requires finite breathing space around the quantum dots needed
for classical wiring, and charge sensors required for the readout.

One way of dealing with these conflicting requirements is to first build
small quantum registers, which can host limited number of fully func-
tional logical qubits, however if such an idea is pursued, a coherent link
between distant registers is needed to provide scalability of a semiconduc-
tor quantum computer [22, 23, 80]. The problem of realizing long-range
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coherent coupling of distant spin qubits remains to be solved. Below we
present the most promising methods to achieve this task.

Spin chains

One way to deal with long range transfer of quantum information encoded
in spin degrees of freedom are the spin chains [81]. In such an application
a one-dimensional chain of spin qubits coupled via nearest-neighbor
Heisenberg interaction allows for realising multiple SWAP gates, and in
consequence communicating distant spins [82]. However, this method
introduces a large overhead in terms of quantum operations needed for
coherent state transport. An alternative approach uses adiabatic state
transfer, where continuous control of parameters of the qubit chain allows
for physical movement of spin state [83], with the first realization in
GaAs device demonstrated in [84]

Photons as flying qubits

Coherent communication between stationary qubits can be provided
by a physically moving quantum system, known as a flying qubit. A
natural candidate for such a flying qubit is a photon. However, coupling
between spin and light is difficult to achieve, due to small magnetic
dipole of the single electron [85]. The intrinsic coupling is much smaller
then the inverse of dephasing times of spin qubit, and for this reason
recent demonstrations of coherent spin-photon coupling take advantage
of artificially created electric dipole moment in the double quantum dot
structure [86–88]. However the presence such a dipole moment induces
finite qubit-orbit couplings, which enable coupling of the spin to charge
noise, creating thus an efficient dephasing and dissipation channel. Con-
sequently, further development of photon-mediated coupling between
two dots, i.e. realization of photon-mediated two-qubit gate, will require
relatively low amplitude of the charge noise, or a method of its mitigation
(passive or active).

Charge transfer

An alternative method is to turn a stationary qubit into a flying one, and
communicate distant registers simply by a physical movement of the
spin qubit [89, 90]. In this way, contrary to photon-based approach, no
conversion of the quantum information from spin degree of freedom
to photon’s degrees of freedom is needed. In general, the electron can
be moved by properly designed modulation of confinement potential,
which can be seen as the dynamical drive of its orbital states. Below we
discuss three methods of such spin qubit shuttling.

Surface acoustic waves

In polar materials, the prominent example of which are GaAs-based
quantum dots, the electron can be shuttled in a moving potential of a
surface acoustic wave (SAW) [91]. Coherent electron transfer with SAWs
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Figure 1.1: Schematic picture of double
quantum dot (DQD) system. We denote
detuning between the lowest energy lev-
els of each dot as 𝜖 and tunnel coupling
between them as 𝑡𝑐 .

was demonstrated in GaAs [92–95], however this method will not work in
non-polar group-IV semiconductors that include the Si-based devices.

Conveyor Belt

Another way of physically shuttling the electron is to use a single moving
quantum dot, which is occupied by the electron spin qubit. Recently,
first demonstration of such conveyor belt charge transfer over distance
of ∼ 0.5𝜇m in Si/SiGe was shown [96]. For our blueprint of scalable
conveyor belt design we refer to [3]. We highlight that the results for spin
coherence in conveyor belt described there can be understood in terms
of theory developed in this thesis, see the outlook.

Bucket Brigade

In this thesis we focus on a method of electron shuttling applicable to any
material hosting electrically-controlled QDs, in which one uses adiabatic
transfer through an array of pre-defined quantum dots. We will call this
method of transfer the bucket brigade (BB). The BB transfer consists of
consecutive transitions between tunnel-coupled neighbouring dots. For
each pair, the electron is transferred by sufficiently slow modulation
of energy detuning between the ground states of the dots, which is
schematically illustrated in Fig. 1.1

If the electron remains in the ground state while the detuning is slowly
changed between positive and negative values, it is moved between the
dots. The minimal model of such an interdot charge transfer can be
viewed as a realization of Landau-Zener adiabatic transition [97]. Up to
date, experimental demonstrations of charge transfer using this method
include transfer across 9 QDs is silicon [98], and coherent transfer across
up to 4 QDs in GaAs [99]. High-fidelity coherent transfer between 2-3
neighbouring dots in Si has also been recently shown [100, 101]. However,
deeper understanding of the role of environment, which will be needed
for long-range coherent shuttling is missing. In this thesis we focus on
transfer of spin qubit from one quantum dot to another, while taking into
account the presence of realistic environment, that possesses nontrivial
temporal and spatial correlation.

1.3 Context of the thesis

We now put this thesis in context of the other works on multilevel
adiabatic transitions.

Landau-Zener transition for an open quantum system

The modification of Landau-Zener dynamics due to an open character
of the system was considered in many works. Most of them treated the
environment of an adiabatically driven two-level system as a bosonic bath
with Ohmic spectrum[102–108]. More recently, a method of computing
the non-unitary evolution of a driven quantum system in form of an



1.3 Context of the thesis 7

19: Nevertheless, we will show that corre-
lating spin and charge degree of freedom,
that is commonly used to increase spin-
photon coupling [85, 88], can in our con-
text lead to noise-induced spin dephasing

20: To concentrate on the relevant physics,
we mostly neglect the valley degree of free-
dom, and discuss consequences of includ-
ing it in the outlook.

adiabatic Master equation formalism, has been developed in the context
of adiabatic quantum computing and research on quantum annealers [103,
109–111]. From those considerations, it is well known that the probability of
effectively adiabatic transfer, which in our case corresponds to successful
interdot charge transfer, is expected to increase in presence of zero-
temperature bath, and decrease if thermal energy becomes comparable
with the size of the avoided crossing [102, 111–113]. Furthermore, a
high-temperature environment, modeled by stochastic modification of
Hamiltonian parameters [1, 114–117] is expected to increase the probability
of non-adiabatic transition. However, this is not true for low-frequency
modification of the tunnel coupling, which in some regime of parameters
can help in the adiabatic transfer, as it was first discussed in [116], and
then independently demonstrated in the relevant for this thesis context
of silicon quantum dots [118]. Corrections to Landau-Zener probability
due to presence of another low-frequency noise in form of nuclear spins
have been also considered [119].

Multilevel adiabatic transition

With quantum information encoded in spin degree of freedom, and in
presence of valley state in the Si-based case, the charge transfer is only a
part of the story. Full analysis of electron transfer requires a theoretical
treatment of multilevel adiabatic transition. Outside of the application
to spin qubits, the multilevel Landau-Zener transition for the closed
quantum system was previously analyzed in [120–122]. However, these
works focused on effective treatment of Landau-Stuckelberg-Majorana
interference [97], which is expected to be hard to observe in presence
of environmental noise. Non-trivial spectral density of environmental
noise was considered in [123], where the analysis did not go beyond a
three-level system, and in [124], where analytical treatment was possible
in the limit of many avoided crossings.

More recently, multilevel problem has been put in context of the electron
transfer between double quantum dot in Si and GaAs devices [125–128],
however in these works, the open quantum system aspect is still missing.
The multilevel description of double quantum dot system coupled to
environmental field is also at the core of the electron-photon coupling
[87, 129], however there the dynamical aspect of driving charge degrees
of freedom is not present.19 Similarly for the undriven system, of two
self-assembled quantum dots, the dephasing of spin degrees of freedom
caused by the relaxation between the charge levels characterized by a
different spin splitting has been predicted [130].

Results of this thesis

In this thesis we attempt to go beyond the above-mentioned analyses,
and consider an open quantum system, the electron undergoing charge
transition between two realistic quantum dots, with its internal degree of
freedom, the spin. In this effectively four-level Landau-Zener transition
we focus on coherence of the spin degree of freedom, that is weakly
coupled to charge degree of freedom driven through adiabatic transition
in presence of the environmental noise20 . The results will be put in context
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of realising coherent, long-range coupling by physical displacement of
spin qubit in a realistic semiconductor device. We attempt to predict
the charge transfer error, and loss of spin coherence during spin qubit
shuttling between two state-of-the-art Si and GaAs quantum dots. We
include models of their respective spin-orbit coupling, and realistic
environmental noises: magnetic due to nuclear spins, and electric due to
various sources of charge noise and coupling to phonons.

Among many results we show that:

1. The charge transfer error and the loss of spin coherence can be
a non-monotonic function of detuning sweep rate. As a result,
there might exist an optimal sweep rate, for which the loss of spin
coherence is minimized.

2. In an experimentally relevant regime, coherent spin qubit shuttling
is typically limited by the charge transfer error (in Si) and phase
error (in GaAs).

3. Successful charge transfer over ∼ 10𝜇m range requires large tunnel
coupling of 𝑡𝑐 > 60𝜇eV, characterizing all the coupled dots along
the chain.

4. Spin dephasing during the interdot transfer is enabled by a dif-
ference in spin splitting between the two dots, which can scale
with magnetic field (if it is due to distinct g-factors in the two
dots). Using Zeeman splittings smaller than the tunnel coupling,
𝐸𝑧 < 𝑡𝑐 , allows to avoid of spin-flip interference, which also affects
spin coherence. Thus, using as small fields as possible is highly
beneficial.

5. Stronger coupling between the spin qubit and the environment
can decrease the transfer error in certain ranges of parameters. In
particular the relaxation process between the orbital levels can aid
the charge transfer by recovering the occupation of the ground
adiabatic state that have been lost around the avoided crossing.

The analysis presented in the thesis combines results of two published
articles [1, 2], and the unpublished results on the loss of spin coherence
during the transfer. Results of my research contained in [3], which concern
the problem of qubit shuttling by making the quantum dot potential move
in a desired direction, are briefly discussed in the outlook. In particular
we show there relation between these results and those presented in the
thesis.

1.4 Outline of basic results for interdot spin
qubit transfer

Let us now outline the problem of electron spin qubit transfer between
two quantum dots, i.e. within the double quantum dot (DQD) system.

Orbital evolution as the Landau-Zener problem

First we neglect the spin degree of freedom, and take two into account
the lowest-lying orbital states located in the left and right dot, i.e. |𝐿⟩ , |𝑅⟩
respectively. In the minimal model we neglect the presence of valley
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21: i.e. controlled by voltages applied to
hates that define the QDs

22: or simply the orbital gap

Figure 1.2: Energy spectrum of the Hamil-
tonian 𝐻̂𝑜(𝑡) from Eq. (1.2) as a function of
detuning 𝜖(𝑡). The ground state is denoted
using blue color. In the figure we marked
the dot-basis, which correspond to adia-
batic states at large positive/negative de-
tuning, in particulair for the ground state
we have |−(𝑡𝑖)⟩ ≈ |𝐿⟩ and

��−(𝑡 𝑓 )〉 ≈ |𝑅⟩.
In the ideal case the transfer of charge
from left to right dot amounts to staying
in the ground instantaneous state.

degree of freedom in Si. We assume the dots are coupled with tunnel
coupling 𝑡𝑐 , and the time-dependent21 detuning between the dots is given
by 𝜖(𝑡) = 𝐸𝐿(𝑡) − 𝐸𝑅(𝑡). In the basis of the |𝐿⟩ , |𝑅⟩ states, the orbital
Hamiltonian reads:

𝐻̂𝑜(𝑡) =
𝜖(𝑡)
2

𝜎̂𝑧 +
𝑡𝑐

2
𝜎̂𝑥 , (1.2)

where 𝜎̂𝑥 = |𝐿⟩⟨𝑅 |+|𝑅⟩⟨𝐿|, 𝜎̂𝑧 = |𝐿⟩⟨𝐿|−|𝑅⟩⟨𝑅 |. In all the cases considered
in this thesis, we will start the evolution at initial time 𝑡𝑖 at large negative
detuning,

𝜖(𝑡𝑖) ≪ −𝑡𝑐 , (1.3)

for which the ground state is located in the left dot. Note that we assume
𝑡𝑐 to be positive and real. By sweeping to large positive detuning at final
time 𝑡 𝑓 ,

𝜖(𝑡 𝑓 ) ≫ 𝑡𝑐 , (1.4)

the ground state is moved to the right dot. The time dependent gap
between ground and excited state of DQD system22 is given by

Ω(𝑡) =
√
𝜖2(𝑡) + 𝑡2𝑐 . (1.5)

In Fig. 5.1 we schematically illustrate the instantaneous energy spectrum
of Hamiltonian 𝐻̂𝑜(𝑡) as a function of 𝜖(𝑡) and the relation between the
instantaneous states at large detunings and dot-like states.

We assume the sweep is linear in time, 𝜖(𝑡) = 𝑣𝑡, where 𝑣 denotes the
detuning sweep rate or the sweep rate for short. This allows us to use
the Landau-Zener model of non-adiabatic excitations [97], according to
which the probability of non-adiabatic evolution, i.e. the electron not
following the ground state into the target right dot |𝑅⟩, is given by

𝑄LZ = exp
(
−𝜋

2
𝑡2𝑐
𝑣

)
. (1.6)

For larger part of the thesis we concentrate on the adiabatic limit of
𝑡2𝑐 ≫ 𝑣, for which 𝑄LZ is exponentially small.

Transferred electron as an open quantum system

To show the most relevant modification introduced by taking into account
the presence of the environment, let us consider stationary classical noise
in detuning,

𝜖(𝑡) → 𝜖(𝑡) + 𝛿𝜖(𝑡). (1.7)

It is convenient to concentrate on the region of avoided crossing, i.e. set
𝜖 = 0 at which the orbital Hamiltonian (1.2) reduces to 𝐻̂𝑜(0) = 𝑡𝑐

2 𝜎̂𝑥 ,
and hence its eigenstates correspond to symmetric and anti-symmetric
combination of the dot-like states, i.e.

|±(0)⟩ = 1√
2
(|𝐿⟩ ± |𝑅⟩) , (1.8)

where |±(𝑡)⟩ is the ground and excited energy state of 𝐻̂𝑜(𝑡) at time-
instant 𝑡. Around the avoided crossing the total Hamiltonian reads then:
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23: in the leading order of perturbation
theory, where subsequent relaxation pro-
cess is ignored,

24: for the method used in the numerical
simulation see Sec. 5.4
25: associated with occupation of higher
energy state at the end of the sweep

𝐻̂𝑜(0) + 𝑉̂noise(𝑡) =
𝑡𝑐

2
𝜎̂𝑥 +

𝛿𝜖(𝑡)
2

𝜎̂𝑧 , (1.9)

from which we read that the detuning noise is transverse in the basis of
|±(0)⟩.

Probability of losing the electron

Following [131, 132], one can show that the presence of time-dependent
transverse noise 𝜉⊥(𝑡) = 𝛿𝜖(𝑡) leads to transitions between the eigenstates,
with a transition rate around the avoided crossing given by

Γ+(𝑡𝑐) =
1
4
𝑆⊥(𝑡𝑐), (1.10)

which is proportional to the Fourier transform of the correlation function
𝑆⊥(𝜔) =

∫ ∞
−∞ d𝑡′𝑒−𝑖𝜔𝑡′ ⟨𝜉⊥(𝑡′)𝜉⊥(0)⟩ known as the Spectral Density of

transverse noise 𝑆⊥(𝜔), evaluated at angular frequency corresponding to
the gap 𝜔 = 𝑡𝑐 .

During the adiabatic passage the electron spends only a limited amount
of time around the avoided crossing. We estimate this time period as:

𝑡LZ =
2𝑡𝑐
𝑣
, (1.11)

such that for times |𝑡 | < 𝑡LZ the orbital gap Ω(𝑡) ≈ 𝑡𝑐 . Using this,
and the excitation rate Γ+(𝑡𝑐), we estimate the noise induced level of
non-adiabaticity23 as

𝑄1 ≈
∫ 𝑡 𝑓

𝑡𝑖

Γ+(Ω[𝑡])d𝑡 ≈ 1
2
𝑆⊥(𝑡𝑐)

𝑡𝑐

𝑣
, (1.12)

This simple result will be confirmed by more involved calculations
presented in Part II, where the possibility of charge transfer in realistic
DQD systems is analyzed.

Trade-off between fast and slow adiabatic transition

Importantly, the noise-induced correction to the probability of leaving the
electron behind is inversely proportional to sweep rate 1/𝑣, i.e. contrary
to Landau-Zener model slower sweeps lead to higher occupation of the
excited state. This competition between noise-induced transitions and
standard Landau-Zener excitations results in a non-monotonic behaviour
of the charge transfer error 𝑄 as a function of 𝑣.

This effect can be observed in Fig. 1.4, where among other quantities
we plot a numerically computed24 probability of leaving the electron
behind25 𝑄 (solid red line), and the linear correction 𝑄1 from Eq. (1.12)
(dashed red line). In the figure we can see that at 𝑣 > 400 𝜇eV/ns the
charge transfer is limited by 𝑄LZ (black line), and hence the error grows
for faster sweeps. For 100 𝜇eV/ns< 𝑣 < 400 𝜇eV/ns the noise-induced
correction shows𝑄 ∼ 1/𝑣 relation predicted by𝑄1, i.e. the charge transfer
error decreases for faster sweeps.
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26: i.e. 𝑠𝑧 = |↑⟩⟨↑| − |↓⟩⟨↓|

27: left dot for 𝜖 ≪ −𝑡𝑐

Finally, for the slowest sweeps, the charge transfer error can be decreased
by the relaxation processes, which is expected to dominate over the
excitation if the energy gap exceeds thermal energy Ω > 𝑘B𝑇. However,
long transfer time, while possibly beneficial for the purpose of getting
the electron into the desired final location (due to the relaxation-aided
transfer), negatively affects the spin coherence of the transferred spin
qubit. We briefly discuss these effects below.

Internal degree of freedom - the spin of the electron

We now add the spin degree of freedom. Crucially, we assume that the
spin splitting in the two dots differs, and we define the average and the
difference in the spin splittings as:

𝐸𝑧 =
𝐸
(𝐿)
𝑍

+ 𝐸(𝑅)
𝑍

2
, Δ𝐸𝑧 = 𝐸

(𝐿)
𝑍

− 𝐸(𝑅)
𝑍
, (1.13)

respectively. Using them we write the Hamiltonian describing the spin
degree of freedom and its coupling to the orbital degrees of freedom:

𝐻̂spin =
𝐸𝑧

2
𝜎̂𝑧 +

Δ𝐸𝑧

4
𝜎̂𝑧𝑠𝑧 , (1.14)

where 𝑠𝑖 is the Pauli operator associated with the spin degree of free-
dom.26 The spin-dependent orbital gap is given by

Ω𝑠 =

√
(𝜖(𝑡) + 𝜎𝑠

2 Δ𝐸𝑧)2 + 𝑡2𝑐 , (1.15)

where 𝜎𝑠 = ±1 for 𝑠 =↑ and ↓ respectively. In Fig. 1.3 we plot the energy
spectrum of the joint Hamiltonian 𝐻̂𝑜(𝜖) + 𝐻̂spin as a function of 𝜖, and
use thick lines to denote orbital ground states associated with spin up
(red) and spin down (blue). As it can be seen, the non-zero value of Δ𝐸𝑧

Figure 1.3: Spectrum of the spin-charge
Hamiltonian 𝐻̂𝑜(𝑡)+𝐻̂spin, where the thick
lines correspond to ground orbital spin-
down (blue) and spin-up (red) states, i.e.
|−, ↓⟩ and |+, ↑⟩ respectively. We also de-
noted their dot composition at large nega-
tive, and large positive detuning. To show
the effect of Δ𝐸𝑧 we used its value that is
exaggerated by a factor of ∼ 10 compared
to the values typical for quantum dots con-
sidered in this thesis.

desynchronises the adiabatic transitions corresponding to spin-up and
spin-down component. For this analysis we assume that the electron is
initialized in the ground orbital state27 in equal spin superposition, s0
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28: In the limit of large Δ𝐸𝑧 at 𝜖 = 0, the
ground state spin superposition is approx-
imately given by:

|𝜓⟩ ≈ 1√
2
(|𝑅, ↑⟩ + 𝑒 𝑖𝜙 |𝐿, ↓⟩), (1.17)

which shows strong correlation between
spin and orbital states

29: that are expected to operate at the
threshold of error correction code i.e.
𝛿𝑊−(𝑡 𝑓 ) < 10−2 [46–49]

30: or equivalently in the excited orbital
state

that at initial time 𝑡 = 𝑡𝑖 we can write:

|𝜓(𝑡𝑖)⟩ =
|↑⟩ + |↓⟩√

2
⊗ |𝐿⟩ . (1.16)

Note that in the vicinity of 𝜖 = 0 the eigenstates exhibit a nontrivial
correlation of spin and orbital degrees of freedom28 .

Loss of coherence

In view of using adiabatic transfer to distribute quantum information in
the future quantum computer, the goal of the thesis is to compute the
spin coherence of an electron that is finally occupying the target location
(the right dot in the context here). For large detuning this is equivalent to
the coherence left in the ground orbital state at 𝑣𝑡 𝑓 ≫ 𝑡𝑐 , which we write
as:

𝑊−(𝑡 𝑓 ) = Tr
{
𝑠− ⟨𝑅 | 𝜌̂(𝑡 𝑓 ) |𝑅⟩

}
. (1.18)

We define the loss of coherence as

𝛿𝑊− = 1 − |𝑊−(𝑡 𝑓 )|, (1.19)

and additionally concentrate on small error, i.e. 𝛿𝑊−(𝑡 𝑓 ) ≪ 1, which is
relevant for future quantum computers29 . In this limit, we will argue
that the loss of coherence can be expressed as:

𝛿𝑊− =
1
2
(
𝑄↑ +𝑄↓ + ⟨𝛿𝜙2⟩

)
, (1.20)

which shows that the phase coherence is diminished due to three different
mechanisms:

▶ Probability of leaving one of the spin components in the initial, left
dot 𝑄𝑠 .30

▶ The phase error ⟨𝛿𝜙2⟩, that is associated with random contribution
to the relative phase between two spin components 𝛿𝜙 = 𝜙 − 𝜙0,
which is being averaged over many realizations of the experiment.

Apart from the above-mentioned competition between the L-Z physics
and the environmental noise induced excitation, the 𝑄𝑠 charge transfer
error can be additionally modified by the subsequent relaxation processes
and the spin-flip interference, which we discuss later in the thesis. In
Fig. 1.4, we show numerically computed loss of coherence for an example
of a DQD system. In the figure we can identify the limit of fast sweeps,
for which the loss of coherence (red line with squares) is limited by
the charge transfer (red line), and the limit of slow sweeps for which it
becomes limited by the loss of well-defined phase relation due to finite
⟨𝛿𝜙2⟩ (blue dotted line). Let us now discuss two possible origins of the
latter.

Temporary spin to charge conversion

First let us assume that the evolution is adiabatic, i.e. both coherent
and incoherent non-adiabatic effects are weak, 𝑄1 ≪1 and 𝑄LZ ≪1. In
such a case the relative phase between the two spin components can
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Figure 1.4: Numerically calculated loss of
coherence 𝛿𝑊− (red line with squares)
from Eq. (1.19) compared against spin-
averaged occupation of excited orbital
state (𝑄↑ + 𝑄↓)/2 (red line). We decom-
pose the 𝛿𝑊− into various contributions:
the Landau-Zener probability 𝑄LZ (black
solid line), the noise induced excitation
from ground to excited state 𝑄1 (red
dashed line) and the purely dephasing
processes ⟨𝛿𝜙2⟩ (blue dotted line). For
presentation purpose we used 𝑡𝑐 = 40𝜇eV,
Δ𝐸𝑧 = 0.4𝜇eV, Γ−(𝑡𝑐) = 0.01 ns−1,𝑇 =

100 mK, 𝜎𝜖 = 1𝜇eV. To compute numeri-
cal result we used the method described in
ref. A and averaged over 𝑁 = 100 realiza-
tions of the quasistatic noise in detuning.

31: In the limit of 𝛿𝜖,Δ𝐸𝑧 ≪ 𝑡𝑐

32: Approximately this happens with the
probability 𝑄1, given by Eq. (1.12)

be computed by integrating the spin-dependent orbital splitting from
Eq. (1.15):

𝜙 = −1
2

∫ 𝑡 𝑓

𝑡𝑖

d𝑡′
(
Ω↑(𝑡′) −Ω↓(𝑡′)

)
. (1.21)

We now add low-frequency noise in detuning

𝜖(𝑡) → 𝜖(𝑡) + 𝛿𝜖, (1.22)

where 𝛿𝜖 is modeled as Gaussian quasistatic noise, which remains
constant during single run but varies between the consecutive realizations
of the experiment. In introduces random contribution to dephasing,
which in the leading order31 gives:

𝛿𝜙 =
Δ𝐸𝑧

𝑣
𝛿𝜖. (1.23)

Averaging over realizations of slow noise gives

⟨𝛿𝜙2⟩ ≈
(
Δ𝐸𝑧

𝑣

)2

𝜎2
𝜖 , (1.24)

where the 𝜎2 = ⟨𝛿𝜖2⟩ is the variance of the quasistatic noise. Note that
in contrast to charge transfer error computed in Eq. (1.12), the phase-
error-limited dephasing scales as 𝛿𝑊− ∝ 1/𝑣2 as it can be seen in Fig. 1.4
for 𝑣 < 10 𝜇eV/ns. Due to difference in scaling there will always exist
a sweep rate at which purely phase error ⟨𝛿𝜑2⟩ dominates over charge
transfer error 𝑄↑ +𝑄↓.

Transition induced dephasing

The second mechanism, which gives purely dephasing contribution
⟨𝛿𝜙2⟩, is associated with at least two inelastic transitions between the
orbital states in presence of non-zero Δ𝐸𝑧 . It can be understood as a
consequence of random amount of time spent in the orbital states that
have slightly different Zeeman splittings.

To show relevant physics we focus on a simplified scenario, in which
the electron gets excited in vicinity of the avoided crossing.32 After this
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33: The functional form of realistic time-
dependent relaxation and excitation rates
as a function of the gap Ω(𝑡) and state
composition for realistic semiconductor
devices, will be computed in the thesis

34: which corresponds to the Poisson dis-
tribution, i.e.

𝑝(𝑡𝑟 ) = Γ−𝑒−Γ−𝑡𝑟

for assumed constant Γ−

event, after a sufficiently long evolution time the electron will relax to
the orbital ground state. We assume that the characteristic relaxation
rate is given by the Γ−, which is assumed here to be time-independent.33

Thus in presence of non-zero Δ𝐸𝑧 , the electron spin qubit acquires an
additional phase given by:

𝛿𝜙 =

∫ 𝑡𝑟

0

(
Ω↑(𝑡′) −Ω↓(𝑡′)

)
≈ Δ𝐸𝑧

𝑣

(√
𝑡2𝑐 + 𝑣2𝑡2𝑟 − 𝑡𝑐

)
, (1.25)

where 𝑡𝑟 is the time spent in the excited state and we have used the
leading order expression in Δ𝐸𝑧/𝑡𝑐 . We concentrate on the limit of slow
relaxation, i.e. 𝑣𝑡𝑟 ≫ 𝑡𝑐 for which 𝛿𝜙(𝑡𝑟) ≈ Δ𝐸𝑧𝑡𝑟 . We average over
distribution of the relaxation times,34 which gives:

⟨𝛿𝜙2(𝑡𝑟)⟩𝑡𝑟 =
∫ ∞

0

(
𝑝(𝑡𝑟)(Δ𝐸𝑧𝑡𝑟)2

)
d𝑡𝑟 =

(
Δ𝐸𝑧

Γ−

)2
. (1.26)

This shows that the coherence loss is proportional to the time spent in the
excited state, i.e. the dephasing is smaller if the relaxation is faster. The
above error should be multiplied by the probability of excitation around
the avoided crossing ≈ 𝑄1, which together leads to the prediction that
the contribution from transition induced dephasing reads

𝛿𝑊− ≈ Γ+
𝑡𝑐

𝑣

(
Δ𝐸𝑧

Γ−

)2

, (1.27)

Note that in the limit of Δ𝐸𝑧 ≈ Γ−, the loss of phase equals to the
probability of excitation at avoided crossing, i.e. 𝛿𝑊− ≈ 𝑄1. This is true
even if the relaxation process successfully recovers occupation of ground
adiabatic state, and hence charge transfer takes place.

1.5 Thesis structure

The thesis is separated into three parts, which we describe in details
below:

I. Driven open two-level system

First part introduces the relevant tools needed for numerical and analyti-
cal analysis performed in the latter parts. Chapters 2-4 present textbook
knowledge on the dynamics of the undriven, two-level open quantum
system. In Chapter 2 we introduce the Hamiltonian of a two-level system
and define transverse and longitudinal couplings to the environment,
which we then relate to dissipative and purely dephasing processes. In
Chapter 3 we discuss how the transverse coupling to an environment
with typically short correlation time, gives rise to relaxation and the
excitation rates, and we derive there the Master equation in the Linblad
form. Next in Chapter 4 we discuss the dephasing caused by longitudinal
coupling, and explain the role of the environmental correlation time.
We show that for a freely evolving electron the dephasing is dominated
by slow fluctuations of the environment, which we model as a classical
noise. We introduce 1/f noise and effectively quasistatic noise model that
are relevant for further analysis.
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In Chapter 5 we consider a driven two-level system, and discuss the
Landau-Zener model of its adiabatic transition. We include the effects
of the environment on the system’s adiabaticity by first considering
classical fluctuations of Hamiltonian parameters, and then by using the
adiabatic Master equation. We finally describe our approach to modeling
the adiabatic transition in presence of both high- and low-frequency
noise, which will be used in subsequent chapters.

II. Charge transfer of spin qubit

The beginning of the second part is dedicated to modeling of a realistic
double quantum dot. In Chapter 6 we describe our model of electron
wavefunction in semiconductor quantum dot and define sets of param-
eters for three DQD systems that correspond to typical Si-based and
GaAs-based devices. Next, in Chapter 7 we discuss the effects of the
coupling between the orbital degree of freedom and the environment.
In particular, for the models of DQDs we compute the orbital relaxation
rates due to environmental electric fields, in form of lattice vibrations
(phonons) and charge noise. In the process we describe the relation
between the non-unitary evolution of spatial degree of freedom of the
two-level system and the spatial correlations of the environmental field.
Finally in Chapter 8 we discuss analytical and numerical results on charge
transfer error in the interdot transition, which were published in [1, 2].

III. Spin degree of freedom in charge transfer

In this we introduce the spin degree of freedom, and discuss the implica-
tions of its coupling to the charge degree of freedom. In Chapter 9 we
briefly discuss the origin of spin-orbit coupling in semiconductor QDs,
and discuss its implications for the stationary spin qubit. In particular,
we show that it leads to correlation between spin and orbital degrees of
freedom, and makes the spin qubit vulnerable to the previously discussed
fluctuations of electric fields. Next, in Chapter 10 we discuss the implica-
tions of finite spin-orbit coupling in context of the DQD transition and
extend the adiabatic Master equation to the case of four-level system.

We use these tools in Chapter 11, where we discuss the processes leading
to non-ideal interdot transfer of the excited spin state. In particular, we
show the effects of spin-flip interference (which has been omitted in the
example above) and spin relaxation due to spin-orbit mixing. Among
others, we use the thoery developed before to propose a realization of the
Elizur-Veidman bomb testing experiment, and finally compute spin-up
charge transfer error for realistic DQD devices. In the last Chapter 12 we
compute the loss of spin coherence during interdot transition. We discuss
there in detail the two processes leading to spin dephasing, which are
both activated by non-zero difference in dot-dependent Zeeman splittings.
The first of them leads to temporal separation of two spin-components,
and becomes sensitive to low-frequency charge noise, and the second
of them introduces random phase due to multiple inelastic transitions
between the instantaneous levels.
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IV. Outlook and discussion

We conclude the thesis by the summary and the discussion, which
includes the elucidation of the implication of the results presented in the
thesis for the long-distance coherent electron transfer in semiconductor
devices. In the outlook we show the relation of the thesis to our work
on the electron transfer in the moving dot, and discuss the possibility of
using the electron shuttling to characterize spatiotemporal correlations
of the environmental noise.



I. Driven open two-level system





1: often corresponding to the ground en-
ergy state of 𝐻̂𝑞 |↓⟩ = −Ω

2 |↓⟩, where we
assumed that Ω > 0.

Figure 2.1: The pure state of the two-level
system |𝜓⟩ from Eq. (2.2) plotted on the
Bloch sphere with azimuthal and polar
angles 𝜃 and 𝜑.
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In the thesis we will consider dynamical driving of the charge degree
of freedom to which the spin degrees of freedom (the spin two-level
system) are coupled. Before we do it we concentrate on the dynamics of
undriven Two-Level System (TLS) coupled to the environment, and the
way in which the non-unitary evolution of the TLS can emerge. Then
in Chapter 3 and Chapter 4 we will separately discuss dissipative and
dephasing evolution of the TLS.

2.1 Unitary evolution

For the isolated TLS, we assume the time-independent Hamiltonian,

𝐻̂𝑞 =
1
2
Ω𝜎̂𝑧 , (2.1)

using which the unitary evolution of any pure state is given by

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻̂𝑞 𝑡 |𝜓(0)⟩ , (2.2)

where |𝜓(0)⟩ is some initial state of the TLS1 . The general form of the
pure state at time 𝑡 can be written as:

|𝜓(𝑡)⟩ = cos
𝜃
2
|↓⟩ + sin

𝜃
2
𝑒 𝑖𝜑 |1⟩ =

[
cos 𝜃

2
sin 𝜃

2 𝑒
𝑖𝜑 ,

]
(2.3)

where 𝜃 and 𝜙 might correspond to a azimuthal and polar angle in the
spherical coordinate system (see Fig. 2.1 for graphical representation of
the state).

The statistics of any measurement performed on the TLS is encoded in
the density matrix defined as:

𝜌̂𝑞(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)| = 1
2

[
1 + cos𝜃 sin𝜃𝑒−𝑖𝜑

sin𝜃𝑒 𝑖𝜑 1 − cos𝜃

]
=

1
2

(
𝟙̂ + n · 𝝈̂

)
, (2.4)

where we introduced the unit vector |n| = 1 and the vector of Pauli
matrices 𝝈̂ = [𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧]𝑇 .

2.2 Emergence of non-unitary evolution

We now consider a realistic situation in which presence of environment
leads to non-unitary evolution.
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2: note that usually only the TLS is acces-
sible.

3: as for both electromagnetic fields are
often used.

4: or equivalently the occupation of en-
ergy eigenstates

Reduced density matrix

We first extend the Hilbert space by considering the presence of typically
large environment. We assume that the TLS and environment are initially
uncorrelated, i.e. the initial state of the composite system reads:

𝜌̂𝑞𝑒(0) = 𝜌̂𝑞(0) ⊗ 𝜌̂𝑒(0), (2.5)

where 𝜌̂𝑒(0) is the initial density matrix of the environment. The evolution
of the composite system is described in terms of unitary dynamics, i.e.
𝜌̂𝑞𝑒(𝑡) = 𝑈̂(𝑡)𝜌̂𝑞𝑒(0)𝑈̂†(𝑡), generated by the evolution operator:

𝑈̂(𝑡) = exp
{
−𝑖

∫ 𝑡

0

(
𝐻̂𝑞 + 𝑉̂𝑞𝑒 + 𝐻̂𝑒

)
d𝑡

}
, (2.6)

where in addition to TLS Hamiltonian 𝐻̂𝑞 (2.1), we introduced TLS-
environment coupling 𝑉̂𝑞𝑒 and the Hamiltonian of the environment
𝐻̂𝑒 .

The evolution of the composite system will remain unitary, which might
not be true for the evolution observed from the perspective of the
measurements performed on the TLS alone2 . In principle effects of the
environmental presence can be minimized if the coupling 𝑉̂𝑞𝑒 becomes as
small as possible by isolating the TLS from the rest of the world, however
at some point isolated TLS would be difficult to control or measure3 .

Measurement performed on the qubit could be used to estimate the
expectation value of some observable of interest 𝐴̂, which is mathemat-
ically defined via the expression ⟨𝐴̂⟩ = Tr

{
𝐴̂𝜌̂𝑞𝑒(𝑡)

}
. The statistics of

each measurement can be equivalently represented by so-called reduced
density matrix 𝜌̂𝑞(𝑡) = Tr𝑒{𝜌𝑞𝑒(𝑡)}, which amounts to averaging over
environmental degrees of freedom. Substituting 𝑈̂(𝑡)𝜌̂𝑞𝑒(0)𝑈̂†(𝑡) to the
definition of reduced density matrix allows to write:

𝜌̂𝑞(𝑡) = Tr𝑒{𝑈̂ 𝜌̂𝑞𝑒(0)𝑈̂†} =
∑
𝑛,𝑚

𝑝𝑛 ⟨𝑚 | 𝑈̂ |𝑛⟩ 𝜌̂𝑞(0) ⟨𝑛 | 𝑈̂† |𝑚⟩

=
∑
𝑛

𝑝𝑛

(∑
𝑚

⟨𝑚 | 𝑈̂ |𝑛⟩ 𝜌̂𝑞(0) ⟨𝑛 | 𝑈̂† |𝑚⟩
)
, (2.7)

where we expressed the initial environmental state as 𝜚 𝑒 =
∑
𝑛 𝑝𝑛 |𝑛⟩⟨𝑛 |.

We highlight that above expression for reduced density matrix of TLS
has a form of Eq. (2.4), however with possibly reduced length of the
vector |n| ≤ 1. If |n| < 1 the state of the TLS becomes mixed as a result of
non-unitary evolution.

Let us now define two processes leading to the non-unitary evolution.
To do so, we write reduced density matrix of the TLS in terms of its
polarization4 :

𝑍(𝑡) = 𝑝↑(𝑡) − 𝑝↓(𝑡) = Tr
{
𝜎̂𝑧 𝜌̂𝑞𝑒(𝑡)

}
, (2.8)

and the coherence between its eigenstates:

𝑊(𝑡) = 2 Tr
{
|↓⟩⟨↑| 𝜌̂𝑞𝑒(𝑡)

}
= 2 Tr

{
𝜎̂−𝜌̂𝑞𝑒(𝑡)

}
. (2.9)
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Note that using the above definitions, the reduced density of the TLS, at
any time instant can be written as:

𝜌̂𝑞(𝑡) =
1
2

[
1 + 𝑍(𝑡) 𝑊(𝑡)
𝑊 ∗(𝑡) 1 − 𝑍(𝑡)

]
. (2.10)

Modification of 𝑍(𝑡) requires transfer of the energy between the TLS
and the environment, that is associated with the dissipative evolution.
As we will show in Chapter 3 the energy dissipation will also affect the
coherence 𝑊(𝑡). In contrast in Chapter 4, we will consider the second
relevant mechanism of the dephasing, in case of which the decrease of
𝑊(𝑡) does not require the energy transfer between the TLS and the
environment and hence leaves the 𝑍(𝑡) unchanged.

Longitudinal and transverse couplings to environment

The general coupling between the TLS and the environment has a form

𝑉̂qe =
1
2
(𝜎̂𝑧𝑉̂𝜙 + 𝜎̂−𝑉̂− + 𝜎̂+𝑉̂+), (2.11)

where 𝜎̂𝑖 are the Pauli operator acting on the TLS of interest, which later
in the thesis will correspond to two lowest lying in energy orbital states
or the spin qubit. In subsequent chapters we will show how the above
Hamiltonian gives rise to both dissipation and dephasing of TLS.

Transverse coupling

In particular in Chapter 3, we will show that the energy dissipation is
associated with the transverse part of the above coupling, which we
define as

𝑉̂⊥ ≡ 1
2

(
𝜎̂−𝑉̂− + 𝜎̂+𝑉̂+

)
. (2.12)

As we will show, the dissipative contribution to non-unitary evolution
due to transverse noise is dominated by the fluctuations in resonance
with the energy gap of TLS. We highlight that due to typically weak
TLS-environment coupling, in this thesis we neglect effects of energy
renormalization due to off-resonant transverse coupling [29, 133].

Longitudinal coupling

On the other hand, in Chapter 4 we will analyze loss of definite phase
between TLS eigenstates without exchange of energy between the TLS
and environment. We associate such pure-dephasing process, with the
longitudinal part of the coupling:

𝑉̂∥ ≡
𝜎̂𝑧
2
𝑉̂𝜙 . (2.13)

As we will discuss, for the system of interest the dephasing due to
longitudinal noise will be dominated by the environmental fluctuations
with characteristic frequencies below the gap of TLS. For this reason
the effects of longitudinal coupling will be simulated by the classical
low-frequency noise.
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5: For the numerical test and discussion,
see Appendix A

Due to effective separation of time-scales, i.e. the high-frequency noise
associated with transverse and low-frequency with longitudinal coupling,
and also in the limit of typically small dephasing error, both contributions
will be treated as independent5 .
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tion picture reads 𝜌̂′(𝑡) = 𝑈̂†
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In this section we concentrate on the ab-initio calculation of the effects of
coupling between the two-level systems and its environment. We start
with the dissipative evolution caused by the transverse coupling 𝑉̂⊥,
which together with Two-Level System (TLS) Hamiltonian 𝐻̂𝑞 gives:

𝐻̂⊥ =
1
2
Ω𝜎̂𝑧 +

1
2
(𝜎̂−𝑉̂− + 𝜎̂+𝑉̂+), (3.1)

where 𝜎̂± are the ladder operators (𝜎̂𝑥 ± 𝑖𝜎̂𝑦)/2. First in Sec. 3.1 we will
compute leading order contribution to polarization and the phase error
and relate them to spectral density of the environment. Next in Sec. 3.2,
we combine this limit with short correlation time of the environment and
derive Master equation in the Linblad form.

3.1 Weak coupling limit

Fermi Golden Rule and relaxation rate

We assume the TLS is initialed in the excited state |𝜓0⟩ = |↑⟩1 , which is
uncorrelated with the initial state of the environment 𝜌̂𝑒 , that assumed
to be in equilibrium with respect to environmental Hamiltonian 𝐻̂𝑒 .2 In
such case the evolution operator in the interaction picture reads:

𝑈̂′(𝑡) = Texp
{
−𝑖

∫ 𝑡

0
𝑈†

0 (𝑡′)𝑉̂𝑞𝑒𝑈0(𝑡′)d𝑡′
}
, (3.2)

where 𝑉̂𝑞𝑒 = 1
2 (𝜎̂−𝑉̂−+ 𝜎̂+𝑉̂+) and 𝑈̂0(𝑡) = 𝑒−𝑖Ω𝜎̂𝑧 𝑡/2𝑒−𝑖𝐻̂𝑒 𝑡 while Tstands

for time-ordering operator [134]. The probability of measuring the TLS
ground state at time 𝑡, i.e. 𝑝↓(𝑡) = Tr{|↓⟩⟨↓| 𝜌′(𝑡)} 3 can be written as:

𝑝↓(𝑡) = Tr
{
|↓⟩⟨↓| 𝑈̂′(𝑡) |↑⟩⟨↑| 𝜌𝑒(0)𝑈†

𝐼 (𝑡)
}
=

∑
𝑛𝑚

𝑝𝑛 | ⟨↓, 𝑚 | 𝑈̂𝐼(𝑡) |↑, 𝑛⟩ |2 ,

(3.3)
We now assume the evolution time is sufficiently short, or the perturbation
is sufficiently weak, such that the evolution operator can be expanded up
to a leading order as 𝑈̂′(𝑡) = 1 − 𝑖

∫ 𝑡

0 𝑈
†
0 (𝑡)𝑉̂𝑞𝑒𝑈0(𝑡), which substituted

above gives:

𝛿𝑝↓(𝑡) =
∑
𝑚𝑛

𝑝𝑛
��⟨↓, 𝑚 | 𝑉̂𝑞𝑒 |↑, 𝑛⟩

��2 ∫ 𝑡

0

∫ 𝑡

0
d𝑡1d𝑡2 𝑒−𝑖(𝐸𝑛𝑚+Ω)(𝑡1−𝑡2)

=
∑
𝑚𝑛

𝑝𝑛
��⟨↓, 𝑚 | 𝑉̂𝑞𝑒 |↑, 𝑛⟩

��2 𝑡2sinc2
(
𝐸𝑚𝑛 −Ω

2
𝑡

)
, (3.4)

where 𝛿𝑝↓ represents leading order correction to spin-down probability.
The last term illustrates Heisenberg time-energy uncertainty principle.
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4: For instance phonons, for which the
spacing between the levels ∝ 1/𝑉 , where
𝑉 is the macroscopic volume of the crystal.

5: since the energy of the final state of
environment is above the initial one, which
means that 𝐸𝑚𝑛 = Ω > 0,

6: i.e. 𝜌̂𝑒 = 𝑒−𝛽𝐻̂𝑒 /Zwhere Z is the parti-
tion function.

The energy might by not conserved, i.e. Ω − 𝐸𝑚𝑛 ≠ 0 as long as 𝑡 is
sufficiently small. Typically however, the 𝑡 is long enough to enforce
conservation of energy and at the same time 1/𝑡 remains larger then
the level spacing of typical environmental,4 which allow us to treat the
density of environmental states as continuous and hence take the limit:

𝑡sinc2(𝑥𝑡/2) → 2𝜋𝛿(𝑥). (3.5)

From the above the probability of TLS relaxation becomes linear in time:

𝛿𝑝↓(𝑡) =
𝑡 𝜋
2

∑
𝑚𝑛

𝑝𝑛
��⟨𝑚 | 𝑉̂− |𝑛⟩

��2𝛿(𝐸𝑚𝑛 −Ω) ≡ Γ−(Ω)𝑡. (3.6)

It is convenient to define the spectral density of transversely coupled
environment, which from the Eq. (3.6) can be written as:

𝑆⊥(Ω) = 2𝜋
∑
𝑚𝑛

𝑝𝑛
��⟨𝑚 | 𝑉̂− |𝑛⟩

��2𝛿(𝐸𝑚𝑛 −Ω)

=

∫ ∞

−∞
Tr

(
𝑉̂′
+(𝑡)𝑉̂′

−(0)𝜌̂𝑞𝑒
)
𝑒 𝑖Ω𝑡d𝑡 =

∫ ∞

−∞
𝐶+−(𝑡)𝑒 𝑖Ω𝑡d𝑡 , (3.7)

where we have used the identity 2𝜋𝛿(𝐸𝑚𝑛 −Ω) =
∫ ∞
−∞ dt𝑒−𝑖(𝐸𝑚𝑛−Ω)𝑡 , the

interaction picture 𝑉̂′
±(𝑡) = 𝑒 𝑖𝐻̂𝑒 𝑡𝑉̂±𝑒−𝑖𝐻̂𝑒 𝑡 and introduced correlation

function
𝐶+−(𝑡) = Tr

{
𝑉̂′
+(𝑡)𝑉̂′

−(0)𝜌̂𝑒
}
. (3.8)

The spectral density of transverse noise can be directly related to relax-
ation rate, since

Γ−(Ω) ≡ 1
4
𝑆⊥(Ω), (3.9)

where for the used sign convention of Ω > 0 the relaxation process the
energy is emitted from the TLS to the environment5 . In general the
relaxation process will be associated with the positive arguments (𝜔 > 0)
of the transverse spectral density 𝑆⊥(𝜔).

Excitation rate and detailed balance condition

To complete the microscopic characterization of the dissipation process
we will now consider the opposite situation, in which the environment
induces transition from ground to excited state, which requires the energy
absorption from the environment. If one repeats the above calculations
for the case of initial and final states |↓⟩ , |↑⟩ respectively, the excitation
rate will become related to a differently ordered correlation function, i.e.:

Γ+(Ω) = 1
4

∫ ∞

−∞
𝐶−+(−𝑡)𝑒 𝑖Ω𝑡d𝑡 , (3.10)

where 𝐶−+(𝑡) = Tr
{
𝑉̂′
−(𝑡)𝑉̂′

+(0)𝜌̂𝑒
}
.

We are now left with the question, what is the connection between
two correlation functions 𝐶+−(𝑡) and 𝐶−+(𝑡)? For the environment in
thermal equilibrium at temperature 𝑇 with respect to its Hamiltonian,6
the relation between the correlation functions can be derived with the
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7: Note that in Eq. (3.11) the time variable
can be shifted by 𝑡 = 𝑡′ − 𝑖𝛽

8: see Sec. 3.2 for more detailed discussion
in context of master equation

9: 𝐶±∓(𝑡) = Tr
(
𝑉̂′
±(𝑡)𝑉̂′

∓(0)𝜌𝑒
)

help of imaginary time formalism,

𝐶+−(𝑡) = Tr
(
𝑉̂′
+(𝑡)𝑉̂′

−(0)𝜌̂𝑒
)
=

1
Z

Tr
(
𝑒 𝑖𝐻̂𝑒 𝑡𝑉̂+𝑒

−𝑖𝐻̂𝑒 𝑡𝑉̂−𝑒
−𝛽𝐻̂𝑒

)
=

1
Z

Tr
(
𝑒 𝑖(𝑖𝛽𝐻𝑒 )𝑒−𝑖(𝑖𝛽𝐻̂𝑒 )𝑒−𝑖𝐻̂𝑒 𝑡𝑉̂−𝑒

𝑖𝐻̂𝑒 𝑡 𝑒 𝑖(𝑖𝛽𝐻̂𝑒 )𝑉̂+
)

= Tr
(
𝑒−𝑖𝐻̂𝑒 (𝑡+𝑖𝛽)𝑉̂−𝑒

𝑖𝐻̂𝑒 (𝑡+𝛽)𝑉̂+𝜌̂𝑒
)
= 𝐶−+(−𝑡 − 𝑖𝛽), (3.11)

which can be alternatively7 written as 𝐶−+(−𝑡′) = 𝐶+−(𝑡′ − 𝑖𝛽). When
this expression is substituted to Eq. (3.10), the excitation rate reads:

Γ+(Ω) = 1
4

∫ ∞

−∞
𝐶+−(𝑡 − 𝑖𝛽)𝑒 𝑖Ω𝑡d𝑡 =

1
4
𝑆⊥(Ω)𝑒−𝛽Ω. (3.12)

In this way we derived the condition:

Γ+(Ω) = Γ−(Ω)𝑒−𝛽Ω , (3.13)

which is commonly known as the detailed balance or Kubo-Martin-
Schwinger condition [135, 136]. Finally it is convenient to write the
relaxation and excitation rates in the common form as:

Γ±(Ω) = 1
4
𝑆⊥(∓Ω), (3.14)

where 𝑆⊥(−Ω) = 𝑆⊥(Ω)𝑒−𝛽Ω as a consequence.

Dissipation contribution to dephasing

Transverse coupling to environment can also lead to losing of definite
phase between the TLS eigenstates, which can be related to dephasing rate
Γ𝑊 . To show it, we now take previously introduced in Eq. (3.1) transverse
Hamiltonian 𝐻̂⊥ with environment at thermal equilibrium with 𝐻̂𝑒 , and
compute the off-diagonal element of the reduced TLS density matrix in
the interaction picture as:

𝑊 ′(𝑡) = Tr{𝜎̂−𝜌̂′(𝑡)} = 𝑒 𝑖Ω𝑡𝑊(𝑡). (3.15)

Now up to second order in the coupling 𝑉̂±, the change in the above, i.e.
𝛿𝑊 ′

⊥ =𝑊 ′(𝑡) −𝑊(0) is given by:

𝛿𝑊 ′
⊥ =

1
4

∫ 𝑡

0

∫ 𝑡

0
⟨𝑉̂′

+(𝑡1)𝑉̂′
+(𝑡2)⟩𝑒−𝑖Ω(𝑡1+𝑡2)d𝑡1d𝑡2

− 1
4

∫ 𝑡

0

∫ 𝑡2

0

( (
⟨𝑉̂′

−(𝑡1)𝑉̂′
+(𝑡2)⟩ + ⟨𝑉̂′

+(𝑡2)𝑉̂′
−(𝑡1)⟩

)
𝑒−𝑖Ω(𝑡1−𝑡2)

)
d𝑡1d𝑡2.

(3.16)

For the time being we skip the first non-secular term, which does not
conserve the energy and rapidly oscillates with twice the frequency,
that corresponds to the energy gap of the TLS.8 We now rewrite the
second part of the expression, in terms of the correlation functions9 from



26 3 Dissipative evolution of a two-level system

10: By the correlation time we mean the
timescale at which the correlation function
effectively vanishes, i.e. 𝐶(𝑡) → 0 for 𝑡 ≫
𝜏𝑐

11: Formally the principal value is defined
as the distribution, for instance for the
function 𝑓 (𝑥) we have:

PV(1/𝑥)[ 𝑓 ] = lim
𝛿→0

( ∫ −𝛿

−∞
𝑓 (𝑥)d𝑥

+
∫ ∞

𝛿
𝑓 (𝑥)d𝑥

)
(3.21)

12: short in comparison to the timescale
at which the environment affects the TLS
state

Eq. (3.8):

𝛿𝑊 ′
⊥ = −1

4

∫ 𝑡

0

∫ 𝑡2

0

( [
𝐶−+(𝑡1 − 𝑡2) + 𝐶+−(𝑡2 − 𝑡1)

]
𝑒−𝑖Ω(𝑡1−𝑡2)

)
d𝑡1d𝑡2.

(3.17)
We now change the variables into 𝑇 = (𝑡1 + 𝑡2)/2 and 𝜏 = 𝑡2 − 𝑡1, which
allows to write:

𝛿𝑊 ′
⊥ = −1

4

∫ 𝑡

0

(
(𝑡 − 𝜏)

[
𝐶−+(−𝜏) + 𝐶+−(𝜏)

]
𝑒 𝑖Ω𝜏

)
d𝜏. (3.18)

It is often assumed that transverse noise has relatively short correlation
time10 𝜏𝑐 , i.e. 𝑡 ≫ 𝜏𝑐 , which allows to 1) extend limits of the integral to
infinity and 2) neglect the term proportional to 𝜏 in the integral. Next we
introduce spectral densities i.e. 𝐶±∓(±𝑡) =

∫
d𝜔
2𝜋 𝑆⊥(±𝜔)𝑒−𝑖𝜔𝑡 . Together

it gives:

𝛿𝑊 ′
⊥ =

𝑡

4

∫ ∞

−∞

d𝜔
2𝜋

[
𝑆⊥(𝜔) + 𝑆⊥(−𝜔)

]
𝐹(𝜔 −Ω), (3.19)

where we introduced the filter function, defined as:

𝐹(Ω −Ω) =
∫ ∞

0
d𝑡𝑒 𝑖(𝜔−Ω)𝑡 = 𝜋𝛿(𝜔 −Ω) + PV

(
1

𝑖(𝜔 −Ω)

)
. (3.20)

The first term proportional to Dirac delta is related to incoherent transi-
tions between ground and excited states, while the latter, proportional to
principal value11 is related to the so-called Lamb shift, additional deter-
ministic phase shift due to renormalization of TLS gap (see Eq. (3.38) and
discussion there). Since the latter contribution can be often calibrated
out, as it is not random in its nature, we concentrate on the first term and
finally write the leading order contribution to dephasing due to inelastic
transition rates as:

𝛿𝑊 ′
⊥ = −Γ−(Ω) + Γ+(Ω)

2
𝑡 ≡ −Γ𝑊 𝑡 , (3.22)

where we have derived the dephasing rate due to transverse coupling to
environment with short correlation time as

Γ𝑊 = Γ−(Ω) coth(𝛽Ω/2)𝑒−𝛽Ω/2. (3.23)

3.2 Master equation approach

After considering dissipation mechanisms in the second order in time
expansion, we now extrapolate them to more general treatment of non-
unitary evolution of the TLS coupled to the environment of typically
short correlation time,12 known as the Master equation approach.

Bloch-Redfield equation

First we briefly derive Bloch-Redfield Master equation following standard
textbook approach [137], where to some extent we repeat calculation up
to second order in the transverse coupling 𝐻̂⊥ given in Eq. (3.1). However
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13: i.e.

𝜌′(𝑡) = 𝜌′(0) − 𝑖
∫ 𝑡

0
d𝑡′[𝑉′

⊥(𝑡′), 𝜌̂′(𝑡′)]

14: It formally means that correlation func-
tions 𝐶±∓(𝑡) goes to zero as the TLS relax-
ation 𝑇1 ≈ 1/Γ− time exceeds the environ-
mental correlation time 𝑇1 ≫ 𝜏𝑐

15: This means we substitute 𝜌̂′𝑞(𝑡) =

𝑈̂†
𝑞 (𝑡)𝜌̂𝑞(𝑡)𝑈̂𝑞(𝑡), where 𝑈̂𝑞(𝑡) = 𝑒−𝑖𝐻̂𝑞 𝑡 ,

and multiply from the left by 𝑈̂𝑞(𝑡) and
from the right by 𝑈̂†

𝑞 (𝑡)

this time we start, from the Von-Neumann equation for TLS-environment
density matrix, which in the interaction picture reads

¤̂𝜌′(𝑡) = −𝑖
[
𝑉̂′
⊥(𝑡), 𝜌′(𝑡)

]
, (3.24)

where 𝑉̂′
⊥(𝑡) = 𝑒 𝑖(𝐻̂𝑞+𝐻̂𝑒 )𝑡𝑉⊥𝑒−𝑖(𝐻̂𝑞+𝐻̂𝑒 )𝑡 and𝜌′(𝑡) = 𝑒 𝑖(𝐻̂𝑞+𝐻̂𝑒 )𝑡𝜌(𝑡)𝑒−𝑖(𝐻̂𝑞+𝐻̂𝑒 )𝑡 .

We now iterate the equation once13 and write:

¤̂𝜌′(𝑡) = −𝑖
[
𝑉̂′
⊥(𝑡), 𝜌′(0)

]
−

[
𝑉̂′
⊥(𝑡),

[∫ 𝑡

0
d𝑡′𝑉′

⊥(𝑡′), 𝜌′(𝑡′)
] ]
. (3.25)

The reduced density matrix of the TLS is obtained by tracing environ-
mental degrees of freedom, using assumption of the uncorrelated states
𝜌̂′(𝑡) = 𝜌̂′𝑞(𝑡) ⊗ 𝜌̂𝑒 . Note that due to typically large size of environment in
this derivation 𝜌̂𝑒 is assumed constant, i.e. unaltered by the interaction
with the TLS. Finally we assume the expectation value of the single
interaction operator is zero, i.e. Tr𝑒{𝑉̂±(𝑡)𝜌̂0}, which is typically the case
in thermal equilibrium, and write:

¤̂𝜌′𝑞(𝑡) = −Tr𝑒
{[
𝑉̂′
⊥(𝑡),

∫ 𝑡

0
d𝑡′𝑉̂′

⊥(𝑡′)𝜌̂′𝑞(𝑡′)𝜌̂𝑒
]}

+ ℎ.𝑐, (3.26)

where we also replaced double commutator by the single one plus its
Hermitian conjugate.

Markov approximation

We will now assume the environment memory is short, i.e. the typical
correlation time, during which the integral gives non-zero contribution
is much shorter then the characteristic timescale of TLS’s evolution due
to its interaction with the environment14 . Mathematically this allows us
to first extend the lower bound to −∞, and then introduce new variable
𝑟 = 𝑡 − 𝑡′, such that:

¤̂𝜌′𝑞(𝑡) = −Tr𝑒
{[
𝑉̂′
⊥(𝑡),

∫ ∞

0
d𝑟𝑉̂′

⊥(𝑡 − 𝑟)𝜌̂′𝑞(𝑡 − 𝑟)𝜌̂𝑒
]}

+ ℎ.𝑐., (3.27)

the Markov approximation is now completed by replacing 𝜌̂′𝑞(𝑡 − 𝑟) →
𝜌̂′𝑞(𝑡), i.e. neglecting TLS evolution that takes place on the timescale of
short correlation time of environment.

Bloch-Redfield tensor

We now substitute the coupling Hamiltonian,

𝑉̂′
⊥(𝑡) =

1
2
(
𝑉̂′
+(𝑡)𝜎′+(𝑡) + 𝑉̂′

−(𝑡)𝜎̂′−(𝑡)
)
, (3.28)

and go to Schrodinger representation, which amounts to unwinding
interaction picture with respect to TLS Hamiltonian15 . As a result the
Bloch-Redfield equation can be written in the simple form:

¤̂𝜌𝑞(𝑡) = 𝑖
[
𝜌̂𝑞(𝑡), 𝐻̂𝑞

]
−

∑
𝑘,𝑙=±

[
𝑠𝑘 , 𝑅̂𝑘𝑙 𝜌̂𝑞(𝑡)

]
+ ℎ.𝑐. (3.29)
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16: 𝑊′(𝑡) = Tr
{
𝜎̂−𝜌′𝑞(𝑡)

}
. Note that

𝑍′(𝑡) = 𝑍(0).

where we have defined the Bloch-Redfield tensor as

𝑅̂𝑘𝑙(𝑡) =
1
4

∫ ∞

0
𝜎̂′𝑙(−𝑟)𝐶𝑘𝑙(𝑟)d𝑟, (3.30)

written in terms of previously introduced correlation function 𝐶𝑘𝑙(𝑟) =
Tr

{
𝑉̂′
𝑘
(𝑟)𝑉̂′

𝑙
(0)𝜌̂𝑒

}
and the operators in the interaction picture: 𝑉̂′

𝑙
(𝑡) =

𝑒 𝑖𝐻̂𝑒 𝑡𝑉̂𝑙𝑒
−𝑖𝐻̂𝑒 𝑡 and 𝜎̂′

𝑙
(−𝑟) = 𝑒−𝑖Ω𝑟 𝜎̂𝑧/2𝜎̂𝑙𝑒 𝑖Ω𝑟 𝜎̂𝑧/2.

As we have shown in the previous section, transitions between the
TLS eigenstates are caused by the energy exchange with environment.
In analogy to Eq. (3.4) in the limit of weak coupling, or equivalently
relatively long evolution time, the terms which do not conserve energy
will effectively vanish. Below we will show that for typically weak
coupling, the contribution from such non-secular terms 𝑅̂++ , 𝑅̂−− are
negligibly small, mostly due to fast oscillations with the frequency
given by twice the TLS splitting 2Ω (see below). Later we will explicitly
calculate more relevant secular terms 𝑅̂±∓, which will allow us to arrive at
the Linblad form of the Master equation. Note that in Chapter 10, where
we will generalize master equation to the four-level system of spin and
driven orbital states, we will use local-secular approximation [138], in
which we will leave "slightly" non-conservative terms, as they will be
crucial to understand TLS dephasing in presence of the orbital dissipative
evolution.

Non-secular terms 𝑅±±

We now go back to interaction picture with respect to the TLS, i.e.

¤̂𝜌′𝑞(𝑡) =
∑
𝑘,𝑙=±

𝑒 𝑖(𝑘+𝑙)Ω𝑡
[
𝑠𝑘 , 𝑅̂𝑘𝑙(𝑡)𝜌̂′𝑞

]
+ ℎ.𝑐, (3.31)

and concentrate on a single non-secular term, for instance 𝑖 = 𝑗 = +. We
compute the coherence element16 :

¤𝑊 ′(𝑡) =
(
1
4

∫ ∞

0
d𝑟𝐶++(𝑟)𝑒−𝑖Ω𝑟

)
𝑒 𝑖2Ω𝑡𝑊 ′∗(𝑡) = 𝐶0𝑒

𝑖2Ω𝑡𝑊 ′∗(𝑡), (3.32)

where 𝐶0 is some time-independent constant involving Fourier transform
of the correlator Tr

{
𝑉̂′
+(𝑟)𝑉̂′

+(0)𝜌̂𝑒
}

at the TLS frequency Ω. Not only the
𝐶0 is usually smaller then the spectral densities in the secular terms,
but the expression involves rapidly oscillating phase 𝑒 𝑖2Ω𝑡 . For the weak
coupling one can use perturbation theory, which in the leading order
predicts:

𝛿𝑊(𝑇) = 𝐶0

∫ 𝑇

0
𝑒 𝑖2Ω𝑡 (3.33)

which oscillates and becomes negligible for sufficiently large Ω𝑇 and
small 𝐶0, i.e. in weak coupling limit. As we will show, this feature is
absent in the secular terms, where 𝑖 ≠ 𝑗, on which we concentrate now.
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17:
∫ ∞
0 𝑒−𝑖𝑎𝑡 = 𝜋𝛿𝑎 + 𝑖PV[1/𝑎]

Secular terms 𝑅̂±∓

We now move to non-oscillatory secular terms, that corresponds to
elements of Bloch-Redfield tensor with 𝑖 ≠ 𝑗. In particular, the term
responsible for relaxation can be identified as

𝑅̂+− =
𝜎̂−
4

∫ ∞

0
⟨𝑉̂′

+(𝑠)𝑉̂′
−(0)⟩𝑒 𝑖Ω𝑠d𝑠 =

𝜎̂−
4

∫ ∞

−∞

d𝜔
2𝜋

𝑆⊥(𝜔)
∫ ∞

0
𝑒−𝑖(𝜔−Ω)𝑠

=
𝜎̂−
4

(
1
2
𝑆⊥(Ω) − 𝑖𝐴LS,−(Ω)

)
, (3.34)

where we have used Fourier transform of the correlation function, i.e.
spectral density 𝐶+−(𝑠) =

∫
d𝜔
2𝜋 𝑆⊥(𝜔)𝑒−𝑖𝜔𝑠 , and denoted correction due

to principal value17 as 𝐴LS,−(Ω), see Eq. (3.36) for its exact form. Similarly
for the element corresponding to excitation from ground to excited TLS
state (energy absorption) we have:

𝑅̂−+ =
𝜎̂+
4

∫ ∞

0
⟨𝑉′

−(𝑠)𝑉′
+(0)⟩𝑒−𝑖Ω𝑠d𝑠 =

𝜎̂+
4

∫ ∞

0
𝐶−+(𝑠)𝑒−𝑖Ω𝑠d𝑠

=
𝜎̂+
4

∫ ∞

−∞

d𝜔
2𝜋

𝑆⊥(−𝜔)
∫ ∞

0
𝑒 𝑖(𝜔−Ω)𝑠 =

𝜎̂+
4

(
1
2
𝑆⊥(−Ω) + 𝑖𝐴LS,+(Ω)

)
,

(3.35)

where we have used the previously derived 𝐶−+(𝑠) =
∫

d𝜔
2𝜋 𝑆⊥(−𝜔)𝑒 𝑖𝜔𝑠 ,

and introduced the term related to the principal value as𝐴LS,+(Ω), which
can be written as:

𝐴LS,∓(Ω) = 1
2𝜋

∫
d𝜔𝑆⊥(±𝜔)PV[(𝜔 −Ω)−1], (3.36)

where for environment in thermal equilibrium we have 𝑆⊥(−Ω) =

𝑆⊥(Ω)𝑒−𝛽Ω.

The secular terms together with the unitary part provide differential
equation for the TLS density matrix. That is the celebrated Gorini –
Kossakowski – Sudarshan – Lindblad Master equation (GKSL Master equation)
[139, 140] of the form:

¤̂𝜌𝑞 = −𝑖
[
𝐻̂𝑞 + 𝐻̂LS , 𝜌𝑞

]
+

∑
𝑗=±

𝐿 𝑗 𝜌̂𝑞 𝐿̂
†
𝑗 −

1
2

{
𝐿̂†𝑗 𝐿̂ 𝑗 , 𝜌̂𝑞

}
, (3.37)

where by inspection of Eqs. (3.34) and (3.35) one can reconstruct exact
form of Linblad operators 𝐿̂+ = 𝜎̂+

√
Γ+ and 𝐿̂− = 𝜎̂−

√
Γ−, expressed

in terms of transition rates related to spectral densities via Γ±(Ω) =
1
4𝑆⊥(∓Ω). We have denoted contribution from the principal value of the
integrals as 𝐻̂LS. It generates correction to unitary dynamics, which stems
from renormalization of the TLS energy gap due to virtual transitions,
commonly known as the Lamb-shift, i.e.

𝐻̂LS =
𝐴LS,+(Ω) + 𝐴LS,−(Ω)

8
𝜎̂𝑧 . (3.38)

We follow analysis of other solid-state systems [141, 142] and assume its
effect can be neglected.
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18: This leads to asymmetric hysteresis
curve in the driven systems [143]

Equations of motion

Master equation derived above can be used to write equations of motion
for the polarization and the coherence of the TLS. With the constant and
diagonal Hamiltonian 𝐻̂𝑞 =

1
2Ω𝜎̂𝑧 they can be analytically integrated to

give the polarization at time 𝑡 as

𝑍(𝑡) = 𝑍0𝑒
−(Γ−+Γ+)𝑡 + 𝑍eq

(
1 − 𝑒−(Γ−+Γ+)𝑡

)
, (3.39)

where we have introduced equilibrium value of 𝑍eq =
Γ+−Γ−
Γ++Γ− . On the

other hand solving Linblad equations for𝑊(𝑡) gives

𝑊 ′(𝑡) =𝑊(0)𝑒−Γ𝑊 𝑡 , (3.40)

where Γ𝑊 = 1
2 (Γ+ + Γ−). In principle, the equations of motion can be

generalized to the case where the rates are time-dependent Γ±(𝑡), for
which the observables are given by:

𝑍(𝑡) = 𝑍0𝑒
−

∫ 𝑡

0 [Γ−(𝑡′)+Γ+(𝑡′)]d t’ −
∫ 𝑡

0
d𝑠[Γ+(𝑠) − Γ−(𝑠)]𝑒−

∫ 𝑡

𝑠
[Γ+(𝑠′)+Γ−(𝑠′)]d𝑠′ ,

𝑊 ′(𝑡) =𝑊 ′(0)𝑒−
∫ 𝑡

0 Γ𝑊 (𝑡′). (3.41)

Note that with time-dependent rates one can only define the polarization
𝑍eq(𝑡) to which 𝑍(𝑡) tries to tend at every moment of time18 .



1: We highlight here that later in the the-
sis we will be considering spectral densi-
ties, which are irregular at zero frequency.
This includes both typical for semiconduc-
tor 1/f-noise and the model of quasistatic
noise, which are divergent at 𝜔 = 0. As
we will show for those relevant cases, the
Master equation approach fails.

2: As we will show later this can be related
to a separation of the timescales associated
with the environmental noise.
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The second process considered in this thesis amounts to losing the
definite phase between the qubit eigenstates without energy transfer. We
now relate its origin to the longitudinal qubit-environment coupling 𝑉̂∥ ,
which together with the qubit Hamiltonian reads:

𝐻̂𝜙 =
Ω

2
𝜎̂𝑧 +

𝑉̂𝜙

2
𝜎̂𝑧 . (4.1)

4.1 Master equation approach

We start by considering memory-less environment (short correlation
time) and hence reuse Bloch-Redfield Master equation approach1 for the
longitudinal coupling 𝑉̂𝜙. We will generally assume that longitudinal
coupling is statistically independent from the transverse one2 , which
means that in the Bloch-Redfield equation (3.29), any terms involving
⟨𝑉̂±𝑉̂𝜙⟩ = 0 can be ignored. As a result the only additional term to
Bloch-Redfield tensor is the dephasing term:

𝑅̂𝜙 + 𝑅̂†
𝜙 =

1
4

∫ ∞

0
𝜎̂𝑧

(
⟨𝑉̂′

𝜙(𝑠)𝑉̂
′
𝜙(0)⟩ + ⟨𝑉̂′

𝜙(0)𝑉̂
′
𝜙(𝑠)⟩

)
d𝑠 =

𝑆𝜙(0)
4

,

(4.2)

where the contribution from principle value cancels. In the above we
introduced spectral density of longitudinally coupled environment:

𝑆𝜙(𝜔) =
1
2

∫ ∞

−∞
d𝑡

〈
{𝑉̂′

𝜙(𝑡), 𝑉̂
′
𝜙(0)}

〉
𝑒
𝑒 𝑖𝜔𝑡 , (4.3)

with operators in the interaction picture 𝑉̂′
𝜙(𝑡) = 𝑒 𝑖𝐻̂𝑒 𝑡𝑉̂𝜙𝑒

−𝑖𝐻̂𝑒 𝑡 . By com-
puting the commutator[

𝜎̂𝑧 , 𝑅̂𝜙𝜌̂𝑞
]
+ ℎ.𝑐. = 1

4
𝑆𝜙(0)

(
𝜌̂ − 𝜎̂𝑧 𝜌̂𝜎̂𝑧

)
, (4.4)

one can find the dephasing Linbladian operator:

𝐿̂𝜙 =

√
𝑆𝜙(0)

4
𝜎̂𝑧 , (4.5)

which substituted to the GKSL Master equation from Eq. (3.37), generates
decay of off-diagonal density matrix element i.e.

𝑊 ′(𝑡) =𝑊(0) exp
(
−
𝑆𝜙(0)

2
𝑡

)
, (4.6)
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3: i.e.𝑊𝜙(𝑡) = Tr{𝜎−𝜌′(𝑡)}

4: However for such asymmetric cou-
pling, i.e. 𝑉̂𝑞𝑒 = 𝑉̂↑ |↑⟩⟨↑|+𝑉̂↓ |↓⟩⟨↓|, where
𝑉̂↑ ≠ −𝑉̂↓, the 𝛿𝑊𝜙 acquires additional
phase shift related to the commutator
[𝑉̂′

𝜙(𝑡1), 𝑉̂
′
𝜙(𝑡2)] [144, 145].

and does not modify 𝑍(𝑡). In this way we showed that dephasing rate for
the environment with short correlation lengths, such that Born-Markov
approximation holds reads is given by Γ𝜙 = 1

2𝑆𝜙(0).

4.2 Weak coupling limit 𝛿𝑊𝜙

We now move to computation of more general environment, where
correlation time is not essentially shorter then any other time scale. In
the interaction picture3 the coherence reads:

𝑊 ′
𝜙(𝑡) =𝑊(0)𝑒−𝑖Ω𝑡

〈
T̃exp

{
𝑖

2

∫ 𝑡

0
𝑉̂′
𝜙(𝜏)

}
Texp

{
− 𝑖

2

∫ 𝑡

0
𝑉̂′
𝜙(𝜏)

}〉
𝑒

.

(4.7)
where T̃ denotes anti-chronological time-ordering and we used the
interaction picture𝑉̂′

𝜙(𝑡) = 𝑒 𝑖𝐻̂𝑒 𝑡𝑉̂𝜙𝑒
−𝑖𝐻̂𝑒 𝑡 . We assume the environmental

operator has zero average, ⟨𝑉′
𝜙(𝑡)⟩ and write the difference in phase

coherence 𝛿𝑊 ′
𝜙 =𝑊 ′(𝑡) −𝑊(0) in first non-vanishing order as

𝛿𝑊 ′
𝜙(𝑡) = − 𝑊(0)

4

∫ 𝑡

0
d𝑡2

∫ 𝑡

0
d𝑡1⟨𝑉̂′

𝜙(𝑡1)𝑉̂
′
𝜙(𝑡2)⟩+

− 𝑊(0)
4

∫ 𝑡

0
d𝑡2

∫ 𝑡2

0
d𝑡1⟨𝑉̂′

𝜙(𝑡2)𝑉̂
′
𝜙(𝑡1) + 𝑉̂

′
𝜙(𝑡1)𝑉̂

′
𝜙(𝑡2)⟩. (4.8)

After a few careful operations on two integrals above, one can express
the loss of initial phase coherence using symmetric 2-point correlation
function of the environmental operator, i.e.

𝛿𝑊 ′
𝜙(𝑡) = −𝑊(0)

2

∫ 𝑡

0

∫ 𝑡

0
𝐶𝜙(𝑡1 − 𝑡2)d𝑡1d𝑡2. (4.9)

where the correlation function is defined using anti-commutator

𝐶𝜙(𝑡1 − 𝑡2) = 1
2 ⟨{𝑉̂

′
𝜙(𝑡1), 𝑉̂

′
𝜙(𝑡2)}⟩, (4.10)

where the dependence on the difference in time, requires the environment
to be in thermal equilibrium, in which [𝐻̂𝑒 , 𝜌̂𝑒] = 0. The presence of the
anti-commutator ensures that the correlation function is real even for
asymmetric couplings4 .

Effects of finite correlation time

We now distinguish different ways in which dephasing can depend on
the evolution time 𝑡. Using equation Eq. (4.9) for leading order loss
of phase coherence, and in analogy to relaxation considerations from
Sec. 3.1, we introduce Fourier transform of correlation function, or the
spectral density of longitudinally coupled noise 𝑆𝜙(𝜔) as

𝐶𝜙(𝑡1 − 𝑡2) =
∫ ∞

−∞

𝑑𝜔
2𝜋

𝑆𝜙(𝜔)𝑒−𝑖𝜔(𝑡1−𝑡2) , (4.11)
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5: The quadratic scaling can be seen from
Eq. (4.9), if one assumes that correlation
function remains constant on the timescale
of the experiment 𝐶𝜙(𝑡1 − 𝑡2) = 𝐶𝜙(0),
using which 𝛿𝑊′

𝜙(𝑡) = − 1
2𝐶𝜙(0)

6: By Gaussification we mean that the
overall coherence of the form of character-
istic function is given in terms of second-
order correlation function, which is a fea-
ture of Gaussian random variable 𝑥, i.e.
⟨𝑒 𝑖𝑥⟩ = 𝑒−⟨𝑥

2⟩/2

which if substituted to expression for 𝛿𝑊 ′
𝜙 produces:

𝛿𝑊 ′
𝜙(𝑡) = − 𝑡

2

2

∫ ∞

−∞

d𝜔
2𝜋

sinc2
(
𝜔𝑡
2

)
𝑆𝜙(𝜔). (4.12)

The overall dependence on 𝑡 is given by the interplay between the func-
tions sinc(𝜔𝑡/2) = 2 sin(𝜔𝑡/2)/𝜔𝑡 and𝑆𝜙(𝜔). For the spectral density suf-
ficiently flat in low frequencies, i.e. very short correlation time 𝜏𝑐 in com-
parison to 𝑡, we can use limiting expression lim𝑡→∞ 𝑡sinc2(𝑥𝑡/2) = 2𝜋𝛿(𝑥)
and arrive at rate-like behaviour 𝛿𝑊𝜙(𝑡) ∝ 𝑡𝑆𝜙(0), derived using Master
Equation approach in Eq. (4.6).

In the opposite limit of relatively slowly decaying 𝐶𝜙(𝑡), the spectral
density is expected to be peaked at low-frequencies. Thus with evolution
time 𝑡 < 𝜏𝑐 the sinc function effectively is flat with respect to spectral
density 𝑆𝜙(𝜔), and 𝛿𝑊𝜙(𝑡) ∝ 𝑡2

∫
𝑆𝜙(𝜔).5 In these two limiting cases we

have:

𝛿𝑊 ′
𝜙(𝑡) =

{
− 1

2 𝑆𝜙(0) 𝑡 , for 𝑡 ≪ 𝑡𝑐 , i.e. fast noise
− 1

2𝐶𝜙(0) 𝑡2 , for 𝑡 ≫ 𝑡𝑐 , i.e. slow noise
(4.13)

Hence we have showed that in the two limiting cases the dephasing is
caused by the fluctuations of environment, which can be either attributed
to zero-frequency component of the fast noise or total power of the slow
noise 𝐶𝜙(0) =

∫ ∞
−∞ 𝑆𝜙(𝜔)d𝜔. Note that for the spectral density divergent

at 𝜔 = 0, for instance 1/ 𝑓 noise from the following Sec. 4.3, the dephasing
cannot be linear in time, as the spectrum cannot be effectively replaced
by a constant value 𝑆𝜙(0).

Decoherence from many weakly coupled sources

We conclude this section on quantum dephasing noise by considering a
typical case in which the environment consist of many weakly coupled
systems, e.g. nuclear spins or two-level fluctuators,

𝑉̂𝜙 =
∑
𝑘

𝑉̂𝜙,𝑘 . (4.14)

If contribution to dephasing from each of them is small enough, it can be
computed in the leading order. If additionally on the time-scale of the
experiment coupling between them is negligible, the evolution operators
factorizes, i.e. 𝑈̂ =

∏
𝑘 𝑈̂𝑘 , and thus the qubit coherence reads:

𝑊𝜙 =
∏
𝑘

𝑊𝜙,𝑘 ≈
∏
𝑘

(1 − 𝛿𝑊𝜙,𝑘) ≈ exp

(
−

∑
𝑘

𝛿𝑊𝜙(𝑡)
)
= exp

(
−𝜒𝜙(𝑡)

)
,

(4.15)
in this way we introduced decoherence factor 𝜒𝜙(𝑡) using the fact that
𝛿𝑊𝜙,𝑘 ≪ 1. The above argument is the reminiscence of central limiting
theorem, since it allowed us to effectively "Gaussify"6 the environmental
contribution. In the following section, we will show that for Gaussian
classical noise approximation the decoherence factor is equivalent to
variance of random phase 𝛿𝜙 due to environmental fluctuations, i.e.
𝜒𝜙(𝑡) ≡ 1

2 ⟨𝛿𝜙2⟩.
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4.3 Classical noise approach

In this section we present an alternative approach to dynamics of open
quantum system, in which instead of dealing with typically large and
complicated dynamics of the environment we replace it by the "equiva-
lent" classical noise, which stochastically modifies unitary evolution of
the qubit. The conditions under which this is a good approximation have
been discussed in many papers [4–7, 146–153]. Here we discuss elements
of the theory needed for the purpose of the thesis.

Model of classical dephasing - quasistatic noise

Imagine the qubit is subject to random rotations, which for instance are
caused by the uncontrolled part of classical electronics that modifies
the energy gap Ω by the random quantity 𝜉. Now we assume the time
interval between consecutive realizations of the measurement scheme is
long enough such that the value of 𝜉 can significantly change. As a result
statistical properties of 𝜉 will modify expectation value of any observable.
The simplest example is the free evolution of spin-superposition. We
model influence of 𝜉 by introducing the Hamiltonian:

𝐻̂(𝜉) = Ω

2
𝜎̂𝑧 +

𝜉
2
𝜎̂𝑧 . (4.16)

If we measure the qubit coherence after time 𝑡, its value is conditioned
on 𝜉 and given by:

𝑊(𝑡 |𝜉) = Tr
{
|↑⟩⟨↓| 𝑒−𝑖𝐻̂(𝜉)𝑡 𝜌̂0𝑒

𝑖𝐻̂(𝜉)𝑡
}
=𝑊0𝑒

−𝑖𝜉𝑡 , (4.17)

and hence the current value of 𝜉 accounts for the additional phase evolu-
tion. Similarly to any measurable quantity, the estimation of coherence
𝑊 requires multiple projective measurements along 𝑥 and 𝑦 axis, which
can be seen from the identity: 𝑊 = ⟨𝜎̂−⟩ = 1

2 ⟨𝜎̂𝑥 − 𝑖𝜎̂𝑦⟩. As a result an
attempt to estimate the coherence gives us only access to the statistical
average,

𝑊(𝑡) ≈ 1
𝑁

𝑁∑
𝑛=1

𝑊(𝑡 |𝜉𝑛) →𝑊0⟨𝑒−𝑖𝜉𝑡⟩𝜉 , (4.18)

where in the last expression we used the limiting case of large number
of repetitions, such that the average over repetitions of experiment
(temporal average) can be replaced by overaging over statistical ensemble
of possible values of 𝜉, i.e. ⟨. . .⟩𝜉. The model of the noise considered
above is often termed quasistatic, as it remains constant during single run
of the experiment but varies between consecutive runs.

From the above considerations it is clear that averaging over many random
phases will result in dephasing of the qubit. Above we have shown that
the decoherence can be expressed in terms of characteristic function
of the distribution of 𝜉. It also means, that 𝑊(𝑡) after sufficiently long
period, will decay to zero for any distribution with non-zero variance.
In particular the initial decay can be seen by considering leading order
contribution to 𝛿𝑊 ′(𝑡) =𝑊 ′(𝑡) −𝑊(0), i.e.

𝛿𝑊 ′(𝑡) = −𝑖⟨𝛿𝜙⟩ − 1
2
⟨𝛿𝜙2⟩. (4.19)
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7: and actually equal to 2

8: Note that Gaussian statistics of 𝛿𝜙 im-
plies that for quasistatic noise 𝜉 is itself a
Gaussian random variable

where 𝑊(𝑡) = 𝑊 ′(𝑡)𝑒−𝑖Ω𝑡 and the random phase for quasistatic noise
reads 𝛿𝜙 = 𝜉𝑡. Note that any non-zero average can be incorporated
to definition of the bare splitting Ω → Ω + ⟨𝜉⟩. As a consequence we
will assume ⟨𝛿𝜙⟩ = 0 and hence the short-time loss of coherence is
proportional to the variance of random phase

𝛿𝑊 ′(𝑡) = − 1
2 ⟨𝛿𝜙

2⟩ (4.20)

which for quasistatic noise is quadratic in time.

Another way of looking at the formula for decoherence is in terms of
the cumulats of random variable 𝛿𝜙. The cumulats are defined in terms
of Taylor expansion of the logarithm of characteristic function, i.e. nth
cumulant 𝜅𝑛 is implicitly defined as:

log⟨𝑒 𝑖𝛿𝜙⟩ =
∑
𝑛

𝜅𝑛
𝑖𝑛

𝑛!
, (4.21)

which can be immediately related to

⟨𝑒 𝑖𝛿𝜙⟩ = exp
{
−𝑖𝜅1 −

1
2
𝜅2 + 𝑖

1
6
𝜅3 . . .

}
. (4.22)

Gaussian quasistatic noise

The only random variable, for which the number of nonzero cumulant
is finite7 is the Gaussian random variable, for which 𝜅1 = ⟨𝛿𝜙⟩ and
𝜅2 = ⟨𝛿𝜙2⟩ − ⟨𝛿𝜙⟩2, while 𝜅𝑛 = 0 for 𝑛 > 2 [154]. At the same time
Gaussian statistics of 𝛿𝜙 is expected on the basis of central limiting
theorem due to typically complex structure of environment, reflected in
a sum over many weakly coupled sources. Thus for the most part of this
thesis the quasistatic classical noise will be assumed Gaussian.8 In this
case dephasing can be computed from the simple expression:

𝑊 ′(𝑡) =𝑊0 exp
(
−1

2
⟨𝛿𝜙2⟩

)
=𝑊0 exp

(
−1

2
𝜎2𝑡2

)
(4.23)

where 𝜎2 = ⟨𝜉2⟩.

Dynamical noise

We will now show that analogous expression can be obtained in presence
of the environment modelled as dynamical stochastic process. As an
extension of the previous section we take the Hamiltonian:

𝐻̂(𝑡) = Ω

2
𝜎̂𝑧 +

𝜉(𝑡)
2

𝜎̂𝑧 . (4.24)

In this case the evolution operator is also diagonal in spin operators 𝑈̂(𝑡) =
exp

(
−𝑖 1

2

∫
𝜉(𝑡)𝜎̂𝑧

)
, and thus the coherence can be easily computed as:

𝑊 ′(𝑡) =𝑊0

〈
exp

{
−𝑖

∫ 𝑡

0
𝜉(𝑡′)d𝑡′

}〉
𝜉

, (4.25)
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9: see discussion around Eq. (4.15)

where ⟨. . .⟩ denotes averaging over realizations of 𝜉(𝑡). We can now
relate to the previous section by introducing variable:

𝛿𝜙(𝑡) =
∫ 𝑡

0
𝜉(𝑡′)d𝑡 , (4.26)

using which 𝑊 ′(𝑡) = ⟨𝑒−𝑖𝛿𝜙(𝑡)⟩. 𝛿𝜙 can be now interpreted as the ran-
dom variable generated by 𝜉(𝑡′) process. The above expression for the
coherence in the interaction picture can be computed analytically for
many classical noise processes 𝜉(𝑡) [6, 155], including any noise with
Gaussian statistics.

Motivated by the presence of multiple weakly coupled noise sources,9 we
concentrate on the Gaussian stochastic process 𝜉(𝑡), which by definition
produces the Gaussian random variable 𝛿𝜙. In such case the coherence
reads

𝑊 ′(𝑡) =𝑊0 exp
(
−1

2
⟨𝛿𝜙2(𝑡)⟩

)
≡𝑊0 exp

(
−1

2

∫ 𝑡

0

∫ 𝑡

0
d𝑡1d𝑡2⟨𝜉(𝑡1)𝜉(𝑡2)⟩

)
,

(4.27)
and hence the loss of coherence can be related to the variance of random
phase ⟨𝛿𝜙2⟩. In analogy to the quantum case it is convenient to express
⟨𝛿𝜙2⟩ in terms of correlation function of the environment:

⟨𝛿𝜙2⟩ = 1
2

∫ 𝑡

0

∫ 𝑡

0
𝐶𝜙(𝑡1 − 𝑡2)d𝑡1d𝑡2 =

1
2

∫ 𝑡

0

∫ 𝑡

0
⟨𝜉(𝑡1)𝜉(𝑡2)⟩d𝑡1d𝑡2 ,

(4.28)
where we assumed the noise is stationary, meaning that ⟨𝜉(𝑡1)𝜉(𝑡2)⟩ =
⟨𝜉(𝑡1 − 𝑡2)𝜉(0)⟩.

Classical-quantum correspondence

The relation between quantum and classical correlation function can
be explicitly seen, when the coherence is expanded up to the second
order in the coupling, in case of which the error is directly related to the
correlation function

𝛿𝑊 ′(𝑡) = −𝑊0
2

∫ 𝑡

0
d𝑡1

∫ 𝑡

0
d𝑡2𝐶(𝑡1 − 𝑡2), (4.29)

where we can insert the proper correlation function:

𝐶𝜙(Δ𝑡) =
{

1
2 Tr𝑒

[
{𝑉̂𝜙(Δ𝑡), 𝑉̂𝜙(0)}𝜌̂𝑒

]
, for the quantum case〈

𝜉(Δ𝑡)𝜉(0)
〉
𝜉
, for the classical case.

(4.30)

Naturally this means the statistical properties of the process 𝜉(𝑡), should
be chosen to reconstruct the quantum correlation function. Note also that
the anti-commutator of quantum correlation functions means that it has
the same symmetry as the classical one.

Note that the classical spectral density, defined as:

𝑆𝜙,𝑐𝑙(𝜔) =
∫ ∞

−∞
d𝑡𝑒 𝑖𝜔𝑡 ⟨𝜉(𝑡)𝜉(0)⟩ =

∫ ∞

−∞
d𝑡𝑒 𝑖𝜔𝑡 ⟨𝜉(0)𝜉(𝑡)⟩ = 𝑆𝜙,𝑐𝑙(−𝜔),

(4.31)
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10: for which the spectral densities 𝑆(𝜔) =
𝑆(−𝜔). This happens if the Fourier trans-
forms of 𝐶±(𝑡) and 𝐶∓(𝑡) are equal for
physcially relevant 𝜔 < 𝑘B𝑇.

11: The above differential equation can be
easily discretized, which provides conve-
nient way of generating time series of the
noise, provided 𝑤(𝑡𝑛) at each step 𝑡𝑛 is
drawn from independent Gaussian distri-
bution.
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Figure 4.1: Spectral density of Ornstein-
Uhlenbeck noise in the double logarithmic
scale. Clear transition from flat spectrum
into 𝑆(𝜔) ∝ 1/𝜔2 is visible at 𝜔𝜏𝑐 ≈ 1.

is by definition symmetric in the frequencies. Although transverse quan-
tum noise appears classical only in the limit of Ω ≪ 𝑘B𝑇,10 the longitu-
dinal quantum noise is always symmetrized. As a result dephasing can
be often simulated by the classical noise. However only in the limit of
Ω ≪ 𝑘B𝑇 the classical noise can be thought of as a physical model of the
environment, and not just a mathematically equivalent model. Finally
we use Eq. (4.13) to argue that for sufficiently long correlation time of
environment dephasing is dominated by the low-frequency part of the
𝑆𝜙(𝜔), that fulfills the relation 𝜔 < 𝑘B𝑇.

4.4 Relevant noise processes

We now discuss the two relevant noise process: the Ornstein-Uhlenbeck
noise and the highly relevant for QDs systems 1/f noise [27, 43, 44,
156–160].

Ornstein-Uhlenbeck process

We start with the only Gaussian, Markovian and stationary process,
known as the Ornstein-Uhlenbeck noise. Historically it corresponds to
velocity of Brownian particle [161]. Mathematical definition of O-U noise
𝜉(𝑡) can be made using differential equation known as the Langevin
equation [155] of the form:

¤𝜉ou(𝑡) = − 1
𝜏𝑐

𝜉ou(𝑡) +
√

2𝜎2

𝜏𝑐
𝑤(𝑡), (4.32)

where11 𝜎2 =
∫

d𝜔
2𝜋 𝑆(𝜔) is the power of the noise 𝜏𝑐 is the correlation time

and 𝑤(𝑡) is derivative of the Wiener process, commonly known as the
Gaussian white noise with the correlation function ⟨𝑤(𝑡1)𝑤(𝑡2)⟩ = 𝛿(𝑡1−𝑡2).
The correlation function of 𝜉ou(𝑡) is exponential i.e.

𝐶ou(𝑡1 − 𝑡2) = ⟨𝜉ou(𝑡1)𝜉ou(𝑡2)⟩ = 𝜎2 exp
(
−|𝑡1 − 𝑡2 |

𝜏𝑐

)
, (4.33)

By direct computation of Fourier transform the spectral density of O-U
noise is a Lorenzian curve, i.e.

𝑆ou(𝜔) =
∫ ∞

−∞
𝐶ou(𝑡)𝑒 𝑖𝜔𝑡d𝑡 =

2𝜎2𝜏𝑐
1 + (𝜔𝜏𝑐)2

. (4.34)

Decoherence factor

As shown in Fig. 4.1, the power of the noise at given frequency (spectral
density) is approximately constant up to frequency 1/𝜏𝑐 at which decay
with 1/𝜔2 starts. For the O-U spectrum one can directly calculate decoher-
ence factor from the correlation function 𝐶ou(t), which due to Gaussian
properties, is given by the leading order contribution to dephasing, i.e.

𝜒ou ≡ 𝛿𝑊𝜙(𝑡) = −𝜎2

2

∫ 𝑡

0
d𝑡1

∫ 𝑡

0
d𝑡2𝑒−

|𝑡1−𝑡2 |
𝜏𝑐 = −𝜎2𝜏𝑐

(
𝑡+𝜏𝑐[𝑒−𝑡/𝜏𝑐 −1]

)
.

(4.35)
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12: In such case decreasing correlation
time would just move the kink of the spec-
tral density, plotted in Fig. 4.1 towards
higher frequencies

13: For the reviews on the 1/ 𝑓 𝛽 noise see
[156]

14: The similar derivation can be found in
[1, 162]
15: i.e. noise which dynamically changes
between two discrete values

We now discuss the limiting cases. Having total power of the noise
fixed 𝜎2 = const one can easily take the limit of quasistatic noise, which
amounts to taking 𝜏𝑐 → ∞. As the 𝜏𝑐 increases, constant power of the
noise forces the spectral density 𝜔 = 0 to increase since 𝑆ou(0) = 2𝜎2𝜏𝑐 .
From the above expression for the correlation function one can find, that
in the limit of 𝑡/𝜏𝑐 ≪ 1, first non-vanishing term gives 𝜒ou ≈ 1

2𝜎
2𝑡2. This

reproduces long-correlation limit from (4.13).

In the second limiting case of fast noise, one has to be extra careful with
fixing the total noise power, since taking 𝜏𝑐 → 0 decreases amplitude
of spectral density in the relevant frequency range. This a consequence
of keeping the area under the curve constant while making the spectral
density flatter. Instead for the white noise limit it is more convenient to
vary the correlation time and total noise power, in such a way that flat
part of 𝑆(𝜔) has fixed amplitude12 , i.e. 𝑆(0) = 2𝜎2𝜏𝑐 = const. Note that
with fixed 𝑆ou(0) the limit of 𝜏𝑐 → 0 will provide the noise with the flat
spectral density below frequencies 1/𝜏𝑐 and result in the decoherence
factor given by 𝜒ou ≈ 𝜎2𝜏𝑐𝑡 as expected form Eq. (4.13).

Finally the O-U noise can be used to generate the spectrum of the 1/𝜔2

type, for the frequencies above 1/𝜏𝑐 . Below we show that the sum of
many independent O-U process can be used to generate noise processes
with 1/𝜔𝛽 spectrum, characterized by a different exponent 𝛽.

1/f noise as a sum of Lorentzian fluctuators

We now discuss a highly important example of the environmental classical
noise, which often dominates dephasing of solid state qubits. Its name
1/ 𝑓 𝛽 noise generally refers to the process characterized by the spectral
density given by the expression13 :

𝑆𝛽(𝜔) = 𝐴1

(𝜔1
𝜔

)𝛽
, for 𝜔 > 0 (4.36)

where 𝜔1 = 2𝜋/𝑠 is the angular frequency corresponding to oscillation
period 𝑇 = 1s, i.e. frequency 𝑓1 = 1Hz. With this definition, 𝐴1 stands
for the power spectral density of the noise measured at 1Hz, i.e. 𝐴1 =

𝑆(𝜔1).

One of the most commonly accepted model of 1/ 𝑓 𝛽 noise is the ensemble
of two-level fluctuators (TLFs) with various characteristic switching rates.
We will construct 1/ 𝑓 𝛽 noise using one of possible models14 , in which
the TLFs can be treated as a source of telegraph noise15 with the spectral
density:

𝑆TLF(𝜔) =
2𝜎2𝛾2

𝛾2 + 𝜔2 , (4.37)

which is identical to spectral density of O-U process with the switching
rate 𝛾 = 1/𝜏𝑐 . We will be mostly interested in the case where the effective
noise 𝜉(𝑡) originates from sum over multiple, independent TLFs with
corresponding rate 𝛾𝑘 , for which the resulting noise can be written as:

𝜉(𝑡) =
∑
𝑘

𝜉𝑘(𝑡) =
∫

d𝛾𝐷(𝛾)𝜉(𝑡; 𝛾), (4.38)
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16: which reflects typical physics of TLFs
in the semiconductor device, where the
tunneling rate 𝛾𝑘 depends exponentially
on the height/width of the barriers, the
distribution of which is expected to by
approximately float or slowly changing

17: A sum of many RTNs can be often
approximated by a Gaussian process. For
non-Gaussian effects in small ensembles
of TLFs see [163]

18: Physical entities that fluctuate,

where we replaced discrete sum by the integral over density of the fluctu-
ators at given 𝛾, i.e. 𝐷(𝛾). If one uses continuous density of fluctuators16

𝐷(𝛾) = 𝑁𝛽

𝛾𝛽 the integral above produces desired 1/ 𝑓 𝛽 spectrum since:

𝑆𝛽(𝜔) =
∫ 𝛾max

−𝛾min

d𝛾
𝑁𝛽

𝛾𝛽
𝑆TLF(𝜔) =

2𝑠2
0𝑁𝛽

𝜔𝛽
𝑔(𝛽), (4.39)

where we introduced normalization constant 𝑁𝛽 and dimensionless
function

𝑔(𝛽) =
∫ 𝛾max/𝜔

𝛾min/𝜔

d𝑥
𝑥𝛽−1(1 + 𝑥2)

≈
∫ 𝜋/2

0
tan1−𝛽(𝛼)d𝛼. (4.40)

The last expression is based on the assumption that for the relevant
frequencies 𝛾min ≪ 𝜔 ≪ 𝛾max, the lower and upper limit of the second
integral can be set to 0 and ∞ respectively. The function 𝑔(𝛽) is often
of the order of unity with 𝑔(1) = 𝜋/2, 𝑔(3/2) = 𝜋/

√
2 as an example.

The normalization constant can be set from the comparison between
Eqs.(4.36) and (4.39) i.e.

𝑁𝛽 =
𝐴𝜔

𝛽
1

2𝑠2
0 𝑔(𝛽)

, (4.41)

where 𝜔
𝛽
1 = (2𝜋 Hz)𝛽. In this way we constructed 1/ 𝑓 𝛽 spectrum as

a superposition of many fluctuators with Lorenzian spectral density.
Moreover one can equivalently use O-U or telegraph process, both
characterized by the same Lorenzian spectrum, as the non-Gaussian
properties of the latter do not matter in the limit of many TLFs17 . This
provides a simple way to numerically simulate 1/ 𝑓 𝛽 spectrum, using
O-U processes.

Quasistatic noise model

We finally introduce an approximate way in which the slow-fluctuations
of the environment will be treated in this thesis. To reflect realistic
scenario, we will assume that the dominant contribution to dephasing
of freely evolving TLS is due to longitudinal quasistatic noise. As we
showed in Eq. (4.23) in such case the dephasing can be expressed by the
equation:

𝑊 ′(𝑡) =𝑊(0) exp
(
−1

2
𝜎̃2𝑡2

)
, (4.42)

where 𝜎̃ is the root-mean-square of the quasistatic fluctuations. In the
physical picture the 𝜎̃ is determined by the effective strength of en-
vironmental fluctuators,18 which remains approximately constant on
the timescale that exceeds experimental time 𝑡. For this reason, for the
physical noise process which are composed of many independent noise
sources the 𝜎̃(𝑡) is time-dependent.

Effective power of quasitatic noise

To estimate power of the effective quasistatic noise we integrate the
spectral density of relevant noise process up to frequency related to
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19: Note that in the integral we replaced∫ ∞
−∞ → 2

∫ ∞
0 due to symmetry of positive-

and negative-frequency of the dephasing
spectrum

20: Note that in a different case of 𝛽 = 2, ef-
fective power of quasistatic noise strongly
depends on 𝑇𝑎 , since it is given by

𝜎̃2
2 ≈ (𝐴𝜔2

1𝑇𝑎)/𝜋
2 ,

.

experimental time 𝑡, i.e. 𝜔𝑡 < 𝜋

𝜎̃2(𝑡) ≡
∫ 𝜋/𝑡

−𝜋/𝑡
𝑆(𝜔)d𝜔. (4.43)

As a first relevant example we consider O-U noise for which the quasitatic
part of its spectrum 𝑆ou(𝜔) from Eq. (4.34) gives:

𝜎̃2
ou(𝑡) =

∫ 𝜋/𝑡

−𝜋/𝑡

𝑆ou(𝜔)
2𝜋

=
2
𝜋
𝜎2 arctan

(𝜋𝜏𝑐
𝑡

)
. (4.44)

From the above one can show that:

𝜎̃2
ou(𝑡)𝑡2 →

{
2𝜎2𝜏𝑐𝑡 = 𝑆ou(0)𝑡 for 𝜏𝑐 ≪ 𝑡

𝜎2𝑡2 for 𝜏𝑐 ≫ 𝑡
(4.45)

which reproduces predictions of Eq. (4.8), where we showed that dephas-
ing is linear function of time for environments with short correlation
time and quadratic in the opposite limit.

In contrast to the O-U spectrum the computation of decoherence factor
for more realistic 1/ 𝑓 𝛽 noise,

𝜎̃2
𝛽(𝑡) = 𝐴1𝜔

𝛽
1

∫ 𝜋/𝑡

0

d𝜔
𝜋

sinc2
(
𝜔𝑡
2

)
𝜔−𝛽 , (4.46)

has intrinsic divergence19 related to ill-defined spectrum as 𝜔 → 0.
However the problem of divergence at 𝜔 = 0 is never present in any
realistic experiment, due to finite data acquisition time𝑇𝑎 , which we define
as the time needed to collect data for computation of some observable.
In such case, any fluctuators that remains static on the timescale 𝑇𝑎
does not contribute to amplitude of the noise. This also means that the
lowest possible frequency should be associated with the inverse of data
acquisition time, i.e. 𝜔low ≈ 𝜋/𝑇𝑎 , which allows to write the effective
power of quasistatic noise as

𝜎̃2
𝛽(𝑡) = 𝐴1𝜔

𝛽
1

∫ 𝜋/𝑡

𝜋/𝑇𝑎

d𝜔
𝜋

sinc2
(
𝜔𝑡
2

)
𝜔−𝛽 , (4.47)

which for 𝛽 = 1 reduces to:

𝜎̃2
1(𝑡) = 𝐴1 ln(𝑇𝑎/𝑡) ≈ 25𝐴1 , (4.48)

where the right hand side corresponds to typical ratio of data acquisition
time to evolution time, i.e. 𝑇𝑎/𝑡 ≈ 1010. Note that the dependence on 𝑇𝑎
is logarithmic20 , i.e. the result grows slowly for longer data acquisition
time.

In general for any noise process of a large spectral weight in the low-
frequencies, we define the effective power of quasistatic noise as:

𝜎̃2 =
1
𝜋

∫ 𝜋/𝑡

𝜋/𝑇𝑎
𝑆(𝜔)d𝜔. (4.49)

We test this approach in Appendix A.



1: The basis of dot states |𝐿⟩, |𝑅⟩ is often
called diabatic basis
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trum of the 𝐻̂𝑜(𝑡) Hamiltonian (top) and
sketch of physical realisation of 𝐻̂𝑜(𝑡) in
DQD system (bottom) replotted from the
Chapter 1.
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In this chapter we consider Landau-Zener drive of the orbital two-level
system in the semiconductor quantum dot. In Sec. 5.1 we describe the
adiabatic drive of two-level system in absence of the environment. Next in
Sec. 5.2 we consider presence of the environment, by including classical
fluctuations of the driven Hamiltonian parameters. Next in Sec. 5.3 we
derive most common way to deal with dissipative evolution of the driven
quantum system in the form of adiabatic Master equation (AME). Finally
in Sec.5.4 we discuss the approach used in this thesis to compute effects
of longitudinal and transverse couplings in the adiabatic basis.

5.1 Adiabatic drive in absence of environment

We focus now on the adiabatic driving of two-level system (TLS), which
will correspond to two lowest lying orbital levels in the Double Quanutm
Dot (DQD) system. Following model introduced in Chapter 1 the general
charge state of the electron can be represented as:

|𝜓(𝑡)⟩ = 𝑐𝐿(𝑡) |𝐿⟩ + 𝑐𝑅(𝑡) |𝑅⟩ , (5.1)

where |𝐿⟩ and |𝑅⟩ are the ground states of the left and right dot, while
|𝑐𝐿(𝑅) |2 corresponds to probability of occupying left (right) dot1 . The
transfer error can be defined in terms of remaining occupation of the
initial state, i.e.

𝑄 = |𝑐𝐿(𝑡 𝑓 )|2 = 1 − |𝑐𝑅(𝑡 𝑓 )|2. (5.2)

The transfer of electron charge is made possible by time-dependent
modulation of the energy detuning between neighbouring quantum dots
𝜖(𝑡), which for the DQD system gives time-dependent Hamiltonian:

𝐻̂o(𝑡) =
𝜖(𝑡)
2

𝜎̂𝑧 +
𝑡𝑐

2
𝜎̂𝑥 , (5.3)

We assume that in the relevant region of detuning, tunnel coupling can
be assumed constant. At any time 𝑡 the Hamiltonian 𝐻̂o(𝑡) give rise to a
pair of instantaneous states,

𝐻̂𝑜(𝑡) |±(𝑡)⟩ = 𝐸±(𝑡) |±(𝑡)⟩ . (5.4)
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2: which can be related to dot-basis via
Eq. (5.5)

3: Since in the adiabatic frame the states
are no-longer time-dependent, for brevity
we will avoid writing initial time argu-
ment, i.e. |±⟩ ≡ |±(𝑡𝑖)⟩

4: We will be using H and other cali-
graphic letters to denote quantities in the
adiabatic frame.

The states |±(𝑡)⟩ give the adiabatic basis, while their explicit form read:

|+(𝑡)⟩ = sin
𝜗(𝑡)

2
|𝑅⟩ + cos

𝜗(𝑡)
2

|𝐿⟩

|−(𝑡)⟩ = sin
𝜗(𝑡)

2
|𝐿⟩ − cos

𝜗(𝑡)
2

|𝑅⟩ , (5.5)

where we have defined the orbital angle:

ctan𝜗(𝑡) = 𝜖(𝑡)
𝑡𝑐
. (5.6)

Note that sweep of detuning from large and negative 𝜖(𝑡𝑖) ≪ −𝑡𝑐
(𝜗(𝑡𝑖) ≈ 𝜋) to large and positive values 𝜖(𝑡 𝑓 ) ≫ 𝑡𝑐 (𝜗(𝑡𝑖) ≈ 0) moves the
ground state from the initial, left dot, i.e. |−(𝑡𝑖)⟩ ∼ |𝐿⟩ to the target, right
dot

��−(𝑡 𝑓 )〉 ∼ |𝑅⟩. Hence the transfer is successful if the TLS stays in the
ground state thought the evolution.

More generally at any time instant, the state of driven TLS can be always
written in the adiabatic frame2 as:

|𝜓(𝑡)⟩ = 𝑎+(𝑡) |+(𝑡)⟩ + 𝑎−(𝑡) |−(𝑡)⟩ . (5.7)

For the TLS initialized in the ground state |𝜓(𝑡𝑖)⟩ = |−(𝑡𝑖)⟩, the adiabatic
evolution is defined as

|𝑎+(𝑡)|2 = 1, for any 𝑡 , (5.8)

Adiabatic frame

In the case of electron transfer, one assumes that for sufficiently large and
negative detuning 𝜖(𝑡𝑖) ≪ −𝑡𝑐 , the system is initialized in the diabatic
state, i.e.

|𝜓(𝑡𝑖)⟩ = |−(𝑡𝑖)⟩ ≈ |𝐿⟩ , (5.9)

while |+(𝑡𝑖)⟩ ≈ |𝑅⟩. Then the instantaneous eigenstate at time 𝑡 is can be
related to initial one via the operator 𝑆̂(𝑡), defined through expression

|±(𝑡)⟩ = 𝑆̂(𝑡) |±(𝑡𝑖)⟩ (5.10)

The operator 𝑆̂(𝑡) is time-dependent, however it conveniently removes
time-dependence from the states. Note that the arbitrary state can be
now expressed as:

|𝜓(𝑡)⟩ = 𝑆̂(𝑡)
(
𝑎−(𝑡) |−(𝑡𝑖)⟩ + 𝑎+(𝑡) |+(𝑡𝑖)⟩

)
= 𝑆̂(𝑡) |𝛹 (𝑡)⟩ , (5.11)

where |𝛹 (𝑡)⟩ is the state written in the adiabatic frame, where only am-
plitudes 𝑎±(𝑡) are time-dependent3 . In this frame of reference, the
Schrodinger equation reads:

𝑖𝜕𝑡 |𝛹 (𝑡)⟩ =
(
𝑆̂†(𝑡)𝐻̂(𝑡)𝑆̂(𝑡) − 𝑖𝑆̂†(𝑡) ¤̂𝑆(𝑡)

)
|𝛹 (𝑡)⟩ , (5.12)

where by definition the transformed Hamiltonian 𝑆̂†(𝑡)𝐻̂(𝑡)𝑆̂(𝑡) is di-
agonal. In this way we have derived the effective Hamiltonian in the
adiabatic frame4 :
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5: Note that initially 𝜖(𝑡𝑖) ≪ −𝑡𝑐 we have
𝜗(𝑡𝑖) ≈ 𝜋 and |−(𝑡𝑖)⟩ ≈ |𝐿⟩, while at the
end of the sweep 𝜖(𝑡 𝑓 ) ≫ 𝑡𝑐 , 𝜗(𝑡 𝑓 ) ≈ 0
and hence

��−(𝑡 𝑓 )〉 ≈ − |𝑅⟩. We assume
here positive value of 𝑡𝑐 , such that at zero-
detuning, i.e. 𝜗 = 𝜋/2 the ground state
is an anti-symmetric |−(0)⟩ = |𝐿⟩ − |𝑅⟩,
while the excited state is an symmetric
|−(0)⟩ = |𝐿⟩+ |𝑅⟩, combination of diabatic
orbitals.

6: Although Landau-Zener model as-
sumes the drive is uniaxial and linear in
time, it can be applied to broad spectrum
of physical systems, in which energy of
two energy levels can be tuned into reso-
nance 𝐸0(𝜖0) = 𝐸1(𝜖0) using some param-
eter 𝜖 = 𝜖0, around which the 𝜕𝑡𝜖(𝑡) ≠ 0.
In presence of a finite coupling between
the levels ⟨0| 𝐻̂ |1⟩ ≡ 𝑡𝑐 the degeneracy is
lifted and the states hybridized into linear
combination of |0⟩ and |1⟩ states split by
the energy 𝑡𝑐 .

7: Even if the assumption of linear sweep
does not hold, the sweep can be usually
linearize in vicinity of avoided crossing,
the location of which is set to 𝜖0 = 0.

Ĥ(𝑡) = 𝑆̂†(𝑡)𝐻̂(𝑡)𝑆̂(𝑡) − 𝑖𝑆̂†(𝑡) ¤̂𝑆(𝑡), (5.13)

such that effectively 𝑖𝜕𝑡 |𝛹 (𝑡)⟩ = Ĥ(𝑡) |𝛹 (𝑡)⟩.

For the relevant case of Hamiltonian (5.3) the operator 𝑆̂(𝑡) corresponds
to rotation around the y-axis of the TLS system and can be explicitly
written as:

𝑆̂(𝑡) = exp
(
−𝑖 𝜍̂𝑦

𝜗(𝑡)
2

)
(5.14)

where the orbital angle 𝜗(𝑡) = ctan(𝜖(𝑡)/𝑡𝑐) can be used to generate
the instantaneous eigenstates5 from Eq. (5.5), since |±(𝑡)⟩ = 𝑆̂(𝑡) |±(𝑡)⟩.
When definition of 𝑆̂(𝑡) is substituted to Eq. (5.13) we obtain Hamiltonian
in the adiabatic frame of the form:

Ĥ(𝑡) = Ω(𝑡)
2

𝜍̂𝑧 −
¤𝜗(𝑡)
2

𝜍̂𝑦 , (5.15)

where we introduced the Pauli matrices in the adiabatic frame i.e. 𝜍̂𝑧 =
|+⟩⟨+| − |−⟩⟨−| and defined the energy gap between the eigenstates as:

Ω(𝑡) = 𝐸+(𝑡) − 𝐸−(𝑡) =
√
𝜖2 + 𝑡2𝑐 , (5.16)

and coherent between them (in the adiabatic frame):

¤𝜗(𝑡) = ¤𝜖𝑡𝑐
Ω2(𝑡) . (5.17)

From the above it is clear that evolution is adiabatic, i.e. the electron stays
in the ground charge state, if the following condition is fulfilled

Evolution is adiabatic ⇐⇒ Ω(𝑡) ≫ ¤𝜗(𝑡), at any 𝑡.

Which means that the angular velocity associated with the field rotation
¤𝜗(𝑡) is sufficiently small in comparison to instantaneous splitting Ω(𝑡).

Landau-Zener formula

We now relate the DQD system with the Landau-Zener model of avoided
crossing6 , which allows to compute probability of staying in the ground
adiabatic state, when the system is driven through avoided crossing, i.e.
local minimum of the aidabatic gap Ω(𝑡). The model Hamiltonian is
mathematically identical to 𝐻̂o(𝑡), given by Eq. (5.3), while the detuning
between the dots energy levels is assumed to be linear function of time,7
i.e. 𝜖 = 𝑣𝑡, where 𝑣 is the detuning sweep rate. For such a system,
initialized in the ground state the probability of occupying excited state
at the end of the sweep is given by the Landau-Zener Formula

𝑄LZ = 𝑝1 ≈ |𝑎+(∞)|2 = exp
(
−𝜋

2
𝑡2𝑐
𝑣

)
. (5.18)

This result can be derived via differential equations using asymptotic
expansion of parabolic cylinder function [116, 164]. Here we follow a
much simpler approach and compute the limiting cases of almost diabatic
and almost adiabatic transition.
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Perturbative derivation of L-Z formula

In the first case we assume the transition is almost diabatic, i.e. we write
equations of motion using Hamiltonian 𝐻̂o(𝑡):

¤𝑐𝑅(𝑡 𝑓 ) =
𝑡𝑐

2
𝑒
𝑖
∫ 𝑡 𝑓

𝑡𝑖
d𝑡′𝜖(𝑡′)

𝑐𝐿(𝑡), (5.19)

In the leading order of perturbation theory we can use the initial condition
𝑐𝐿(𝑡𝑖) = 1, 𝑐𝑅(𝑡𝑖) = 0 and compute first order correction as:

𝛿𝑐𝑅(𝑡 𝑓 ) =
𝑡𝑐

2

∫ 𝑡 𝑓

𝑡𝑖

𝑒−𝑖𝑣𝑡
2/2d𝑡 ≈ 𝑡𝑐

√
𝜋

2𝑖𝑣
=

√
𝜋𝑡2𝑐
2𝑣

𝑒 𝑖𝛼 , (5.20)

where in the integral we extended the limits to infinity. The
√
𝑖 = 𝑒−𝑖𝜋/4

is largest possible value of so-called Stokes phase 𝛼, the additional phase
shift acquired by the system during Landau-Zener transition. In many
observables including probability of occupying excited state, the Stokes
phase is not relevant since such probability is given by:

|𝛿𝑐𝑅(𝑡 𝑓 )|2 =
𝑡2𝑐𝜋

2𝑣
(5.21)

this result is consistent with the leading order expansion of 𝑄𝐿𝑍 given in
Eq. (5.18) for 𝑡2𝑐/𝑣 ≪ 1.

In the opposite case we use the adiabatic frame, where both the energy gap
Ω(𝑡) =

√
𝑡2𝑐 + 𝜖2 and the coupling between adiabatic states ¤𝜗 = 𝑣𝑡𝑐/Ω(𝑡)2

are time-dependent, and the evolution in the adiabatic frame is governed
by the Hamiltonian Ĥ(𝑡) given in Eq. (5.15). In such case the equation of
motion for the amplitude of ending up in the excited state 𝑎+ is given by:

¤𝑎+(𝑡) =
1
2
¤𝜗𝑎−(𝑡) exp

(
𝑖

∫ 𝑡

𝑡0

Ω(𝑡′)d𝑡′
)

(5.22)

Assuming the evolution starts in the ground energy state, in the leading
order we can set 𝑎−(𝑡) = 1 and compute first order correction to the
occupation of excited state |𝛿𝑎+(𝑡)|2 as:

|𝛿𝑎+(𝑡)|2 =
1
4

����∫ 𝑡

−∞
¤𝜗(𝑡1) exp

(
𝑖

∫ 𝑡1

−∞
Ω(𝑡′)d𝑡′

)����2 (5.23)

We compute the final occupation of excited state by setting 𝑡 → ∞ and
assuming the relevant evolution takes place around avoided crossing,
where Ω(𝑡) ≈ 𝑡𝑐 . In this way the 𝛿𝑎+(∞) can be approximated by the
Fourier transform of angular velocity ¤𝜗(𝑡), evaluated at Ω = 𝑡𝑐 , i.e.

𝛿𝑎+(∞) = 1
2
𝑒 𝑖𝜙0

∫ ∞

−∞

exp
[
𝑖
𝑡2𝑐
𝑣

(
𝑣𝑡
𝑡𝑐

)]
1 + ( 𝑣𝑡𝑡𝑐 )2

𝑣d𝑡
𝑡𝑐

=
𝜋
2

exp
(
− 𝑡

2
𝑐

𝑣
+ 𝑖𝜙0

)
, (5.24)

where 𝜙0 is some complex phase, which does not modify leading order
correction to the probability of non-adiabatic transfer:

𝛿𝑄𝐿𝑍 = 𝛿𝑝0 = |𝛿𝑎+(∞)|2 =
𝜋2

4
exp

(
−2𝑡2𝑐
𝑣

)
. (5.25)
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8: Note that 𝛿𝑡 denotes an infinitesimal
time before and after avoided crossing.

In Fig. 5.2 we compare Landau-Zener formula against almost-diabatic
and almost-adiabatic approximations.

Figure 5.2: Comparison between the Landau-Zener formula 𝑄LZ = exp
(
−𝜋𝑡2𝑐/2𝑣

)
[97] (blue line) and parturbative expression in the almost

diabatic 𝑡2𝑐 ≪ 𝑣 (Eq. (5.21) and orange line) and almost adiabatic 𝑡2𝑐 ≫ 1 (Eq. (5.25) and green line) limits. We show the result as a function
of dimensionless adiabatic parameter 𝑡2𝑐/𝑣 in the linear scale (left) and semi-logarithmic scale (right).

Adiabatic-impulse approximation

For the purpose of the thesis it is convenient to introduce here adiabatic-
impulse model, which was formulated in [165], and is equivalent to
transfer matrix formalism [166]. In the adiabatic-impulse approach the
evolution during L-Z drive is separated into three parts and can be
written as:

Û(−𝑡𝑖 , 𝑡𝑖) = Â(𝑡𝑖 , 𝛿𝑡) T̂Â(−𝛿𝑡 ,−𝑡𝑖), (5.26)

where the operator:

Â(𝑡 𝑓 , 𝑡𝑖) = exp
(
− 𝑖

2

∫ 𝑡 𝑓

𝑡𝑖

Ω(𝜏)𝜍̂𝑧
)
=

𝑒
− 𝑖2

∫ 𝑡 𝑓

𝑡𝑖
Ω(𝜏) 0

0 𝑒
𝑖
2

∫ 𝑡 𝑓

𝑡𝑖
Ω(𝜏)

 , (5.27)

corresponds to the adiabatic part of the evolution, during which the
occupation of instantaneous states |𝑎± |2 are constant and the amplitudes
undergoes only phase evolution, i.e. 𝑎±(𝑡) = |𝑎± | exp

{
∓ 𝑖

2

∫
Ω(𝜏)

}
. The

mixing between the adiabatic states takes place at the avoided crossing,8
which is modelled by the transfer matrix in the adiabatic frame:

T̂=

[
𝑖
√

1 −𝑄LZ𝑒
−𝑖𝛼𝑠 −

√
𝑄LZ√

𝑄LZ −𝑖
√

1 −𝑄LZ𝑒
𝑖𝛼𝑠

]
, (5.28)

where 𝑄LZ is the Landau-Zener probability of non-adiabatic transition,
while 𝛼𝑠 is the Stokes phase given by

𝛼𝑠 = 𝜋/4 + 𝜁LZ ln(𝜁LZ − 1) + argΓ(1 − 𝑖𝜁LZ) (5.29)

with 𝜁LZ = 𝑡2𝑐/4𝑣, such that 𝑄LZ = exp(−2𝜋𝜁LZ). In most cases we
will concentrate on the nearly adiabatic 𝜁LZ ≫ 1 or nearly diabatic
𝜁LZ ≫ 1 transfer, where the Stokes phase reduces to 𝛼𝑠 = 0 and 𝛼𝑠 = 𝜋/4
respectively. Additionally the Stokes phase has a deterministic origin and
will be deliberately neglected in all analytical studies of the environmental
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9: The complex tunnel coupling might
originate from the presence of external
magnetic field (Peierls substitution) and
become relevant in the case of the electron
shuttling in the closed loops [94]

noise considered in this thesis. It will naturally appear in all numerical
integration of equations of motion, which will certify correctness of this
approach. The adiabatic-impulse model will be particularity relevant,
when we compute correction to adiabatic transfer of the excited spin state
(see Chapter 11).

Phase gauge

We finally briefly discuss the phase gauge associated with the transfer
matrix T̂. To show its origin we assume adiabatic transition, i.e. set𝑄LZ to
zero. In such case the equal superposition state at 𝑡𝑖 < 0, i.e. 1√

2
(|+⟩ + |−⟩)

is transformed into:

T̂
|+⟩ + |−⟩√

2
→ 𝑖

|+⟩ − |−⟩√
2

, (5.30)

at the time 𝑡 𝑓 > 0, which introduces relative phase shift between the two
states in the superposition equal to 𝑒 𝑖𝜋 = −1, and the global phase of 𝑖
which can be ignored. The origin of the former can be understood by
looking at the exact form of instantaneous states, since from Eq. (5.5)

|+(−∞)⟩ = |𝑅⟩ → |+(+∞)⟩ = |𝐿⟩ ,
|−(−∞)⟩ = |𝐿⟩ → |−(+∞)⟩ = − |𝑅⟩ , (5.31)

The change of the relative phase between ground and excited state is
needed to ensure that the adiabatic transition is unitary.

Complex tunnel coupling

Finally we comment on the phase relation between the terms in Landau-
Zener transition. In the typical Landau-Zener model coupling between
diabatic states is assumed to be real. This is because in most application
phase relation between 𝑡𝑐 and 𝜖 has no direct significance9 . For instance
if detuning is set to be real, and tunnel coupling complex, i.e. 𝑡𝑐 = |𝑡𝑐 |𝑒 𝑖𝜃 ,
the 𝜃 can be incorporated into additional contribution to Stokes phase,
see (5.20). Additionally in this thesis we aim at computing dephasing of
the driven systems due to averaging over random evolution, and from
this perspective deterministic phases of tunnel coupling and Stokes phase
are not essential. Thus for simplicity of the analysis we will treat tunnel
coupling as real and cross-check the result with numerical simulation.

5.2 Classical noise approach

We now introduce the presence of the environment and show how it can
modify adiabaticity of the transfer and coherence between the adiabatic
levels. For illustration purposes we start this section by considering effects
of classical noise in both dots detuning 𝛿𝜖(𝑡) and coupling 𝛿𝑡𝑐(𝑡), such
that the driven Hamiltonian of TLS can be written as:

𝐻̂o(𝑡) =
𝜖(𝑡) + 𝛿𝜖(𝑡)

2
𝜎̂𝑧 +

𝑡𝑐 + 𝛿𝑡𝑐(𝑡)
2

𝜎̂𝑥 , (5.32)
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10: see Eq. (5.13) for definition of adiabatic
frame.

11: In particular to 𝑡𝑐 , which gives the min-
imum of Ω(𝑡).

12: To be consistent orbital polarization is
in the instantaneous basis we will use the
written symbol Z

where in contrast to previously considered dephasing effects for undriven
case, 𝛿𝜖(𝑡) and 𝛿𝑡𝑐(𝑡) are time-dependent. Next for each realization of 𝛿𝜖
and 𝛿𝑡𝑐 and at every time-instant we move to adiabatic frame, which sim-
ilarly to Eq. (5.14) is generated by the operator 𝑆̂(𝑡) = exp

{
−𝑖𝜎̂𝑦𝜗(𝑡)/2

}
,

where the noise-dependent adiabatic angle is given by the expression:

cot𝜗(𝑡) = 𝜖(𝑡) + 𝛿𝜖(𝑡)
𝑡𝑐 + 𝛿𝑡𝑐(𝑡)

. (5.33)

such that the effective noisy Hamiltonian in the adiabatic frame10 reads

H(𝑡) = 1
2
Ω(𝑡)𝜍̂𝑧 −

1
2
¤𝜗(𝑡)𝜍̂𝑦 , (5.34)

where the parameters are given by

Ω(𝑡) =
√
(𝜖[𝑡] + 𝛿𝜖[𝑡])2 + (𝑡𝑐 + 𝛿𝑡𝑐[𝑡])2 ,

¤𝜗(𝑡) =
(
𝑡𝑐 + 𝛿𝑡𝑐[𝑡]
Ω2[𝑡]

)2
𝜕

𝜕𝑡

(
𝜖(𝑡) + 𝛿𝜖[𝑡]
𝑡𝑐 + 𝛿𝑡𝑐[𝑡]

)
. (5.35)

Let us now investigate in what way fast and slow fluctuations of parame-
ters affects adiabaticity and coherence between the orbital levels.

Weak coupling limit

Using an assumption that we commonly employ in this thesis, the noise
contribution is weak in comparison to other deterministic energy scales.11
This allows us to compute corrections in the first order in 𝛿𝜖, 𝛿𝑡𝑐 i.e.
Ω(𝑡) = Ω0(𝑡) + 𝛿Ω(𝑡) and 𝜗(𝑡) = 𝜗0(𝑡) + 𝛿𝜗(𝑡) where Ω0(𝑡) =

√
𝜖2 + 𝑡2𝑐 .

Explicitly the leading order corrections read:

𝛿Ω(𝑡) = 𝜖(𝑡)𝛿𝜖(𝑡) + 𝑡𝑐𝛿𝑡𝑐(𝑡)
Ω0(𝑡)

= sin𝜗0(𝑡)𝛿𝑡𝑐(𝑡) + cos𝜗0(𝑡)𝛿𝜖(𝑡)

𝛿 ¤𝜗(𝑡) = −2 ¤𝜗(𝑡) 𝛿Ω(𝑡)
Ω0(𝑡)

+ ¤𝜖(𝑡)𝛿𝑡𝑐(𝑡)
Ω2

0(𝑡)
+ sin𝜗0(𝑡)

𝛿 ¤𝜖(𝑡)
Ω0(𝑡)

− cos𝜗0(𝑡)
𝛿¤𝑡𝑐(𝑡)
Ω0(𝑡)

,

(5.36)

The random modifications of angular velocity 𝛿𝜗(𝑡) corresponds to
the transverse noise in the instantaneous basis that can cause inelastic
transitions between the states |±(𝑡)⟩ (see Chapter 3 for dissipation due to
transverse noise in undriven case), while the fluctuations of energy gap
𝛿Ω(𝑡) can be thought of as the longitudinal noise in the instantaneous
basis, which leads to dephasing between the instantaneous states (in
analogy to Chapter 4 for undriven case).

Effective non-adiabaticity

First we discuss correction to the occupation probabilities |𝛿𝑎± |2, which
can be understood as the effective non-adibaticity. This can be seen as the
analogue of polarization, but in the instantaneous basis12 , i.e.

Z(𝑡) = Tr{𝜍̂𝑧𝜚(𝑡)}, (5.37)
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13: Note that the effective adiabaticity
does not mean that Z(𝑡) was constant dur-
ing the transfer. In particular, possibility of
relaxation-aided transfer can significantly
decrease excitation probability obtained
using isolated L-Z model.

14: It can be also understood using a geo-
metrical picture, where coupling between
the instantaneous states is interpreted as
the angular frequency of rotating mag-
netic field. In such case modification of
the energy (radius) affects angular veloc-
ity ¤𝜗(𝑡) even for unchanged sweep rate
𝑣

15: Note that around avoided crossing, we
have 𝜗 ≈ 𝜋/2 Ω0 ≈ 𝑡𝑐 and 𝛿Ω ≈ 𝛿𝑡𝑐

16: The derivation follows the results from
[2]

note that if Z(𝑡) = const the evolution is adiabatic. We will now define
effective adiabaticity as: ��Z(𝑡 𝑓 ) − Z𝑜(𝑡𝑖)

�� ⩽ 𝛿, (5.38)

for sufficiently small 𝛿 ≪ 1.13

Low-frequency noise

We concentrate now on the first two contributions to 𝛿 ¤𝜗(𝑡), which contrary
to the term involving noise derivative are non-negligible even in the case
of slow noise. In contrast to the undriven case, we show here that slow
noise in presence of the drive can also modify Z.

The first term comes directly from the fluctuations of the gap,14 ,

𝑣𝑡𝑐

(Ω0 + 𝛿Ω0)2
≈ ¤𝜗0

(
1 − 2𝛿Ω

Ω0

)
. (5.39)

In particular, in vicinity of the avoided crossing,15 where its value is
the largest, it can combined with the second term of Eq. (5.36), which
together give:

𝛿 ¤𝜗slow ≈ − ¤𝜗 𝛿𝑡𝑐
𝑡𝑐
. (5.40)

Clearly the modification of effective non-adiabaticity due to slow noise
is related to tunneling fluctuations only, as the slow detuning noise 𝛿𝜖
amounts to a shift of the initial and final detuning point, that is irrelevant
for the adiabatic evolution.

When the fluctuations 𝛿𝑡𝑐(𝑡) are slow enough to be considered constant
on the timescale at which ¤𝜗 is non-negligible, one can compute their
effect by directly averaging of Landau-Zener formula over fluctuations
of the constant gap, i.e.

⟨𝑄LZ⟩ =
〈
exp

(
−𝜋

2
(𝑡𝑐 + 𝛿𝑡𝑐)2

ℏ𝑣2

)〉
=

√
1
𝛼

exp
(
−𝜋

2
𝑡2𝑐
𝛼𝑣

)
, (5.41)

where 𝛼 = 1 + 𝜋𝜎2
𝑡𝑐
/𝑣 is dimensionless constant, which modifies the

sweep rate. More involved analysis of the influence of low-frequency
noise on the adiabatic transition can be found in [115, 116].

High-frequency noise

We now analyze the last two terms in the expression for 𝛿 ¤𝜗(𝑡), which
we relate to dissipative evolution of driven TLS.16 In the adiabatic frame
they can be seen as purely transverse noise V̂⊥(𝑡) = 1

2𝜉⊥(𝑡)𝜍̂𝑦 , which at
each time instant can be written as:

𝜉⊥(𝑡) =
𝛿 ¤𝜖(𝑡)
Ω0(𝑡)

sin𝜗0(𝑡) −
𝛿¤𝑡𝑐(𝑡)
Ω0(𝑡)

cos𝜗0(𝑡). (5.42)
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17: Which for the DQD transfer can be
identified with the transfer error Q

18: The correlation function of the deriva-
tive of the noise can be related to spectral
density of the noise, since:

𝑆 ¤𝑥 ¤𝑥(𝜔) = 𝜔2𝑆𝑥𝑥(𝜔).

and hence

⟨𝛿 ¤𝑥(𝑡1)𝛿 ¤𝑦(𝑡2)⟩ =
∫

d𝜔
2𝜋

𝜔2𝑆𝑥𝑦(𝜔)𝑒−𝑖𝜔(𝑡1−𝑡2) .

19: see the appendix of our work [2] for
more detailed derivation

20: Note that the spectrum evaluated at
the negative frequence is consistent with
Chapter 3, where negative frequency cor-
responded to absorption of energy quanta.

21: Note that polarization is related to
probability of excited state 𝛿Z= 2|𝛿𝑎+ |2
as a reminder

Using the above, the equations of motion for the amplitude of being in
the excited state is given by:

𝑎+(𝑡 𝑓 ) =
−𝑖
2

∫ 𝑡 𝑓

𝑡𝑖

d𝑡𝜉⊥(𝑡)𝑎−(𝑡)𝑒
−𝑖

∫ 𝑡

𝑡𝑖
Ω0(𝑡)+𝛿Ω(𝑡)d𝑡

. (5.43)

In leading order of perturbation theory the occupation of the excited
state17 at time 𝑡 𝑓 , can be computed by replacing 𝑎−(𝑡) = 1 and writing

𝑄 = |𝛿𝑎+(𝑡 𝑓 )|2 ≈ 1
4

∫ 𝑡 𝑓

𝑡𝑖

∫ 𝑡 𝑓

𝑡𝑖

d𝑡1d𝑡2⟨𝜉⊥(𝑡1)𝜉⊥(𝑡2)⟩𝑒
−𝑖

∫ 𝑡1
𝑡2

Ω0(𝑡) (5.44)

where we have neglected correction to adiabatic gap, as it is a higher
order correction. Now we substitute expression for the transverse noise
(5.42) and conveniently separate the correction to the occupaiton of the
excited state as:

𝛿𝑄 ≈ 𝛿𝑄𝜖𝜖 + 𝛿𝑄𝜖𝑡𝑐 + 𝛿𝑄𝑡𝑐𝜖 + 𝛿𝑄𝑡𝑐 𝑡𝑐 , (5.45)

where each term is proportional to respective correlation functions of
noise derivatives18 𝑄𝑥𝑦 ∝ ⟨𝛿 ¤𝑥𝛿 ¤𝑦⟩, where 𝑥, 𝑦 = 𝜖, 𝑡𝑐 . In terms of spectral
density of the noise the corrections read:

𝛿𝑄𝑥𝑦 =
1

8𝜋

∫ ∞

−∞
𝑆𝑥𝑦(𝜔)𝐹𝑥(𝜔)𝐹∗𝑦(𝜔), (5.46)

where the filtering functions are defined as:

𝐹𝜖(𝜔) =
∫ 𝑡 𝑓

𝑡𝑖

sin𝜗0
𝜔

Ω0(𝑡)
exp

{
𝑖𝜔𝜏 + 𝑖

∫ 𝜏

0
Ω0(𝜏′)d𝜏′

}
d𝜏

𝐹𝑡𝑐 (𝜔) =
∫ 𝑡 𝑓

𝑡𝑖

cos𝜗0
𝜔

Ω0(𝜏)
exp

{
𝑖𝜔𝜏 + 𝑖

∫ 𝜏

0
Ω0(𝜏′)d𝜏′

}
d𝜏. (5.47)

We now move the limits of the integral 𝑡𝑖 → −∞ and 𝑡 𝑓 → ∞, and com-
pute the integral in the leading order of stationary phase approximation19

as:

𝐹𝜖(Ω0) = 2
𝑡𝑐

Ω0
cos(𝜑(𝜏̃) − 𝜋/4)

√
2𝜋
𝑣

(
1 − 𝑡2𝑐

Ω2
0

)−1/4

𝐹𝑡𝑐 (Ω0) = −2𝑖
𝑣𝜏̃
Ω0

sin(𝜑(𝜏̃) − 𝜋/4)
√

2𝜋
𝑣

(
1 − 𝑡2𝑐

Ω2
0

)−1/4

, (5.48)

in which we defined time at which the phase 𝜑(𝜏̃) = Ω0𝜏̃ +
∫ 𝜏̃

0 Ω0(𝜏′)

is stationary as 𝜏̃ =

√
Ω2

0 − 𝑡2𝑐/𝑣2. In the process the frequency became
identified with the negative of adiabatic gap20 i.e. 𝜔 = −Ω(𝜏).

Now in the diagonal contributions we replace rapidly oscillating phase
|𝐹𝜖 |2 = cos2(𝜑(𝜏̃) − 𝜋/4) ≈ 1/2 and |𝐹𝑡𝑐 |2 ∝ sin2(𝜑(𝜏̃) − 𝜋/4) ≈ 1/2 with
its average, which allows to rewrite the leading order contribution to
effective non-adiabaticity21 as:
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22: First one can do it for positive times
𝑡 = (Ω2 − 𝑡2𝑐 )/𝑣 and then use the fact that
the integral is symmetric under replacing
𝑡 → −𝑡.

𝛿𝑄𝜖𝜖 =
1

2𝑣

∫ ∞

𝑡𝑐

𝑆𝜖(−Ω)√
1 − 𝑡2𝑐/Ω2

(
𝑡2𝑐
Ω2

)
dΩ

𝛿𝑄𝑡𝑐 𝑡𝑐 =
1

2𝑣

∫ ∞

𝑡𝑐

𝑆𝑡(−Ω)
√

1 − 𝑡2𝑐/Ω2dΩ. (5.49)

At this point it is convenient to change the integration variable to time,22

which results in:

𝛿𝑄𝜖𝜖 =
1
4

∫ 𝑡 𝑓

𝑡𝑖

𝑆𝜖(−Ω[𝑡]) sin2 𝜗(𝑡)d𝑡

𝛿𝑄𝑡𝑐 𝑡𝑐 =
1
4

∫ 𝑡 𝑓

𝑡𝑖

𝑆𝑡𝑐 (−Ω[𝑡]) cos2 𝜗(𝑡)d𝑡 , (5.50)

where sin𝜗(𝑡) = 𝑡𝑐/Ω(𝑡) and cos𝜗 = 𝜖(𝑡)/Ω(𝑡). In Sec. 5.3 we will use
adiabatic Master equation to show that the above result has the structure
of the integrated excitation rate, where Γ+,𝜖(𝑡) = 1

4𝑆𝜖(Ω[𝑡]) sin2 𝜗(𝑡) and
analogously for Γ+,𝑡𝑐 (𝑡). We highlight that level of noise-induced non-
adiabaticity 𝛿𝑄 is expected to increase for slower sweeps (i.e. smaller
𝑣) which can be related to increasing time spent around the avoided
crossing where noise-induced accelerations of the sweep rate can occur.
This stands in contrast to Landau-Zener model without the noise, where
faster sweeps results in more non-adiabatic transfer.

Cross-correlation correction

We finally comment on the cross correlation term, which has the general
form:

𝛿𝑄𝜖𝑡𝑐 + 𝛿𝑄𝑡𝑐𝜖 =
1
2

∫ ∞

−∞
[𝑆𝜖𝑡𝑐 (𝜔) − 𝑆𝑡𝑐𝜖(𝜔)]𝐹𝜖(𝜔)𝐹∗𝑡𝑐 (𝜔). (5.51)

i.e. it vanishes unless 𝑆𝑡𝑐𝜖(𝜔) ≠ 𝑆𝜖𝑡𝑐 (𝜔) meaning the cross-correlation
spectrum has non-zero imaginary part. Non-real spectrum can for in-
stance emerge if the fluctuations in 𝛿𝜖 and 𝛿𝑡𝑐 have causal correla-
tion [151]. However even if this is the case, we stress out that for the
non-diagonal correction the rapidly oscillating phase has zero-average
𝐹𝜖(𝜔)𝐹𝑡𝑐 (𝜔) ∝ cos(2𝜑), and for this reason is most likely to be negligi-
ble.

Dephasing

After considering corrections to effective adiabaticity we discuss now
how the relative phase between the instantaneous states can be modified
during DQD transition. We assume that the longitudinal noise affects the
relative phase only away from avoided crossings, i.e. in the "adiabatic"
part of adiabatic-impulse approximation from Sec. 5.1. We concentrate
on the relevant case, where the non-zero population of excited state is
generated by the transition through avoided crossing, such that the state
of the TLS just after avoided crossing reads:

|𝜓(0 + 𝛿𝑡)⟩ =
√
𝑄 |+(𝛿𝑡)⟩ +

√
1 −𝑄𝑒 𝑖𝜙0 |−(𝛿𝑡)⟩ , (5.52)
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23: for instance related to Stokes phase in-
troduced in the transfer matrix formalism
in Eq. (5.28)

with some complex, deterministic phase 𝑒 𝑖𝜙0 .23 Now when detuning
sweep continues the probability of occupying instantaneous states re-
mains constant, but the additional phase between ground and excited
state is acquired 𝜙(𝑡) − 𝜙0 =

∫ 𝑡 𝑓

𝛿𝑡
Ω(𝑡), where Ω(𝑡) = Ω0(𝑡) + 𝛿Ω(𝑡) with

the noise-dependent correction given by the Eq. (5.36).

Let us look now on the coherence between ground and excited adiabatic
states, averaged over fluctuations of classical noise, which we define as:

W′(𝑡) = 2 Tr{𝜍̂−𝜚′(𝑡)} = −W(0)
〈
exp

(
−𝑖

∫ 𝑡 𝑓

𝛿𝑡
𝛿Ω(𝑡)

)〉
. (5.53)

Following quasitatic noise approximation from Sec. 4.4, the decrease of
W′(𝑡) can be related to:〈
exp

(
−𝑖

∫ 𝑡

0
𝛿Ω(𝑡)

)〉
≈ exp

(
−1

2
[
𝜎̃𝜖

∫ 𝑡 𝑓

0
cos𝜗0

]2 − 1
2
[
𝜎̃𝑡𝑐

∫ 𝑡 𝑓

0
sin𝜗0

]2
)
,

(5.54)
where we have set 𝛿𝑡 → 0 and used expression for 𝛿Ω(𝑡) from Eq. (5.36).
The power of quasistatic noise in detuning 𝜎̃2

𝜖 and tunnel coupling 𝜎̃2
𝑡𝑐

were computed using integral from Eq. (4.43). The integrals are related
to the noiseless orbital angle 𝜗0, defined via:

cos𝜗0(𝑡) =
𝜖(𝑡)
Ω0(𝑡)

, sin𝜗0(𝑡) =
𝑡𝑐

Ω0(𝑡)
, (5.55)

which allows us to compute∫ 𝑡 𝑓

0
cos𝜗0 =

𝑡𝑐

𝑣

(√
1 +

(
𝑣𝑡 𝑓
𝑡𝑐

)2
− 1

)
≈ 𝑡 𝑓∫ 𝑡 𝑓

0
sin𝜗0 =

𝑡𝑐

𝑣
arctanh

(
𝑣𝑡 𝑓

Ω(𝑡 𝑓 )

)
, (5.56)

where in the first expression we have used the fact that the final detuning
is typically much larger then tunnel coupling, i.e. 𝑣𝑡 𝑓 /𝑡𝑐 ≫ 1. The above
shows that the orbital dephasing is expected to be dominated by the
detuning noise. In particular after detuning sweep the coherence between
the orbital states can be approximated as:

|W/W0 | =
〈
exp

(
−𝑖

∫ 𝑡 𝑓

0
𝛿Ω(𝑡)

)〉
≈ exp

(
−1

2
𝜎2
𝜖𝑡

2
𝑓

)
, (5.57)

5.3 Adiabatic master equation

After considering effects of classical noise included in the Landau-Zener
Hamiltonian we now turn to a more standard treatment of the open,
driven quantum system in the form of adiabatic Master equation (AME)
[109–111]. By design such an approach is more suitable to dissipative
evolution during adiabatic drive and less for dephasing effects due to
low-frequency noise.
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24: which in our case corresponds to adi-
abatically driven DQD system

Adiabatic Bloch-Redfield equation

We start be deriving the adiabatic version of Bloch-Redfield equation,
where to some extent we will follow steps of undriven derivation pre-
sented in Sec. 3.2. We concentrate on the orbital drive with the general
Hamiltonian

𝐻̂(𝑡) = 𝐻̂𝑜(𝑡) + 𝑉̂𝑜𝑒 + 𝐻̂𝑒 . (5.58)

In the above 𝐻̂𝑜(𝑡) is the Hamiltonian of driven system,24 𝑉̂𝑜𝑒 denotes its
coupling to environment while 𝐻̂𝑒 is the Hamiltonian of the environment,
with the latter assumed to be in equilibrium state 𝜌𝑒 = 𝑒−𝛽𝐻̂𝑒/Z, where
Z= Tr

{
𝑒−𝛽𝐻̂𝑒

}
is the partition function.

We now move to adiabatic, picture using operators 𝑆(𝑡) from Eq. (5.10),
which diagonalize the driven part of the Hamiltonian:

𝑆̂†𝐻̂𝑜 𝑆̂ =
Ω(𝑡)

2
𝜍̂𝑧 ≡ Ĥ0(𝑡), (5.59)

where Ĥ0(𝑡) denotes Hamiltonian diagonal in the adiabatic frame, which
we express in terms of adiabatic Pauli operators 𝜍̂𝑧 |±⟩ = ±Ω(𝑡) |±⟩.

Let us now repeat initial steps of the derivation of Bloch-Redfield
equation (see Sec. 3.2), this time in the adiabatic frame, in which
𝜚𝑞(𝑡) = 𝑆̂(𝑡)𝜌̂𝑞(𝑡)𝑆̂†(𝑡). After Born-Markov approximation (Eq. (3.27))
and in the Schrodinger picture (Eq. 3.29) the equation for density matrix
of the driven system is given by:

𝜕

𝜕𝑡
𝜚𝑜(𝑡) = −𝑖

[
Ĥ(𝑡), 𝜚𝑜(𝑡)

]
− Tr𝑒

{
[
Ṽ𝑜𝑒(𝑡),

∫ ∞

0
d𝑟

(
Û𝑜(𝑡 , 𝑡 − 𝑟)Ṽ𝑜𝑒(𝑡 − 𝑟) Û†

𝑜 (𝑡 , 𝑡 − 𝑟)
)
𝜚𝑞(𝑡)

]
+ (ℎ.𝑐.)

}
,

(5.60)

where Ĥ(𝑡) = Ĥ0(𝑡) − 𝑖𝑆̂†(𝑡) 𝜕
𝜕𝑡 𝑆̂(𝑡), Ṽ𝑜𝑒(𝑡) = 𝑒 𝑖𝐻̂𝑒 𝑡 V̂𝑜𝑒(𝑡)𝑒−𝑖𝐻̂𝑒 𝑡 , with

V̂𝑜𝑒 = 𝑆̂†𝑉̂𝑜𝑒 𝑆̂, being the coupling in the adiabatic frame. The central
approximation of AME is related to free-evolution operator inside the
dissipative part, which is approximated as:

Û𝑜(𝑡 , 𝑡 − 𝑟) = Texp
(
−𝑖

∫ 𝑡

𝑡−𝑟
H0(𝑡′) + 𝑖𝑆̂(𝑡′) ¤̂𝑆†(𝑡′)

)
≈ exp

(
−𝑖

∫ 𝑡

𝑡−𝑟
H0(𝑡′)

)
≈ exp

(
−𝑖Ĥ0(𝑡) 𝑟

)
. (5.61)

This is equivalent to saying that the coupling between adiabatic levels is
negligible on the time scale of 𝑟 which is not larger then the correlation
time of the bath. Finally the second approximation assumes, that the
on the same timescale 𝑟 the rotation of the adiabatic frame is negligible,
which means that together:

Û𝑎(𝑡 , 𝑡 − 𝑟)Ṽ𝑎𝑒(𝑡 − 𝑟) Û†
𝑎 (𝑡 , 𝑡 − 𝑟) ≈ 𝑒−𝑖Ĥ0(𝑡) 𝑟 Ṽ𝑎𝑒(𝑡)𝑒 𝑖Ĥ0(𝑡) 𝑟 ≡ Ṽ𝑎𝑒(𝑡 ,−𝑟),

where we have treated 𝑡 as parameter and moved to the interaction
picture with respect to approximately constant on the relevant timescale
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25: The lack of 𝑉̂𝑦 is chosen to reflect pre-
viously considered fluctuations of tunnel
coupling and detuning between DQD sys-
tem

26: Such independence can be caused by
different physical origin of the couplings.
Also, as we showed in Sec. 5.2 the cross-
term between 𝑉̂𝑥 and 𝑉̂𝑧 is typically much
weaker then the auto-correlation terms

Ĥ0(𝑡). The above operator can be written explicitly as:

Ṽ𝑎𝑒(𝑡 ,−𝑟) =
∑
𝑖 𝑗

𝑉̃
′𝑖 𝑗
𝑒 (𝑡) |𝑖⟩⟨𝑗 | 𝑒 𝑖Ω𝑖 𝑗 (𝑡)𝑟 , (5.62)

whereΩ𝑖 𝑗(𝑡) = 𝐸𝑖(𝑡)−𝐸 𝑗(𝑡) are the energies of adiabatic states |𝑖(𝑡)⟩ , | 𝑗(𝑡)⟩
and 𝑉̃

′𝑖 𝑗
𝑒 (𝑡) it is the operator in the interaction picture with respect to

bath Hamiltonian, that acts in the environmental degrees of freedom. Up
to this moment the above derivation can be used for general dimensions
of the driven system.

Two-level system

We concentrate now on the two-level system coupled to environment via
the two-axis coupling25 :

𝑉̂𝑜𝑒 =
1
2

(
𝑉̂𝑥 𝜎̂𝑥 + 𝑉̂𝑧 𝜎̂𝑧

)
. (5.63)

In contrast to previously used TLS-environment transverse coupling
Eq. (2.12), for the illustration proposes we used here Pauli matrices
instead of ladder operators, however one can always translate between
two representations using identities 𝑉̂𝑥 = 1

2 (𝑉̂+ + 𝑉̂−) with 𝑉̂+ = 𝑉̂−,
such that 𝑉̂𝑦 = 1

2𝑖 (𝑉̂+ − 𝑉̂−) = 0. We additionally assume each coupling
is statistically independent26 and hence Tr𝑒{𝑉̂𝑘(𝑠)𝑉̂𝑙(0)𝜌𝑒} = 𝛿𝑘𝑙𝐶𝑘𝑙(𝑠).
With the approximations above, the Bloch-Redfield AME have the form:

¤𝜌𝑜(𝑡) = −𝑖
[
Ĥ(𝑡), 𝜌̂𝑜(𝑡)

]
−

∑
𝑘=𝑥,𝑧

[
𝑆̂†(𝑡)𝜎̂𝑘 𝑆̂(𝑡), R̂𝑘𝜚𝑞(𝑡)

]
+ ℎ.𝑐. (5.64)

where we have defined the adiabatic version of Bloch-Redfield tensor
(vector) as:

R̂𝑘(𝑡) =
1
4

∫ ∞

0

(
𝑒−𝑖H0(𝑡)𝑟 𝑆̂†(𝑡)𝜎̂𝑘 𝑆̂(𝑡)𝑒 𝑖H0(𝑡)𝑟

)
𝐶𝑘(𝑟)d𝑟, (5.65)

with 𝐶𝑘(𝑟) = Tr𝑒{𝑉̂𝑘(𝑟)𝑉̂𝑘(0)𝜌𝑒}.

We finally apply the above to the previously considered Landau-Zener
drive of orbital states defined by the driven Hamiltonian 𝐻̂o(𝑡) from
Eq. (5.3). In such a case the transformation to adiabatic frame amounts to
rotation around single axis 𝑆̂ = exp

{
−𝑖 𝜗(𝑡)2 𝜎̂𝑦

}
. As a result one can easily

compute the transformation to adiabatic frame of reference for each Pauli
operator as:

𝑆̂†(𝑡)𝜎̂𝑥 𝑆̂(𝑡) = 𝜍̂𝑥 cos𝜗(𝑡) + 𝜍̂𝑧 sin𝜗(𝑡)
𝑆̂†(𝑡)𝜎̂𝑧 𝑆̂(𝑡) = 𝜍̂𝑧 cos𝜗(𝑡) − 𝜍̂𝑥 sin𝜗(𝑡) (5.66)

where we used 𝜍̂𝑖 to highlight that the operators in the right hand side
are given in the adiabatic frame, e.g. 𝜍̂𝑥 = |+⟩⟨−| + |−⟩⟨+| and used
trigonometric function of time-dependent orbital angle 𝜗(𝑡) defined via
cos𝜗(𝑡) = 𝜖(𝑡)/Ω(𝑡) and sin𝜗(𝑡) = 𝑡𝑐/Ω(𝑡).
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27: see discussion of standard Master
equation Sec. 3.2

Adiabatic Master equation in the Linblad form

Let us apply the secular approximation,27 i.e. leave only the energy-
conserving terms proportional to 𝜍̂± 𝜍̂∓. Next, we neglect the zero-
frequency contribution ∝ 𝜍̂𝑧 , which will be included by averaging over
slow fluctuations of classical noise and finally omit the deterministic
Lamb-shift terms. As a result the remaining terms can be represented
as: ∑

𝑗=𝑥,𝑧

[
𝜎̂𝑗(𝑡), R̂𝑗(𝑡)𝜌̂𝑞(𝑡)

]
=

1
2
Γ−(𝑡)

[
𝜍̂− , 𝜍̂+𝜌̂𝑞

]
+ 1

2
Γ+(𝑡)

[
𝜍̂+ , 𝜍̂−𝜌̂𝑞

]
,

(5.67)

where:

Γ∓(𝑡) =
1
4

(
𝑆𝑥(±Ω[𝑡]) cos2 𝜗(𝑡) + 𝑆𝑧(±Ω[𝑡]) sin2 𝜗(𝑡)

)
, (5.68)

which was expressed in terms of spectral densities of the operators 𝑉̂𝑥 ,
𝑉̂𝑧 i.e.

𝑆𝑖(Ω[𝑡]) =
∫ ∞

−∞
Tr{𝑉̂′

𝑖 (𝑠)𝑉̂
′
𝑖 (0)𝜌̂𝑒}𝑒

𝑖Ω[𝑡]𝑠d𝑠 for 𝑖 = 𝑥, 𝑧. (5.69)

The commutator (5.67) together with its Hermitian conjugate and the
unitary terms Ĥ(𝑡) = 1

2Ω(𝑡)𝜍̂𝑧 − 1
2
¤𝜗(𝑡)𝜍̂𝑦 produces adiabatic Master

equation (AME) in the Linbladian form:

¤̂𝜚𝑜(𝑡) = − 𝑖
[
Ω(𝑡)

2
𝜍̂𝑧 −

¤𝜗(𝑡)
2

𝜍̂𝑦 , 𝜚𝑜(𝑡)
]

−
∑
𝑘=±

(
𝐿̂𝑘(𝑡)𝜚𝑞(𝑡)𝐿̂†𝑘(𝑡) −

1
2
{
𝐿̂†
𝑘
(𝑡)𝐿̂𝑘(𝑡), 𝜚𝑜(𝑡)

})
, (5.70)

with time-dependent Linbladians defined in terms of Eq. (5.68):

𝐿̂+(𝑡) =
√
Γ+(𝑡)𝜍̂+ , 𝐿̂−(𝑡) =

√
Γ−(𝑡)𝜍̂−. (5.71)

We highlight that contrary to the undriven case, the unitary part of the
AME is non-diagonal and contains the coupling between the adiabatic
states. The presence of the coupling makes the resulting equations motion
difficult to solve analytically, hence later in the thesis some approximate
methods will be used.

Excited state occupation

We first consider occupation of excited state, i.e. 𝑄(𝑡) = ⟨+| 𝜚(𝑡) |+⟩ in
the adiabatic limit, where ¤𝜗(𝑡) ≪ Ω(𝑡). In such a case the AME produces
the differential equation:

¤𝑄(𝑡) = Γ+(𝑡) −𝑄(𝑡)
(
Γ−(𝑡) + Γ+(𝑡)

)
. (5.72)

For the initial condition 𝑄(𝑡) = 𝑄0, the above can be solved analytically,
i.e.

𝑄(𝑡 𝑓 ) = 𝑄0𝑒
−𝜒(𝑡𝑖 ,𝑡 𝑓 ) +

∫ 𝑡 𝑓

𝑡𝑖

d𝑡′Γ+(𝑡′)𝑒−𝜒(𝑡
′ ,𝑡 𝑓 ) , (5.73)
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28: for the differential equation (5.72)

where the relaxation factor has been defined as:

𝜒(𝑡1 , 𝑡2) =
∫ 𝑡2

𝑡1

d𝑡′
(
Γ+(𝑡′) + Γ−(𝑡′)

)
. (5.74)

Note that for the case of initially ground state 𝑄0 = 0 and using first
order perturbation theory28 we can reconstruct the classical noise result
from Eq. (5.50), i.e.

𝛿𝑄(𝑡 𝑓 ) =
∫ 𝑡 𝑓

𝑡𝑖

Γ+(𝑡′). (5.75)

5.4 Dephasing and dissipation in the
time-dependent basis

We conclude this section by discussing the approach used in the thesis to
treat dissipative and dephasing evolution of the driven quantum system.
For the remainder of this thesis we will concentrate on the coupling
between the DQD system and the environment of the form:

𝑉̂𝑜𝑒 =
𝑉̂𝑥

2
𝜎̂𝑥 +

𝑉̂𝑧

2
𝜎̂𝑧 , (5.76)

which is written in the basis of DQD two-level system, i.e. 𝜎̂𝑧 = |𝐿⟩⟨𝐿| −
|𝑅⟩⟨𝑅 |, and hence the couplings correspond to fluctuations of the tunnel
coupling and dots detunings 𝑉̂𝑥 and 𝑉̂𝑧 respectively.

Transverse coupling

For time-dependent instantaneous states |+(𝑡)⟩ , |−(𝑡)⟩ of the TLS Hamil-
tonian one can define the instantaneous transverse coupling as:

𝑉̂⊥ = ⟨+(𝑡)| 𝑉̂𝑜𝑒 |−(𝑡)⟩ + h.c = (𝑑⊥,𝑥(𝑡)𝑉̂𝑥 + 𝑑⊥,𝑧(𝑡)𝑉̂𝑧) + h.c. (5.77)

where for convenience we defined the transverse dipole moments with
respect to tunnel coupling (x) and detuning (z) fluctuations as:

𝑑⊥,𝑥(𝑡) = ⟨+(𝑡)| 𝜎̂𝑥 |−(𝑡)⟩ = cos𝜗(𝑡) (5.78)
𝑑⊥,𝑧(𝑡) = ⟨+(𝑡)| 𝜎̂𝑧 |−(𝑡)⟩ = − sin𝜗(𝑡). (5.79)

With their help in Sec. 5.3 we showed that the time-dependent relaxation
rates can be computed as:

Γ±(Ω[𝑡]) = 1
4

(
|𝑑⊥,𝑥(𝑡)|2𝑆𝑥(±Ω[𝑡]) + |𝑑⊥,𝑧(𝑡)|2𝑆𝑧(±Ω[𝑡])

)
, (5.80)

where we neglected typically small correlations between the operators
𝑉̂𝑥 and 𝑉̂𝑧 , and used their respective spectral densities evaluated at the
instantaneous energy gap (See Eq. (5.69)). As a result of the above in the
remaining chapters we will concentrate on the modeling of the relaxation
rates corresponding to the tunnel coupling and detuning fluctuations in
the realistic DQD systems, which can be used as an input for the AME
from Eq. (5.70).
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29: and eventually the fluctuations of the
Zeeman splitting 𝛿𝐸𝑧 , when spin degree
of freedom will be considered in Part III.

Longitudinal coupling

Similarly we present the effective approach to dephasing caused by
the longitudinal coupling in the instantaneous basis of the TLS system
|+(𝑡)⟩ , |−(𝑡)⟩. In analogy to the above coupling can be written as:

𝑉̂𝜙 = ⟨+(𝑡)| 𝑉̂𝑜𝑒(𝑡) |+(𝑡)⟩ − ⟨−(𝑡)| 𝑉̂𝑜𝑒(𝑡) |−(𝑡)⟩ = (𝑑𝜙,𝑥(𝑡)𝑉̂𝑥 + 𝑑𝜙,𝑥(𝑡)𝑉̂𝑧),
(5.81)

where we defined longitudinal dipole moments:

𝑑𝜙,𝑥(𝑡) = ⟨+(𝑡)| 𝑉̂𝑥 |+(𝑡)⟩ − ⟨−(𝑡)| 𝑉̂𝑥 |−(𝑡)⟩ = sin𝜗(𝑡)
𝑑𝜙,𝑧(𝑡) = ⟨+(𝑡)| 𝑉̂𝑧 |+(𝑡)⟩ − ⟨−(𝑡)| 𝑉̂𝑧 |−(𝑡)⟩ = cos𝜗(𝑡), (5.82)

As long as the dipole moment have non-zero average, the dephasing due
to low-frequency noise can be modeled by the quasistatic approximation
as it was done in Eq. (5.57). As a result in the leading order the phase
error in the orbital degrees of freedom can be written as:

⟨𝛿𝜑2⟩ ≈ 𝜎̃2
𝜖

[ ∫ 𝑡

0
𝑑𝜙,𝑧(𝑡′)d𝑡′

]2

+ 𝜎̃2
𝑡𝑐

[ ∫ 𝑡

0
𝑑𝜙,𝑥(𝑡′)d𝑡′

]2

, (5.83)

where 𝜎̃𝜖 , 𝜎̃𝑡𝑐 are RMS of the quasistatic fluctuations of the tunnel cou-
pling and the detuning, which can be computed using methods from
Sec. 4.4.

In fact, in this thesis we will be not directly interested in the phase relation
between the orbital (charge) degrees of freedom. Instead in Chapter 12
we will show how in the presence of correlation between spin and charge
degree of freedom, the coherence of spin qubit can be also affected by the
tunnel coupling and detuning noise. In language of the above it would
mean that the spin-qubit temporally acquires non-zero longitudinal
dipole moment with respect to one of the noise sources, which can be
computed in analogy to Eq. (5.82) as

𝑑
spin
𝜙,𝑖 (𝑡) = ⟨↑̃(𝑡)|𝑉̂𝑖 |↓̃(𝑡)⟩ ≠ 0, (5.84)

where the states |↑̃(𝑡)⟩, |↓̃(𝑡)⟩ corresponds to the instantaneous spin states,
which for the adiabatic transition might be partly correlated with the
charge degree of freedom (see Eq. (9.20) for an example). We discuss
possibility of using this approach for probing spatial correlation of the
noise in the outlook.

Numerical simulations

We conclude this chapter by describing the approach use to numerically
simulate the interdot transition in presence of both low-frequency and
high-frequency environmental noise. Using realistic models of the envi-
ronment we will compute the relaxation rates between the instantaneous
states of the double quantum dot system as a function of detuning (energy
gap). Following Eq. (5.80) the relaxation rates will be used as the input
for adiabatic Master equation in the Linblad form written in Eq. (5.71).
The resulting equations of motions will be averaged numerically over
multiple realisations of the quasistatic noise in detuning 𝛿𝜖 and tunnel
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coupling 𝛿𝑡𝑐 ,29 each of them drawn from the independent Gaussian
distribution with the effective RMS and zero average. To prove validity
of such approach in the Appendix A we numerically test the averaged
adiabatic Master equation method against numerical average of Schrodinger
equation over classical noise process.





II. Charge transfer of spin qubit





1: for instance vibrational modes for
trapped ions [167]

2: We use standard textbook knowledge.
More detailed derivations and in-depth
discussion can be found in [169, 170]
3: As mentioned before we will not con-
sider here alternative ways of trapping the
electron in other semiconductor nanos-
tructures, which include: point defects
[50], shallow donors [51] or self-assembled
QDs [52]
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In many realizations of the qubits the computational states used for
quantum information processing are not the only accessible discrete
levels. As a relevant example in this thesis we consider the electron spin-
qubit in the quantum dot, where apart from the spin degree of freedom
used for quantum computation, the presence of confinement potential
introduces orbital degrees of freedom. The orbital states in semiconductor
spin qubit are associated with the charge degree of freedom and due to
electrostatic nature of the potential defining the quantum dots they will
be sensitive to fluctuations of electric field. We will show that the electric
drive of orbital state, i.e. time-dependent modification of electrostatic
potential can be in principle used to move the spin-qubit. In this thesis
we focus on semiconductor quantum dot spin qubit, but it should kept in
mind that such external degrees of freedom can be found in many other
realizations of the qubits1 . In this chapter we first define a model of the
wavefunction of the electron, confined in a semiconductor quantum dot
(Sec. 6.1) and double quantum dot (Sec. 6.2). Then in Sec. 6.3 we propose
and discuss three models of the Double Quantum Dot (DQD) systems
corresponding to Si/SiGe, SiMOS, and GaAs devices.

6.1 Single quantum dot

In order to perform quantum information processing on the electron
spin, one has to first be able to trap a single electron in a finite element of
space. A natural example of bound electron state is the hydrogen atom,
where electron is bound to a single proton via electrostatic attraction. For
this reason, artificially created containers for single electrons known as
the quantum dots (QD) are often called artificial atoms [168]. However
contrary to hydrogen atom, the electron confinement inside the QD is
not isotropic, but depends on the method of the confinement used.

One way to generate the bound state of the electron is to use its non-
zero electric charge, sensitive to electric potential generated by classical
electronics. However the state of the trapped electron not only depends
on the confinement shape, but it is also affected by the crystal structure
of the semiconductor material and in particular the shape of conduction
band, that the electron occupies. Below we briefly discuss2 the influence
of crystalline potential on the state of the spin qubit in gate-defined quantum
dots.3
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4: The process of injecting electron is re-
lated to absorption of energy quanta equal
to the bandgap, which is typically of the
order of Δ ∼ 1𝜇eV. Alternatively the acti-
vation energy is reduced by doping the
semiconductor with the impurities.

5: as we will discuss below, the case of
a single minimum corresponds to GaAs,
while in Si we have six degenerated min-
ima

Crystalline potential

The quantum states of non-interacting electrons in periodic external
potential are the Bloch states,

𝜓𝑛,k(r) = 𝑢𝑛,k(r)𝑒 𝑖kr , (6.1)

where index 𝑛 is the band index, k is the quasi-momentum and the func-
tion 𝑢𝑛,k(r) have the same periodicity as the crystal. At zero temperature,
the electrons fill the states labeled by 𝑛 and k with energy not larger then
the Fermi energy. For the an undoped semiconductors the Fermi energy
lies between two bands known as the conduction band (first empty one)
and the valence band (the last filled one). As a result the semiconductors
are insulating at zero temperature, as all quasi-momentum states are
filled and no net motion of charge carriers (no electric current) is possible.
However the current can flow if finite number of the electrons are injected
to the otherwise empty conduction band, where all the momentum states
are available4 .

Envelope function approximation (EFA)

A quantum dot allows for trapping a single electron at the bottom of
the conduction band, which leads to a distinct characteristic features of
electron wavefunction for GaAs and Si devices considered in this thesis,
as these materials have qualitatively different structure of relevant parts
of the conduction band. Quite generally however electron confinement
in the QD is varying slowly in comparison to crystalline unit cell 𝑎, i.e.

𝑉(r)/∇𝑉(r) ≫ 𝑎. (6.2)

This directly leads to separation of scales between the atomic-scale
oscillations, the Bloch functions 𝑢k(r)𝑒 𝑖𝑘r and the slowly varying (on
the length scale of lattice constant) component 𝐹(k), using which the
wavefunction of the electron reads:

𝜓(r) =
∑

k
𝐹(k)𝑒 𝑖kr𝑢k(r) → 𝑢k0(r)𝐹(r), (6.3)

where in the above we have used single band approximation, and
concentrated on the k0 corresponding to the a single minimum of the
conduction band5 , which allowed us to replace 𝑢k(r) → 𝑢k0(r) and∑

k 𝐹(k)𝑒 𝑖kr = 𝐹(r) as a consequence.

Effective mass approximation

A single electron trapped inside the quantum dot, occupies a minimum
of otherwise empty conduction band at k = k0. The modeling of electron
wavefunction follows effective mass approximation, in which we expand
the energy dispersion of the conduction band up to a second order in k.
For the isotropic dispersion relation we have:

𝐸k = 𝐸0 +
(k − k0)2

2
𝜕2𝐸

𝜕𝑘2

����
𝑘=𝑘0

≡ 𝐸0 +
(k − k0)2

2𝑚∗ . (6.4)
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6: The valley states are absent in the
group III-V nanostructures, where conduc-
tion band minimum is at non-degenerate
Γ-point, with prominent example of
GaAs/AlGaAs quantum dots.

7: In typical experiments generated split-
ting is much larger then thermal energy
𝑘B𝑇 and hence carriers can populate only
low-energy 𝑧± valleys.

8: which can be seen as another internal
two-level states of the electron

In this approach the influence of crystalline potential is modeled by the
modification of kinetic energy, done by introducing renormalized mass
𝑚∗. The effective mass is isotropic if the conduction band minimum is
at k = 0 point (𝑚∗

GaAs = 0.067𝑚e), however in many cases it becomes
anisotropic with the prominent example of silicon where the longitudinal
effective mass 𝑚∗

Si,∥ = 0.92𝑚𝑒 is different from the transverse effective
mass 𝑚∗

Si,z = 0.19𝑚𝑒 , where 𝑚𝑒 is the mass of free electron. One should
bear in mind, that some important phenomena, that are sensitive to band
mixing or atomistic effects like spin-orbit coupling or microscopic calcu-
lation of valley splitting are beyond EMA. Their microscopic description
can be obtained using multiband envelope function approximation or
tight-binding methods.

Valleys in Si-based devices

Important example of phenomena sensitive to the atomistic effects but
still describable in terms of EFA is the presence of valley states6 in the
group IV semiconductors (Si, Ge), where the conduction band minimum
is not situated in the Γ-point with k = 0. In such case the minimum (hence
the name valley) has n-fold degeneracy following from crystal symmetry.
For the example of silicon relevant here, the minimum of conduction
band occurs at so-called X-point at k𝑥 = (±𝑘0 , 0, 0), k𝑦 = (0,±𝑘0 , 0), k𝑧 =
(0, 0,±𝑘0), where 𝑘0 = 0.85𝜋/𝑎 [20], which due to cubic symmetry of
bulk silicon has six-fold symmetry. However during the formation of
quantum dots due to effects of strain, confinement and electric field, four
of those minima corresponding to X-Y valleys are significantly higher in
energy.7

We thus concentrate on two remaining valleys, and assume the wavefunc-
tion of the electron occupies single quantum dot is the linear combination
of 𝑧± valleys, characterized by the wavevector k± = (0, 0,±𝑘0), i.e.

𝜓(r) =
∑
𝜈=±

𝛼𝜈𝑒
𝑖𝜈𝑘0𝑧𝑢k𝜈 (r)𝐹𝜈(r) =

∑
𝜈=±

𝛼𝑣𝜓𝜈(r). (6.5)

Because the electron state is bound, i.e. it does not propagate along any
of directions, the coefficients |𝛼+ | = |𝛼− | = 1/

√
2, such that a standing

wave is created. Hence the only degree of freedom is their relative phase.
The valley splitting emerges as a result of the interface presence [171,
172].

In this thesis we will not directly model influence of valley degree of
freedom on the adiabatic transfer of spin-qubit between two quantum
dots. However we highlight that to some extent developed theory can be
also used for the valley states8 , as we have done in context of coherent
electron transfer in the moving quantum dot [3]. We briefly discuss the
connection in the outlook. Also in the outlook we comment how the valley
degree of freedom can modify spin coherence in interdot transfer.

Confinement potential of single dot

A single electron injected into conduction band can be made immobile
by confining its motion in all three dimensions. One method of doing it is
generating spatially-varying electric field, with local minima that electron
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9: We mean here minima of negative po-
tential

10: when the voltages on the gates are
made time-dependent

11: The time-dependence of the planar po-
tential will be later used to change station-
ary qubit into a moving one

12: In this section we possibility of time-
dependent modulation of the potential

Figure 6.1: Sketch of typical geometry of
the gate-defined quantum dots in the semi-
conductor heterostructure. The potential
well confines the electron in the z-direction
(out-of-plane). The in-plane potential is
generated by the metallic gates.

can occupy9 . However generating 3D electrostatic potential is difficult to
realize experimentally. For this reason the motion of the electron is first
restricted to two dimensions by formation of two-dimensional electron gas
(2DEG) [30, 33]. Confinement in the two remaining dimensions is realized
by the electrostatic potential generated by the metallic gates fabricated
above 2DEG, hence the name gate-defined quantum dots. Fabrication of
metallic gates with few-nanometer precision allows for formation of many
quantum dots, with respective electrochemical potential controlled by the
plunger gates (gates directly above QD) and the barrier gates responsible
for formation and coupling between the neighbouring QDs.

In general the orbital states defined by the confinement potential can be
modeled by the position- and in principle time-dependent Hamiltonian:10

𝐻̂𝑜(r, 𝑡) =
p̂2

2𝑚∗ + 𝑉̂𝑥𝑦(𝑥, 𝑦, 𝑡) + 𝑉̂𝑧(𝑧), (6.6)

where we assumed that the transverse potential 𝑉̂𝑧(𝑧) formed by the
quantum well is independent of the planar potential 𝑉̂𝑥𝑦(𝑥, 𝑦, 𝑡) formed
by the electronic gates11 .

Transverse along the z axis

We discuss the confinement in the direction perpendicular to 2DEG,
characterized by confinement length scale 𝐿𝑧 = 2 − 5nm much tighter
then the planar confinement 𝐿𝑥𝑦 = 10− 40nm. For this reason the energy
of the first excited state of the transverse confinement lies high above
excited state of the planar confinement, since for simple square well
model 𝐸 ∼ 𝐿−2. Thus we restrict our low-energy analysis to the lowest-
lying transverse, orbital state only. The exact shape of the wavefunciton
in the z-direction in most devices is modified by the electric field, which
makes the potential well triangular, i.e.

𝑉̂𝑧(𝑧) = 𝑉0(𝑧) + 𝑒𝐹𝑧, (6.7)

where 𝐹 is the electric field and 𝑒 is the elementary charge. For this reason
the typically used wavefunction is the so-called modified Fang-Howard
variational wave function [173]. However since its exact shape will be not
relevant for studies conducted in this thesis, we assume the wavefunction
is Gaussian with the characteristic length-scale 𝐿𝑧 =

√
1/𝑚∗𝐸(𝑧)

orb ∼ 5nm,
i.e.

𝜓𝑧(𝑧) ≈
1

(𝜋𝐿2
𝑧)1/4

exp
(
− 𝑧2

2𝐿2
𝑧

)
. (6.8)

The value of confinement length 𝐿𝑧 will be relevant for calculations of
phonon induced transitions.

Planar confinement

As argued above the planar confinement, realized by electric field is
expected to be less tight than transverse one, mostly due to distance
between then 2DEG and the gates that generate the planar potential
𝑉𝑥𝑦(𝑥, 𝑦)12 . To show the geometry of the system we illustrate the typical
quantum dot system in Fig. 6.1
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13: Note that in the units where ℏ is ex-
plicitly written

𝑉̂xy(𝑥, 𝑦) = 𝑚∗(𝐸orb/ℏ)2
[
(𝑥 − 𝑥0)2 + 𝑦2]

14: The same orbital splitting results in
𝐿 ≈ 35nm in GaAs due to smaller effective
mass.

15: As mentioned above, in the typical
quantum dot the orbital splitting is of the
order of 𝐸orb ∼ 1meV which is well above
other relevant in this thesis energy scales

16: This can be done via the commuta-
tion relation [𝑥̂ , 𝑝̂] = 𝑖, using which the
commutator

[
𝐻̂𝑜 , 𝑥̂

]
= −𝑖 𝑝̂/𝑚∗, where

𝐻̂𝑜 =
𝑝̂2

2𝑚∗ + 𝑚∗𝐸orb(𝑥̂ − 𝑥0)2. Now since
𝐻̂𝑜 |𝑛⟩ = 𝐸𝑛 |𝑛⟩, we have

⟨𝑛 | 𝑝̂ |𝑛′⟩ = 𝑖 ⟨𝑛 | 𝑥̂ |𝑛′⟩𝑚∗(𝐸𝑛 − 𝐸𝑛′ )

If the potential minimum of 𝑉𝑥𝑦(𝑥, 𝑦) is deep enough to host a bound
electronic state it becomes the quantum dot. In many applications it is
sufficient to expand the potential up to the second order around the
minimum r0. If the quantum dot is located at r0 = (𝑥0 , 0, 0), it gives rise
to harmonic potential:

𝑉̂xy(𝑥, 𝑦) = 𝑚∗𝐸2
orb

[
(𝑥 − 𝑥0)2 + 𝑦2] , (6.9)

where 𝐸orb is the energy gap between the ground and first excited energy
level13 . For the assumed here harmonic potential the ground state is
Gaussian in both directions, i.e.

𝜓o,0(𝑥, 𝑦) =
1

(𝜋𝐿2)1/4
exp

(
−(𝑥 − 𝑥0)2

2𝐿2

)
1

(𝜋𝐿2)1/4
exp

(
−
𝑦2

2𝐿2

)
, (6.10)

where 𝐿 =
√

1/𝑚∗𝐸orb is the confinement length scale or simply size of
QD, which in the Si-devices predicts 𝐿 ≈ 20nm for 𝐸orb ≈ 1meV.14

In this thesis we will choose the axis x as the shuttling direction, and
develop effectively 1D model for which the ground state reads:

𝜓o,0(𝑥) =
1

(𝜋𝐿2)1/4
exp

(
−(𝑥 − 𝑥0)2

2𝐿2

)
. (6.11)

In the analysis we will also include first excited orbital state, which in
agreement with harmonic potential approximation for the effective 1D
model is characterized by the wavefunction:

𝜓o,1(𝑥) =
1

(𝜋𝐿2)1/4

√
2𝑥2

𝐿2 exp
(
−(𝑥 − 𝑥0)2

2𝐿2

)
. (6.12)

Due to a relatively large energy gap between the orbital states15 , we will
take into account the two lowest-lying orbital state, which will allow us
to compute effect of environment using language of Part I.

Matrix elements

Let us highlight that there is non-zero dipole matrix element between
ground and excited orbital state, i.e.

⟨0| 𝑥̂ − 𝑥0 |1⟩ =
𝐿√
2

(6.13)

while ⟨0| 𝑥̂ − 𝑥0 |0⟩ = ⟨1| 𝑥̂ − 𝑥0 |1⟩ = 0. This means the coupling between
the orbital states is possible in the first order expansion of the position-
dependent field 𝑉env(𝑥̂) (see Sec. 7.1 for the analysis). One can also relate
the position matrix element to momentum matrix element16 , i.e.

⟨0| 𝑝̂ |1⟩ = 𝐿√
2
𝑖𝑚∗𝐸orb , (6.14)

while ⟨1| 𝑝̂ |0⟩ = − ⟨0| 𝑝̂ |1⟩ and ⟨𝑛 | 𝑝̂ |𝑛⟩ = 0 for any n. This will be
relevant for spin-orbit coupling (see Sec. 9.2).
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17: Note that in quantum dot community
the gap between the states if sometimes
given by 2𝑡𝑐 . An example: [88].

18: From Δ𝑥Δ𝑝 ∼ ℏ, we see that the typ-
ical energy of the system (kinetic part)
scales as 𝐸 ∼ ℏ2/Δ𝑥2, which means that
larger uncertainty in position should re-
sult in lowering the energy.

6.2 Double quantum dot

Relaxation between the orbital states can be significantly limited if the
relevant orbital states are located in a different dots. We now consider
the system of two dots in close proximity to each other, which induces
small overlap between the wavefunctions.

Tunnel coupling and dots detuning

First we consider the ground states of two quantum dots |𝐿⟩ and |𝑅⟩, with
their respective energies given by 𝐸𝐿 and 𝐸𝑅. The probability amplitude
of the tunneling event between them, enters the Hamiltonian written in
the |𝐿⟩, |𝑅⟩ basis as:

𝐻̂DQD =

[
𝐸𝐿

1
2 𝑡𝑐

1
2 𝑡

∗
𝑐 𝐸𝑅

]
, (6.15)

where 1
2 𝑡𝑐 = ⟨𝐿| 𝐻̂DQD |𝑅⟩. Without losing generality, we will mostly

consider real and positive tunnel coupling 𝑡𝑐 = 𝑡∗𝑐 > 0, which amounts to
proper rotation of the Hamiltonian Eq. (6.15). It is convenient to introduce
the energy detuning between the dots, i.e.

𝜖 = 𝐸𝐿 − 𝐸𝑅 , (6.16)

such that the Hamiltonian can be rewritten in a form:

𝐻̂DQD =
𝜖
2
𝜎̂𝑧 +

𝑡𝑐

2
𝜎̂𝑥 . (6.17)

In particular at the resonance, i.e. when 𝜖𝐿 = 𝜖𝑅 the eigenstates of
the Hamiltonian (6.15) are given by the symmetric and anti-symmetric
combination of the dot eigenstates:

|±(𝜖 = 0)⟩ = 1√
2

(
|𝐿⟩ ± |𝑅⟩

)
, (6.18)

which is in full analogy to molecular-orbital states from quantum chem-
istry, while the corresponding energies are given by 𝐸± = ±𝑡𝑐/2, and
hence 𝑡𝑐 can be seen as the gap between hybridised states17 . This shows
that the possibility of electron tunneling between the dots is lowering the
energy of the ground state as it is expected from the position-momentum
uncertainty principle18 .

In many calculations the tunnel coupling is assumed to be constant and
independent of the detuning 𝜖. However as we know from the WKB
theory the tunnel coupling element between the levels on two sides of
the barrier depends on the energy detuning between them [174]. The
simplest model used in literature [57, 175] to reconstruct experiments
conducted in the semiconductor devices, is the Gaussian decay of the
tunnel coupling as a function of dots detuning, i.e.

𝑡𝑐(𝜖) = 𝑡𝑐 exp
(
− 𝜖2

2𝑤2
𝜖

)
, (6.19)

where 𝑤𝜖 ∼ 100𝑡𝑐 . Although in this thesis we will never directly use the
above formula, we use it as the indicator of the finite range of tunnel
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19: Note that if 𝜖(𝑡) is not linear, one can
use the linear term in the expansion of the
sweep around 𝜖 = 0, i.e.

𝑣 =
𝜕𝜖(𝑡)
𝜕𝑡

����
𝜖=0

. (6.20)

20: Since the wavefunctions are assumed
real, the 𝑙 is real as well
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0.5−0.5
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d = 5L

ϑ

0

π/2

3π/4

ψ+(x)

ψ−(x)

Figure 6.2: The wavefunctions of the
ground (solid line) and excited (dashed)
states of the DQD system within Hund-
Mulliken approximation for two different
separations of the dots 𝑑, expressed in
the units of dot size 𝐿. We plot the wave-
functions for three different orbital angles
𝜗 = 0,𝜋/2, 3𝜋/4 (colors). See Eq. (5.6) for
definition of 𝜗.

coupling, which allows us to assume that for large enough detuning
∼ 1meV the 𝑡𝑐 effectively goes to zero.

We point out that the Hamiltonian derived above constitutes direct real-
ization of the Landau-Zener Hamiltonian for the orbital states given by
Eq. (5.3). The other remaining element is the detuning sweep, understood
as the act of making dots detuning time-dependent, i.e. 𝜖 = 𝜖(𝑡). For
the consistency with L-Z model the detuning sweep rate is assumed
constant19 and hence 𝜖(𝑡) = 𝑣𝑡, As showed in the analysis of many exper-
imental papers, such model is often sufficient to recreate the observed
behaviour of DQD system [98, 101, 118].

Hund-Mulliken wavefunctions

In the previous section we have used the states |𝐿⟩, |𝑅⟩, which can be
related to the isolated orbital states |𝐿0⟩, |𝑅0⟩ via simple procedure of
orthogonalization. We follow here [2, 176, 177] and assume that the
effective orbitals |𝐿⟩ |𝑅⟩ are expressed as a linear combination of bare,
single-dot orbitals |𝐿0⟩ and |𝑅0⟩, i.e.

|𝐿⟩ = N(|𝐿0⟩ − 𝑔 |𝑅0⟩), |𝑅⟩ = N(|𝑅0⟩ − 𝑔 |𝐿0⟩), (6.21)

where |𝑁⟩ is the normalization constant. For the left and the right dot
located at position 𝑥𝐿 = −𝑑/2 and 𝑥𝑅 = 𝑑/2 respectively their bare
wavefunctions are given by ⟨𝑥 |𝐿0⟩ = 𝜓

(𝑔)
dot(𝑥 − 𝑥𝐿), ⟨𝑥 |𝑅0⟩ = 𝜓

(𝑔)
dot(𝑥 − 𝑥𝑅),

where 𝜓(𝑔)
dot was given by the Eq. (6.11). Note that the integral between the

bare waveunciton is not necessary zero, which we denote by 𝑙 = ⟨𝐿0 |𝑅0⟩.20

.

We now enforce orthogonality of the target orbitals, i.e.

0 = ⟨𝐿|𝑅⟩ = N2(𝑙 − 2𝑔 + 𝑙 𝑔2), (6.22)

from which 𝑔 = (1 −
√

1 − 𝑙2)/𝑙. For typically small 𝑙 ≪ 1 it reduces to
𝑔 = 𝑙/2. Up to leading order in 𝑙 we have:

1 = ⟨𝐿|𝐿⟩ = N2(1 − 2𝑔𝑙 + 𝑔2) ≈ N2 , (6.23)

which altogether gives:

|𝐿⟩ ≈ |𝐿0⟩ − 1
2 ⟨𝐿0 |𝑅0⟩ |𝑅0⟩ , |𝑅⟩ ≈ |𝑅0⟩ − 1

2 ⟨𝐿0 |𝑅0⟩ |𝐿0⟩ . (6.24)

Finally for the assumed wavefuncitons separated by 𝑑, the overlap
between the bare wavefunctions is given by:

⟨𝐿0 |𝑅0⟩ = exp
(
−𝑑2/4𝐿2) . (6.25)

As DQD Hamiltonian is identical to Landau-Zener one, which has been
analyzed in Sec. 5.1, the eigenstates of the double dot as a function of
adiabatic angle defined via relation cot𝜗 = −𝜖/𝑡𝑐 are given by the states
from Eq. (5.5). By combining their definition with the formula for |𝐿⟩ and
|𝑅⟩ states from Eq. (6.24), in the Fig. 6.2 we illustrate the wavefunction
of DQD ground and excited state as a function of 𝜗 for two separations
between the dots 𝑑 = 2.5, 5L.
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21: As a consequence of indirect energy
gap (see below)

6.3 Si- and GaAs-based quantum dots

In this section we briefly compare most relevant representatives of group
IV and III-V semiconductors used to fabricate quantum dots, that host
spin qubis.

GaAs quantum dots

We start by historically first important example of semiconductor nanos-
tructure used to realized spin qubits, the GaAs/AlGaAs heterostructure
which we will refer to as GaAs. Due to small effective mass, the size of
GaAs devices are relatively large [30], which allowed for easier fabri-
cation. However as a member of III-V group, the GaAs does not have
any naturally existing spin-less isotope, and thus random magnetic field
generated by slow evolution of nuclear spins leads to dephasing of
electron spin in the 𝑇∗

2 ≈ 10ns time [55, 64]. With possibility of active
driving via dynamical decoupling the qubit coherence can be prolonged
up to 𝑇2 ≈ 1𝜇s [28, 64, 65]. Also dissipation of energy in GaAs quantum
dot is expected to be relatively fast due to phonons. This is due to large
mass of the nuclei, which translates to strong spin-orbit coupling [178].
Additionally the polar structure of the alloy, means that lattice vibrations
are associated with the fluctuations of electric field, which couples the
orbital states via piezoelectric coupling. On the good side, the presence
of piezoelectric coupling allowed for demonstration of coherent electron
spin shuttling using surface accosting waves [93]. Altogether technology
developed for GaAs spin qubit in connection to relatively easy fabrica-
tion makes it an important testbed for quantum computer development.
However the inevitable presence of nuclear spins, and strong spin-orbit
interaction points towards group IV semiconductors, with the prominent
example of Si (below) and Ge [24].

Silicon quantum dots

We now concentrate on Si-based quantum dots, which are recently
most promising group IV semiconductor for further development of
dot-based quanutm computation. In contrast to group III-V, for the
natural Si only 5% of the nuclei have nonzero spin [20]. Additionally this
number can be further reduced by orders of magnitude in the process of
isotopic purification, leading to identifying Si-based nanostructures as
the semiconductor vacuum (no nuclear spins) [31].

The Si-based devices have much smaller spin-orbit interaction,21 which
reduces coupling of spin to phonons and minimizes coupling between
isolated spin qubit and fluctuations of electric field. As a result the
coherence time of the electron spin-qubit in isotopically purified Silicon
can be as long as 𝑇∗

2 = 10𝜇s [32, 43, 63]. Another important asset is the
existing transitor technology, which can be reused for the purpose of
building relatively similar in size quantum dots. This also provides a
natural interface to connect the qubit to classical electronic including the
transistor-based unit processing classical information.

However on the downside, typically for group IV semiconductor the Si has
indirect bandgap, which means the location of valence and conduction
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22: see Sec.9.3 for the discussion of the
nuclear spins

band are not in the same place of Brillouin zone. In particular the
minimum of conduction band of the electron is not at the Γ point, which
introduces fast oscillations of electron wavefunction in the quantum
dot. Due to crystal symmetries it also means, that its state is six-fold
degenerate in the bulk case, and two-fold degenerate (due to strain)
in a typical quantum dot architecture. Although degeneracy is also
lifted by the presence of interface, the typically small and sensitive to
microscopic disorder, value of the valley splitting hinders many Si spin
qubit experiments [36, 67, 172]. On top of this fabricating devices is not
straightforward due to their small size, forced by the larger than in GaAs
effective mass.

Si/SiGe and SiMOS devices

We briefly discuss the difference between two most popular architectures
of Si-based quantum dots. In the case of Si/SiGe the out-of-plane confine-
ment is realised by inserting the Si layer between the SiGe layers. As a
result the conduction band offset allows for trapping the electron. In the
SiMOS devices electrons are trapped at the Si-oxide interface, for which
such offset is much larger and allows for applying stronger electric fields.
This minimizes the distance between the formed quantum dots and the
metallic gates, typically tighter confinement and possibly larger tunnel
couplings then in Si/SiGe devices. However the proximity of the gates,
and glass like structure of the oxide might induce higher amplitude of
the charge noise felt by the electrons.

Models of the DQDs system

Following the above analysis we define here three models of the dots. Two
of them would correspond to Si-based devices with relatively small and
large distance between the dots, which would correspond to 𝑑 = 50nm
and 𝑑 = 100nm. We will associate the first one with the SiMOS and the
second with the Si/SiGe device or SiGe for short, however the rest of
the parameters will be assumed common for both of them. In particular
we will use the amplitude of intrinsic spin-orbit interaction and the
amplitude of the charge noise from the experiments performed in the
SiMOS devices, which can be seen as the upper bound for the Si/SiGe
device [179]. We assume both devices are isotopically purified22 with
0.01%Si29 which allow us to connect the devices to the typically measured
coherence time 𝑇∗

2 ∼ 10𝜇s. Finally for comparison we add GaAs/AlGaAs
double quantum dot system, which we will refer to as GaAs. Due to
much larger effective mass the quantum dots are expected to be larger
and more separated in space. We have included all relevant parameters
used in the numerical simulation in Tab. 6.1.
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Table 6.1: Parameters of the three effective
models of double quantum dot systems,
which will be used throughout the analy-
sis. Parameters based on [2] and references
therein.

Model name SiMOS SiGe GaAs
Effective mass (𝑚∗/𝑚𝑒 ) 0.19 0.063
Dots distance 𝑑 (nm) 50 100 150
Dot size 𝐿 (nm) 20 20 40
Quantum well width 2𝐿𝑧 (nm) 5 5 20
Tunnel coupling 𝑡𝑐 (𝜇eV) 10, 20, 60
Spin orbit coefficients (𝛼 + 𝛽)/2 (m/s) 50 103

Zeeman splittings 𝐸𝑧 (𝜇eV) 2, 120
Shear deformation potential Ξ𝑢(eV) 5 × 106 0
Dilatation deformation potential Ξ𝑑 (eV) 8.77 × 106 7 × 106

Piezoelectric constant 𝜒𝑝 (eV/m) 0 1.4 × 106

Longitudinal speed of sound 𝑐𝐿 (m/s) 9.15 × 103 5.3 × 103

Transverse speed of sound 𝑐𝑇 (m/s) 5 × 103 2.5 × 103

Crystal density 𝜚 (kg/m3) 2.3 × 103 5.3 × 103
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We now compute the consequences of coupling between the orbital states
and the spatially dependent environmental field. As an relevant example
we consider fluctuations of electric field caused by the lattice vibrations
(phonons) and the charge noise. In 7.1 we briefly discuss their physics
and also analyze relation between the wavefunction of the TLS and its
non-unitary evolution due to their presence. In particular we show that
protection against dephasing is possible only when wavefunctions for
ground and excited state are alike, or their shape matches symmetries
of the noise. In contrast, protection against dissipation is possible if the
wavefunctions of the ground and excited states have negligible overlap.
However as a counterexample, lack of the overlap of the wavefunctions
would lead to vanishing tunnel coupling between double quantum dot
system and hinder possibility of using it for coherent communication.
In the next Sec. 7.2 and 7.3 we compute the relaxation rates between the
orbital TLS in the DQD system due to the phonons and the charge noise
respectively.

7.1 Non-unitary evolution due to spatially
dependant field

Both phonons and the charge noise are the examples of position depen-
dent field,1 , which in the Fourier space can be represented as:

𝑉̂fld(r̂) =
∑

k
𝑉̂k𝑒

𝑖kr̂. (7.1)

As a result the coupling between the field and the TLS depends on the
wavfunctions of the latter and in particulair, the position matrix element
between its eigenstates2 .

Spatial degree of freedom

We concentrate now on the general discussion of orbit-environment
coupling that originates from spatially varying field 𝑉̂fld(𝑥̂).3 It affects
the orbital states by modulating confinement potential. As summarized
in Sec. 5.4, for a pair of instantaneous states of the TLS |±⟩, one can define
the instantaneous: transverse and longitudinal coupling and relate them
to relaxation and dephasing times respectively.
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4: the overlap between the prob-
ability distributions is non-zero∫
|𝜓𝑒 (𝑥)|2 |𝜓𝑔(𝑥)|2 ≠ 0,

5: when the eigenstates are molecular
combinations of the dot states, i.e. |±⟩ ∝
|𝑅⟩ ± |𝐿⟩,

Transverse coupling

For the position-dependant operator 𝑉̂fld(𝑥̂) the transverse coupling in
the basis of |±⟩ states can be written as:

𝑉̂⊥ = ⟨+| 𝑉̂fld(𝑥̂) |−⟩ + h.c. =
∫

d𝑥𝜓∗
+(𝑥)𝑉̂fld(𝑥)𝜓−(𝑥) + h.c (7.2)

where 𝜓−(𝑥) and 𝜓+(𝑥) corresponds to the wavefunction of ground and
excited state of the TLS respectively and 𝑉̂fld(𝑥) acts on the environmental
degrees of freedom only. From the above, we see that the operator 𝑉̂⊥
is non-zero only if absolute value squared of the wavefunctions has
common support4 . It means the interaction is expected to be weaker if
the spatial separation between the wavefunctions is larger, which will be
particularly relevant for the double-dot case. Also when wavefunctions
have a different symmetry, for instance ground state is symmetric while
the excited anti-symmetric with respect to certain point, the coupling
between them should be also anti-symmetric such that the integral is
non-zero. This is typically the case for the excited and ground state of
the orbital levels in the single dot and two the double quantum dot at
zero detuning5 . Finally a good indicator of the coupling between two
levels is the position matrix element between the eigenstates:

𝑥+− = ⟨+| 𝑥̂ |−⟩ (7.3)

If 𝑥+− ≠ 0 it means the coupling is non-zero at the leading order of the
expansion 𝑉̂fld(𝑥̂) ≈ 𝑥̂𝜕𝑥𝑉̂(𝑥)|𝑥0 . As an example, for the DQD system
position matrix element between the eigenstates is largest at 𝜖 = 0, when:

⟨+(0)| 𝑥̂ |−(0)⟩ = 1
2
(
⟨𝐿| + ⟨𝑅 |

)
𝑥̂
(
|𝐿⟩ − |𝑅⟩

)
≈ 𝑑, (7.4)

where 𝑑 is the distance between the dots, and we have omitted the small
correction due to H-M wavefunctions from (6.24). As an relevant example
the non-zero position matrix element between DQD states has been used
to realise coherent spin-photon coupling in DQD systems [85].

From the above analysis a certain trade-off behaviour is observed. On one
hand the energy dissipation between similar wavefunctions is suppressed
due to small position matrix element. On the other hand, large spatial
separation between excited and ground state, reduces the overlap between
the probability densities, and makes the relaxation slow. This means that
the fastest energy dissipation is expected between the wavefunctions of
the similar support but opposite symmetry with the prominent example
of ground and excited state in the single quantum dot or lowest-lying
states in the DQD at the resonance. In the second case the relaxation is
expected to be suppressed for sufficiently large detuning, i.e. when the
ground and excited states are located in a different dot.

Longitudinal coupling

Let us now write the longitudinal coupling, which is typically associated
with the dephasing of the TLS. In the instantaneous basis of the TLS it
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6: In particular piezoelectric coupling can
be used in GaAs to shuttle the electron
using Surface Acoustic Waves (SAW) [92–
95].

7: for numerical values corresponding to
Si- and GaAs-based quantum dots see
Tab. 6.1

can be written as:

𝑉̂𝜙 = ⟨+| 𝑉̂fld(𝑥̂) |+⟩−⟨−| 𝑉̂fld(𝑥̂) |−⟩ =
∫

d𝑥𝑉̂fld(𝑥)
(
|𝜓+(𝑥)|2−|𝜓−(𝑥)|2

)
.

(7.5)
Analogously to the dissipation case, the relatively similar wavefunctions
allows to minimize effect of environment and in this way extend coherence
time between the levels. However in contrast to energy dissipation,
the dephasing of the superposition located at two different positions
with zero support, i.e.

∫
|𝜓+ |2 |𝜓− |2 = 0 is generally strong, unless the

operator 𝑉̂fld(𝑥̂) averaged by two different probability densities |𝜓±(𝑥)|2
is effectively the same. The last observation shows the relevance of spatial
correlations of the field which we discuss in context of charge noise in
Sec. 7.3.

Lattice vibrations - phonons

We now discuss physics of environmental electric field, starting with
the one due to lattice vibrations. The phonons can influence the TLS by
creating typically small electric field due to motion of charge atoms in
the crystal. This takes place either on the atomistic scale (deformation)
or in a more global way via piezoelectric mechanisms. The latter one
is present only in polar materials like GaAs and does not occur in the
centrosymmetric crystals like Si.6 For both cases the phonon-electron
coupling can be written as [169]:

𝑉̂el-ph(r) =
∑

𝑗 ,k,𝜆=𝐿,𝑇

√
|k|

2𝜚𝑐𝜆𝑉
𝑣
(𝑗)
k,𝜆

(
𝑏k,𝜆 + 𝑏†−k,𝜆

)
𝑒 𝑖kr , (7.6)

where we used material constants: 𝜚 – crystal density,𝑉 – crystal volume,
and 𝑐𝜆 – the speed of 𝜆-polarized phonons7 . The 𝑣(𝑗)k,𝜆 stands for the
coupling constant, which for piezoelectric (𝑗 = 𝑝) and deformation
potentials (𝑗 = 𝑑), are given by the explicit formulas:

𝑣
(p)
k,𝜆 =

𝜒𝑝
𝑘
, 𝑣

(d)
k,𝐿 = Ξ𝑑 + Ξ𝑢

(
𝑘𝑧

𝑘

)2

, 𝑣
(d)
k,𝑇 = −Ξ𝑢

𝑘𝑥𝑦 𝑘𝑧

𝑘2 . (7.7)

The values of piezoelectric constant 𝜒𝑝 and dilatation (shear) deformation
potentials Ξ𝑑(Ξ𝑢) for the GaAs and Si-based quantum dots are given in
Tab. 6.1.

Phonons are responsible for most dissipation inside typical semicon-
ductor nanostructure. In comparison to other sources of non-unitary
evolution the phonon bath has relatively short correlation time. As
discussed in Chapter 3, it means the phonons are causing dissipative
evolution. The relaxation rates due to phonons are computed in Sec. (7.2).
The lack of purely dephasing contribution, can be associated with the
low density of state of acoustic phonons (spectral density) at the small
energies (frequencies).
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8: Note that this type of the noise process
was previously introduced in context of
classical noise processes in Sec. 4.4. We
remind that the shape of spectral density
reads

𝑆𝛽 = 𝐴1(𝜔1/𝜔)𝛽 , (7.8)

where 𝜔1 = 2𝜋/Hz and 𝐴1 is its ampli-
tude at 1Hz.
9: Its role is expected to be played by the
local defects in the insulating layer, which
acts as the electric monopoles or dipoles
[180]. In the glassy materials, like SiMOS
the character of the fluctuating TLS might
be less local, i.e. the system can switch
between pairs of collective electrons state
[181, 182].

10: The 1/ 𝑓 𝛽 shape was obtained by con-
sidering quantum noise caused by an en-
semble of TLF coupled to thermal bath,
where the exact shape of 1/ 𝑓 𝛽 spectrum
was showed to depend on the microscopic
details of these fluctuators [136]
11: Up to this date no intrinsic low-
frequency cut-off was detected in the semi-
conductor devices.
12: for instance days or weeks.

13: Due to typically large energy scale

Charge noise

In the quantum dot system the orbital states are defined by the confine-
ment potential realized by the electrostatic potential. For this reason
random fluctuations of the electric field will directly couple to the orbital
states. We use here empirical approach and use experimentally measured
spectral density of the charge noise in QD and DQD systems to infer the
expected values of relaxation rates and the amplitude of dephasing noise
for the typical GaAs- and Si-based quantum dot.

1/ 𝑓 𝛽 noise

We start by the noise, which dominates at low-frequencies. The name
1/ 𝑓 𝛽 noise reflects commonly measured in the semiconductor device
shape of spectral density.8 . The measured values of the spectral density
of the 1/ 𝑓 𝛽 noise measured at 1Hz falls into region of 𝐴1 = 0.12 −
22𝜇eV2/Hz [179], with the exponent 𝛽 varying between the different
semiconductor materials. Although this feature hints at some universal
physical mechanism, the microscopic origin of 1/f noise remains not
obvious. As discussed in [136], it is commonly related to two-level
fluctuators (TLF).9 As we showed in Sec. 4.4 superposition of such TLFs
successfully reproduces 1/ 𝑓 𝛽 spectrum.10

Due to high spectral weight at the low-frequencies the 1/f noise domi-
nates dephasing of TLSs, the splitting of which is sensitive to electric field
fluctuations, i.e. charge qubit or spin-qubits in presence of magnetic field
gradient [6, 156]. Following analysis of the 1/f noise feature, we highlight
that dephasing noise gets larger if data acquisition time increases, which
can be understand as increasing number of TLFs, which changes during
averaging process 11 . For the same reason, apart from modifying coher-
ence during single experimental averaging, low-frequency charge noise
causes drift of the device parameters on the macroscopic timescale,12
which introduces the need of recalibration.

In this thesis we will be not only interested at low-frequency part of
1/f spectrum, but also analyze influence of its tail on the incoherent
transition between orbital levels. Although as we will see the dissipation
mediated by the 1/f noise is likely to be overshadowed by the phonon
induced relaxation in a single quantum dot,13 the situation might be
reversed at the smaller energy scales, which corresponds to the tunnel
coupling or the Zeeman splitting. For this reason it is important to
provide a model for the tail of 1/f noise spectrum at the GHz frequencies
(Energy of 𝜇eV). However the high-frequency shape of the noise from
TLFs is far from universal. In particular, theoretical model from [136]
predicts that at the finite frequency lying between MHz-GHz (depends
on microscopic details) one should expect transition to 1/ 𝑓 2 shape. At
even higher frequency transition to flat and then to Ohmic spectrum
𝑆(𝜔) ∝ 𝜔 are expected. On the other hand recently measured charge
noise in the single-triplet TLSs, where the 1/ 𝑓 and 1/ 𝑓 0.7 in Si/SiGe [27]
and Si-MOS [183] nanostructures showed no sign of such transitions
up to 100MHz (∼ 0.4𝜇eV). On top of this, the predicted flat/Ohmic
shape of spectral density from TLFs becomes indistinguishable from
Johnson-Nyquist noise, which is expected to become dominant in the
same regime of frequencies (see section below).
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14: i.e. asymmetric,

15: For the typical temperature of 𝑇 =

100mK the crossover energy can be esti-
mated as 𝑘𝐵𝑇 ∼ 8𝜇eV (2GHz)

16: For dephasing physics the has classical
form 𝑆(𝜔) ≈ (𝑅/𝑅𝑞)𝑘B𝑇, which allow to
compute its effective power of quasistatic
noise as:

𝜎2
𝐽 ≈

∫ 𝜋/𝑡

𝜋/𝑇𝑎

d𝜔
𝜋

𝑅

𝑅𝑞
𝑘B𝑇 ≤ 0.02

𝑡[𝑛𝑠]𝜇eV2 .

(7.10)
which shows that dephasing due to John-
son noise for 𝑡 ≫ns is not expected to be
relevant.

17:

Γ+(Ω) ∝ ⟨𝑛(Ω)⟩ = 1
𝑒𝛽Ω + 1

. (7.13)

18:
∑

k =
∫

dk 𝑉
(2𝜋)3

Johnson-Nyquist noise

As another source of charge noise, which is relevant at high frequencies
can be attributed to reservoir of the electrons in the nearby circuits [184].
At sufficiently low temperature its quantum14 spectral density has a form
[90, 185]:

𝑆𝐽(𝜔) =
Re{𝑍}
𝑅𝑞

𝜔

1 − 𝑒−𝛽𝜔
(7.9)

where 𝑅𝑞 is the inverse of conductance quantum, i.e. 𝑅𝑞 = 𝜋/𝑒2 = 13𝑘Ω
and Z is the impedance of noise source. The temperature dependence
follows the Bose-Einstein distribution 𝑛(𝜔) = 1/(𝑒𝛽𝜔 − 1) for positive
𝜔 > 0 and negative 𝜔 < 0 frequencies corresponding to relaxation and
excitation respectively. For simplicity we will assume the noise is caused
by the 𝑍 = 50Ω ideal resistor, for which the spectrum is flat at 𝛽𝜔 ≪ 1
and Ohmic 𝑆𝐽(𝜔) ∝ 𝜔 at 𝛽𝜔 ≫ 1.15 .

The Johnson noise is expected to be relevant for dissipative evolution
only, due to its high-frequency character.16

7.2 Phonon induced relaxation between the
orbital states

We now compute relaxation rate for two-lowest lying orbital states of a
single and double quantum dot. We assume that due to typically small
energy-scale Ω ≤ 1meV the relaxation is caused only by the acoustic
phonons, for which the dispersion relation reads Ω = 𝑐𝜆𝑘, where 𝑘 = |k|.
In such case the zero-temperature relaxation rate, can be obtained by
introducing phonon-electron interaction Eq. (7.6) into the Fermi-Golden
rule, which gives:

Γ
(0)
ph,−(Ω) = 2𝜋

∑
𝑗 ,k,𝜆=𝐿,𝑇

𝑘

2𝜚𝑐𝜆𝑉
|𝑣k,𝜆 |2 | ⟨−| 𝑒 𝑖kr |+⟩ |2 𝛿(Ω − 𝑐𝜆𝑘), (7.11)

where the temperature dependence can be incorporated by introducing
an additional factor

Γ
(𝛽)
ph,−(Ω) =

Γ
(0)
ph,−(Ω)

1 + 𝑒−𝛽Ω
, (7.12)

such that for negative frequencies Ω < 0 (TLS excitation by energy
absorbtion), the excitation rate is proportional to number of phonons
that has the resonant energy Ω, i.e. Bose-Einstein distribution17 . As a
consequence of detailed balance condition Γ+ = Γ−𝑒−𝛽Ω, the relaxation
is proportional to Γ−(Ω) ∝ ⟨𝑛(Ω)⟩ + 1, which together for positive and
negative Ω gives a factor (1 + 𝑒−𝛽Ω)−1.

We replace the sum over large density of phonon modes by the inte-
gral18 over phonon density of states, and integrate over length of the
wavevector 𝑘𝜆 = Ω/𝑐𝜆, such that only the integral over solid angle
𝐴k = d𝜃kd𝜑k sin𝜃k is left:

Γ
(0)
ph,−(Ω) =

∑
𝜆, 𝑗

Ω3

8𝜋2𝜚𝑐5
𝜆

∫
d𝐴k

��𝑣(𝑗)k𝜆 ,𝜆

��2 |𝐹(k𝜆)|2. (7.14)
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Above we introduced form factor 𝐹(k) = ⟨−| 𝑒 𝑖kr |+⟩, evaluated at reso-
nant wavevector of the length 𝑘𝜆 = Ω/𝑐𝜆.

Single quantum dot

We now compute relaxation from excited to the ground state of harmonic
potential, which represents the electronic potential of the QD. Following
model of the wavefunction from Sec. 6.1 we assume that the ground and
excited orbital state have the wavefunctions:

𝜓−(𝑥) = 𝜓𝑜,0(𝑥)𝜓𝑜,0(𝑦)𝜓𝑧(𝑧), 𝜓+(𝑥) = 𝜓𝑜,1(𝑥)𝜓𝑜,0(𝑦)𝜓𝑧(𝑧) (7.15)

the functional form of the ground states 𝜓𝑜,0(𝑥),𝜓𝑜,0(𝑦) is given by
Eq. (6.10), the excited state 𝜓𝑜,1(𝑥) by (6.12)), while 𝜓𝑧(𝑧) by Eq. (6.8).
Using the above model the form factor reads:

⟨0| 𝑒 𝑖kr |1⟩ = N

∫ ∞

−∞
dr
𝑥

𝐿
𝑒 𝑖kr 𝑒

− 𝑥2+𝑦2

4𝐿2 + 𝑧2

4𝐿2
𝑧 𝑒 𝑖kx = 𝑖 𝑘𝑥𝐿𝑒

−
𝑘2𝑥𝑦 𝐿

2+𝑘2𝑧 𝐿2
𝑧

4 . (7.16)

We now evaluate the above formula for the resonant wavevector k𝜆 with
length 𝑘𝜆 = Ω/𝑐𝜆, and express the form factor 𝐹(k𝜆) in terms of polar
and azimuth angles, i.e.

|𝐹(k𝜆)|2 =
Ω2

𝑐2
𝜆

𝐿2 sin2 𝜃k cos2 𝜑k𝐵𝜆(Ω, 𝜃k), (7.17)

where the last term is respondible for so-called bottleneck effect, and is
explicitly given by:

𝐵𝜆(Ω, 𝜃k) = exp

(
−Ω2

2𝑐2
𝜆

(𝐿2
𝑧 cos2 𝜃k + 𝐿2 sin2 𝜃k)

)
. (7.18)

Substituting the above to the expression for the relaxation rates allows
to integrate over polar angle 𝜑k, and write the relaxation between the
orbital levels as:

Γ
(0)
−,def =

Ω5𝐿2

4𝜋𝜚

(
𝐼0Ξ

2
𝑑
+ 2𝐼2Ξ𝑑Ξ𝑢 + 𝐼4Ξ2

𝑢

𝑐7
𝐿

+ 𝐽Ξ2
𝑢

𝑐7
𝑇

)
,

Γ
(0)
−,piez =

Ω3𝐿2

4𝜋𝜚
𝜒2
𝑝

(
1
𝑐5
𝐿

+ 1
𝑐5
𝑇

)
𝐼0 , (7.19)

where we separated the contributions into deformation and piezoelectric
coupling respectively, and defined the relevant integrals as:

𝐼𝑛 =

∫ 𝜋

0
d𝜃k sin3 𝜃k cos𝑛 𝜃k𝐵𝜆(Ω, 𝜃k)

𝐽 =

∫ 𝜋

0
d𝜃k sin5 𝜃k cos2 𝜃k𝐵𝜆(Ω, 𝜃k) (7.20)

In Fig. 7.1 we plot relaxation rate as a function of the energy Ω for
the GaAs and Si-based devices using the parameters from Tab. 6.1. As
it can be seen the lifetime of the excited orbital state in the typical Si
dot with 𝐸orb ≈ 1meV reads 1/Γ− ≈ 0.1ns and hence it is expected to
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Figure 7.1: Relaxation rates due to lattice
vibrations (phonons) in the single Si (red)
and GaAs (green) quantum dots as a func-
tion of the energy gap between ground
and excited state 𝐸orb. The solid line is the
ralaxation due to deformation potential,
while the dashed line is due to piezoelec-
tric coupling in the GaAs. The device pa-
rameters are summarized in Tab. 6.1.

19: As the overlap between absolute value
squared of the wave-function is small for
large detuning

20: Note that the form factor is dominated
by the 𝐹𝑥(k) at 𝜃 = 0,𝜋, where the eigen-
states have dot-like character, and becomes
dominated by 𝐹𝑧(k) at 𝜃 = 𝜋/2, where
the ground and excited states are sym-
metric and antisymmetric combination of
orbitals, i.e. |±(𝜋/2)⟩ = (|𝐿⟩ ± |𝑅⟩)/

√
2

dominate the other sources of the non-coherent evolution. In contrast the
relaxation time in the GaAs at 𝐸orb ≈ 1meV is two-orders of magnitude
longer 1/Γ− ≈ 10ns, which is caused by the bottleneck effect caused
by the exponential attenuation of the transition rate above the energy
Ω = 𝐿/𝑐 (See Eq. (7.18)). Due to different sizes of the QD this happens at
Ω ≈ 100𝜇eV in GaAs and at more then an order of magnitude larger Ω
in Si.

Double quantum dot

We now move to double quantum dot case, in which the relaxation
of between two-lowest lying orbital states are expected to be lower19 .
Similarly to the previous case we start by computing the form factor, this
time using instantaneous ground and excited states |+⟩ = |+(𝜃)⟩ and
|−⟩ = |−(𝜃)⟩ of double dot potential derived previously using Hund-
Mulliken approximation (See Eq. (6.24)). Up to the first order in the
overlap between the bare wavefunctions, the form factor reads:

⟨−(𝜃)| 𝑒 𝑖kr |+(𝜃)⟩ ≈ 1
2

sin𝜃

(
⟨𝐿0 | 𝑒 𝑖kr |𝐿0⟩ − ⟨𝑅0 | 𝑒 𝑖kr |𝑅0⟩

)
(7.21)

+ cos𝜃
(
⟨𝐿0 | 𝑒 𝑖kr |𝑅0⟩ − 𝑔

(
⟨𝐿0 | 𝑒 𝑖kr |𝐿0⟩ + ⟨𝑅0 | 𝑒 𝑖kr |𝑅0⟩

) )
,

where 𝑔 = ⟨𝐿0 |𝑅0⟩ = exp
(
−𝑑2/4𝐿2) for assumed in Sec. 6.1 model of the

ground state of the uncoupled quantum dots |𝐿0⟩, |𝑅0⟩ with

𝜓𝐿0(𝑥) = 𝜓𝑜,0(𝑥+𝑑/2)𝜓𝑜,0(𝑦)𝜓𝑧(𝑧), 𝜓𝑅0(𝑥) = 𝜓𝑜,0(𝑥−𝑑/2)𝜓𝑜,0(𝑦)𝜓𝑧(𝑧).
(7.22)

Using the above the form factor separates into two contributions:

⟨−(𝜃)| 𝑒 𝑖kr |+(𝜃)⟩ = cos𝜃𝐹𝑥(k) − 𝑖 sin𝜃𝐹𝑧(k), (7.23)

which can be related to the transitions between dot-like states 𝐹𝑥 and
molecular-orbital states 𝐹𝑧 .20 Their explicit form read:
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Figure 7.2: Spectral density of the phonons in three models of DQD system: SiGe (red), SiMOS (blue) and GaAs (green) as a function of the
orbital energy Ω =

√
𝜖2 + 𝑡2𝑐 . In a) we plot the spectrum of the phonons that causes the relaxation between molecular-orbital levels |𝐿⟩ ± |𝑅⟩

due to 𝑉̂𝑧 operator and in b) for the phonons that causes the transitions between the dot levels |𝐿⟩, |𝑅⟩ due to 𝑉̂𝑥 operator (See Fig. 8.5 for
illustration of the difference between the interdot/molecular-orbital transitions). For GaAs devices we separately plot contribution from
deformation phonons (solid line) and piezoelectric phonons (dashed line). The remaining parameters of the model are given in Tab. 6.1.

𝐹𝑥(k) = exp
(
− 𝑘2

𝑥𝑦𝐿
2+𝑘2

𝑧𝐿
2
𝑧

4

)
exp

(
− 𝑑2

4𝐿2

) (
1 − cos

(
𝑘𝑥𝑑
2

) )
𝐹𝑧(k) = exp

(
− 𝑘2

𝑥𝑦𝐿
2+𝑘2

𝑧𝐿
2
𝑧

4

)
sin

(
𝑘𝑥𝑑
2

)
. (7.24)

We now substitute the form factor into the relaxation rate, and evaluate
the rate at the resonant wavevector |k𝜆 | = Ω/𝑐𝜆. As a result the relaxation
rate between double dot orbital states reads:

Γ
(0)
ph,−(Ω) = 1

4
sin2 𝜃𝑆𝑧(Ω) + 1

4
cos2 𝜃𝑆𝑥(Ω), (7.25)

where we defined the spectral density of the phonon bath:

𝑆
(ph)
𝑖

(Ω) =
∑
𝜆, 𝑗

Ω3

2𝜋2𝜚𝑐5
𝜆

∫
dΩk

��𝑣(𝑗)k𝜆 ,𝜆

��2 |𝐹𝑖(k𝜆)|2 , (7.26)

Note that the spectral density is insensitive to the tunnel coupling, i.e.
its value determines the relaxation by defining the transition energy
Ω(𝑡) =

√
𝜖(𝑡)2 + 𝑡2𝑐 and the orbital angle tan𝜃(𝑡) = −𝜖(𝑡)/𝑡𝑐 . Below in

Fig. 7.2 we plot spectral densities of the molecular-orbital phonons 𝑆𝑧(Ω)
(a) and the interdot phonons 𝑆𝑥(Ω) (b) as a function of the energyΩ using
parameters corresponding to the DQD devices from Sec. 6.3. We point
out that the spectral densities of the phonons in the DQD systems are
only slightly modified in comparison to spectral density of the phonon
bath in the case of single quantum dot, which we have plotted in Fig. 7.1.
In particular the spectral density of the interdot phonons from Fig. 7.2b)
is attenuated by a factor which can be related to the overlap between
the dots wavefunctions, i.e. | ⟨𝐿0 |𝑅0⟩ |2 = 𝑒−𝑑

2/2𝐿2 . As it can be seen
such attenuation is the weakest in SiMOS (blue) where 𝑑 ≈ 2.5𝐿. In
all considered cases, a clear bottleneck effect is visible. In GaAs the
piezoelectric coupling to phonons (green dashed line in all plots) has the
largest spectral density in the region of Ω ≈ 50𝜇eV, which commensurate
with the typical values of the tunnel couplings 𝑡𝑐 ≈ 50𝜇eV. Note that in
the same range of energies, the phonons in Si are effectively absent. This
will play an important role in the non-adiabatic transitions around the
avoided crossing.
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21: We do not consider here single dot TLS
as its evolution is dominated by coupling
to phonons

Finally we discuss the possibility of phonon-assisted relaxation to the
ground state at relatively large detuning 𝜖 ≫ 𝑡𝑐 , which can be used for the
inelastic transition between the dots. Due to large dot-size and hence fast
bottlenecking, the piezoelectric phonons in the regime of Ω > 100𝜇eV are
expected to rapidly fall as Ω increases. This means they would provide
fast transition rates only for 𝑡𝑐 < 100𝜇eV. Next, despite large spectral
density at 𝜖 ≈ 1meV, the relaxation rate of molecular-orbital phonons
in Si (blue/red lines in Fig. 7.1a)) is attenuated by the factor of 𝑡2𝑐/Ω2

factor, which means it is non-negligible only for very large 𝑡𝑐 > 100𝜇eV.
Finally, significant relaxation at large detuning is expected due to interdot
phonons in SiMOS (blue line in Fig. 7.1b)). This happens due to close
proximity of the dots (large overlap), however as we discussed above
such overlap is expected to decrease for strongly detuned dots, i.e. for
Ω ≈ 𝜖 ≈ 1meV.

7.3 Charge noise in double quantum dot

Above the relaxation rate between the orbital states was computed directly
from the microscopic Hamiltonian. Here we present a different approach
and compute dephasing and dissipation of the DQD orbital states21

by reconstructing longitudinal and transverse spectral densities of the
charge noise from the experimental observations. As discussed in Sec. 5.4
we aim at computing relaxation rate, related to the transverse spectral
density of detuning and tunnel coupling noise:

Γ(ch)
− (Ω) = 1

4
(
sin2 𝜃𝑆𝜖(Ω) + cos2 𝜃𝑆𝑡𝑐 (Ω)

)
, (7.27)

and the rms of the quasistatic fluctuations of them, i.e. 𝜎̃𝑡𝑐 and 𝜎̃𝜖 related
to integral of the spectral density 𝑆𝑖(Ω) (see Eq. (4.49)).

Noise in detuning

Dephasing

Most commonly measured effect of charge noise is the low-frequency
noise in detuning, that is dominated by the 1/ 𝑓 , using which the effective
variance of detuning fluctuations reads:

𝜎̃2
𝜖(𝑡) =

∫ 𝜋/𝑡

𝜋/𝑇𝑎
𝑆1/ 𝑓 (𝜔)d𝜔. (7.28)

The spectrum of 1/ 𝑓 noise 𝑆1/ 𝑓 (𝜔)was given in Eq. (4.36). The commonly
measured values of the spectral density at 𝜔1 = 2𝜋Hz, i.e. 𝐴1 ≈ 0.12 −
22𝜇eV2/Hz translates to 𝜎̃2

𝜖 ≈ 0.5 − 102𝜇eV2 for typical ratio of data
acquisition time to experiment time 𝑇𝑎/𝑡 ≈ 1010.

Dissipation

For the dissipative effect of the detuning noise we take the combination
of Johnson noise and extrapolate the spectrum of 1/ 𝑓 noise using its
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22: which gives the relation between relax-
ation and excitation rates Γ+/Γ− = 𝑒−𝛽Ω

23: i.e. when 𝜃 = 𝜋/2

24: Which is typical order of magnitude of
tunnel coupling in realistic double quan-
tum dot structure.

25: Conducted at nominal temperature of
the fridge 𝑇fridge = 20mT, which at QD
position translates to 𝑇 ≈ 100mT.

amplitude from low-frequency measurements, i.e.

𝑆𝜖(Ω) = 𝑆1/ 𝑓 (Ω) + 𝑆Joh(Ω). (7.29)

The spectral density of Johnson noise was given in Eq. 7.9. It included
scaling with temperature and respected detailed balance condition for
the negative frequencies.22 One can estimate that at zero-detuning23 the
relaxation rate due to Johnson noise is given by:

Γ
(Joh)
𝜖,− (𝑡𝑐)[1/ns] ≈ 10−3𝑡𝑐[𝜇eV]. (7.30)

where as a source of Johnson noise we took the resistance of 𝑍 = 50Ω,
and assumed that the tunnel coupling is larger then thermal energy that
corresponds to typical 𝑇 = 100mK, i.e. 𝑡𝑐 > 10𝜇eV. In comparison the
relaxation rate due to extrapolated 1/f noise can be estimated as:

Γ
(1/f)
𝜖,− (𝑡𝑐)[1/ns] ≈ 109(1−𝛽)𝐴1[𝜇eV2/Hz]

𝑡
𝛽
𝑐 [𝜇eV]

. (7.31)

Note that from the above the crossover between 1/f and Johnson noise is
expected to be present around 𝑡𝑐 ≈ 1 − 100𝜇eV.24

Model of 1/f noise

In the above considerations we assumed that 1/f noise continues from low-
frequencies up to frequencies corresponding to typical tunnel coupling,
i.e. 𝜔 ≈ 2𝜋/ns with a constant exponent 𝛽 = 1. This approach should
extrapolate the behaviour of the noise, the character of which is expected
to change first to 1/ 𝑓 2 and then to flat spectrum [136]. The estimations
were conducted for the typical temperature of quantum dot system,
which is usually estimated as 𝑇 = 100mT. Although it is not clear how
the noise of 1/f noise would change if the temperature is changed, in
general one can expect 𝐴(𝑇) to be not decreasing function of 𝑇. Direct
measurement of dephasing process due to 1/f noise in the quantum dots
provide the linear scaling of its amplitude with temperature, i.e.𝐴(𝑇) ∝ 𝑇
[27, 157], which is consistent with the classical considerations on the
1/f noise in semiconductors [186]. However in many other experiments
either negligible [160, 179] or quadratic [158] scaling with 𝑇 was observed.
As we are dealing with temperatures in the close vicinity of 100mK we
will use the linear order correction:

𝐴1(𝑇) = 𝐴1
𝑇

𝑇100
, (7.32)

where 𝑇100 = 100mK and 𝐴1 is typically measured in experimental
realizations25 amplitude of the noise at 𝜔 = 2𝜋Hz.

Model of spatial correlations of the noise

We now use a simple model, to describe the possible relation between
the detuning noise, tunnel coupling noise and spatial correlations of
electric field fluctuations. To do so we assume that the slow-fluctuations
of the environment are caused by spatially varying quasistatic classical
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26: Outside of the limiting cases, the vari-
ance of dot energy can be written in terms
of Gaussian error function i.e.

𝜎2
𝐸 = 𝜎2

𝑥 exp
(
𝐿2

2𝑥2
𝑐

) (
1 − erf

[
𝐿√
2𝑥𝑐

] )
.

(7.36)

field 𝑉̂fld(𝑥) → 𝜉(𝑥). We additionally assume the exponential correlation
function, characterized by the correlation length 𝑥𝑐 , i.e.

⟨𝜉(𝑥1)𝜉(𝑥2)⟩ = 𝜎2
𝑥𝑒

−|𝑥1−𝑥2 |/𝑥𝑐 , (7.33)

where 𝜎2
𝑥 is the power of spatially varying field.

Single dot energy fluctuations

For the single dot the small correction to the ground state energy due to
𝜉(𝑥) can be computed as 𝛿𝐸 = ⟨𝜓𝑔 |𝜉(𝑥̂)|𝜓𝑔⟩, where

��𝜓𝑔

〉
is the ground

state of an isolated dot. From this model the variance of such corrections
can be computed by averaging over realisations of the noise 𝜉(𝑥), i.e.
𝜎2
𝐸
= ⟨𝛿𝐸2⟩, which gives:

𝜎2
𝐸 =

∫
⟨𝜉(𝑥1)𝜉(𝑥2)⟩|𝜓𝑔(𝑥1)|2 |𝜓𝑔(𝑥2)|2 =

∫
𝑑k
2𝜋
𝑆𝑥(𝑘)|𝐹𝑔(𝑘)|2 , (7.34)

where we introduced spectral density of the stationary, spatially varying
noise 𝑆𝑥(𝑘) =

∫
d𝑥⟨𝜉(𝑥)𝜉(0)⟩𝑒−𝑖𝑘𝑥 = 2𝜎2

𝑥𝑥𝑐
1+(𝑘𝑥𝑐 )2 and the Fourier transform

of electron probability density 𝐹𝑔(𝑘) =
∫

d𝑥 |𝜓𝑔(𝑥)|2𝑒−𝑖𝑘𝑥 . For the Gaus-
sian model of dots wavefunction from Eq. (6.10) with a typical size of 𝐿
we have:

𝜎2
𝐸 ≈ 𝜎2

𝑥

{
𝑥𝑐/𝐿, for 𝑥𝑐 ≪ 𝐿

1 − 𝐿
𝑥𝑐
, for 𝑥𝑐 ≫ 𝐿,

(7.35)

which shows that the fluctuations of the dot ground state is expected to
increase with larger correlation length 𝑥𝑐 .26

Noise in detuning

We now repeat the analysis for the detuning noise, which is defined by
the difference between the ground state energies of the left and the right
dot, i.e. 𝛿𝜖 = 𝛿𝐸𝐿 − 𝛿𝐸𝑅. From the above analysis we can write:

𝜎2
𝜖 =

∫
d𝑘
2𝜋
𝑆𝑥(𝑘)|𝐹𝐿(𝑘) − 𝐹𝑅(𝑘)|2 , (7.37)

where in general we use the Fourier transform of Hund-Mulliken orbital
from Eq. 6.24:

𝐹𝐿(𝑘) =
∫

d𝑥
(
|𝜓𝐿0 |2(𝑥)−⟨𝐿0 |𝑅0⟩𝜓𝐿0(𝑥)𝜓𝑅0(𝑥)+

⟨𝐿0 |𝑅0⟩2

4
|𝜓𝑅0(𝑥)|2

)
𝑒−𝑖𝑘𝑥 .

(7.38)
However in detuning considerations, we can neglect the correction due
to typically small ⟨𝐿0 |𝑅0⟩ ≪ 1, and arrive at the result:

𝜎2
𝜖 ≈ 2

∫
d𝑘
2𝜋
𝑆𝑥(𝑘)

[
1 − cos(𝑘𝑑)

]
exp

(
− 𝑘

2𝐿2

2

)
. (7.39)

For the long correlation length, i.e. 𝑥𝑐 ≫ 𝑑 > 𝐿 we have:

𝜎2
𝜖 ≈ 𝜎2

𝑥

𝑑2

𝑥𝑐 𝐿
=
𝑑2

𝑥2
𝑐

𝜎2
𝐸 for 𝑥𝑐 ≫ 𝑑, (7.40)
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27: Since two dots effectively feels com-
mon noise

which contrary to single dot case from Eq. (7.35), predicts that in the limit
of long correlation length the detuning noise is expected to decrease27 .
In the opposite limit of 𝑥𝑐 ≪ 𝐿 < 𝑑 we have:

𝜎2
𝜖 ≈ 2𝜎2

𝑥

𝑥𝑐

𝐿

[
1 − exp

(
− 𝑑2

2𝐿2

)]
⩽ 2𝜎2

𝐸 , for 𝑥𝑐 ≪ 𝐿, (7.41)

This result follows the intuition that the variance of the sum/difference
of two uncorrelated noise processes equals the sum of their variances.

Tunnel coupling noise amplitude

We now move the the similar calculations for the tunnel coupling noise.
By definition the coupling noise 𝛿𝑡𝑐 is longitudinal in the instantaneous
basis around the avoided crossing, where the eigenstates are symmetric
and anti-symmetric combination of dots orbitals. In particular using
H-M wavefunctions from Eq. (6.24), at 𝜖 = 0 for the ground and excited
state::

𝜓±(𝑥) ≈ 1√
2
(𝜓L0(𝑥) ± 𝜓R0(𝑥))(1 − 1

2 ⟨𝐿0 |𝑅0⟩), (7.42)

which substituted to the definition of tunnel coupling noise, caused by
spatially varying field, allows to write

𝛿𝑡𝑐 =

∫
𝜉(𝑥)(|𝜓+(𝑥)|2 − |𝜓−(𝑥)|2)d𝑥. (7.43)

We now follow calculations analogous to detuning noise, namely compute
the power of tunnel coupling noise 𝜎2

𝑡𝑐
= ⟨𝛿𝑡2𝑐 ⟩ by moving to a Fourier

space, which in leading order in the dots overlap ⟨𝐿0 |𝑅0⟩ = 𝑒−𝑑
2/4𝐿2 ≪ 1

allows to write:

𝜎2
𝑡𝑐
= 4 exp

(
− 𝑑2

2𝐿2

) ∫
d𝑘
2𝜋
𝑆𝑥(𝑘)

(
1 − cos 𝑘𝑑

2
)2
𝑒−𝑘

2𝐿2/2 = 𝜎2
𝑡𝑐 ,0 exp

(
− 𝑑2

2𝐿2

)
.

(7.44)
In the above we defined the normalized power of the tunnel coupling
fluctuations 𝜎2

𝑡𝑐
, representing the fluctuations in the limit of large dot

overlap 𝑑 ≪ 𝐿. Despite slightly modified oscillating factor we assume
that such fluctuations should have similar amplitude as the detuning
noise 𝜎2

𝑡𝑐 ,0 ≈ 𝜎2
𝜖 . To confirm above predictions in Fig. 7.3 we plot effective

power of quasistatic noise 𝜎2
𝜖 (blue) and compare against normalized

amplitude of tunnel coupling noise 𝜎2
𝑡𝑐 ,0 (red). The result plotted for two

dot spacings of 𝑑 = 3𝐿 (solid line) and 𝑑 = 5𝐿 (dashed line) confirms that
both 𝜎2

𝜖 and 𝜎2
𝑡𝑐

are proportional to 𝑥𝑐 in the limit of 𝑥𝑐 ≪ 𝐿 and inversely
proportional to 𝑥𝑐 in the opposite limit. The maximum amplitude of the
noise is expected, when the correlation length is of the same order as the
dot size 𝐿.

Model of tunnel coupling noise

We conclude the analysis by describing our effective treatment of the
tunnel coupling noise due to charge noise. We assume both low-frequency
(dephasing) and high-frequency (dissipation) fluctuations of the tunnel
coupling noise to have the same form as the detuning noise, however
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Figure 7.3: Comparison between the
power of the quasistaic noise in detuning
(blue) and tunnel coupling (red) caused by
the spatially varying classical field 𝜉(𝑥),
for two separations between the quantum
dots 𝑑 = 3𝐿 (dashed line) and 𝑑 = 5𝐿
(solid line), where 𝐿 is the dot size, as a
function of the correlation length of the
environmental field 𝑥𝑐 . For the tunnel cou-
pling noise we plot its normalized power,
i.e. 𝜎2

𝑡𝑐
= 𝜎2

𝑡𝑐 ,0𝑒
−𝑑2/2𝐿2 .

but with significantly lower amplitude. The scaling factor is extrapolated
from the analysis of spatial correlations (above), and set to:

𝛼 =
𝜎2
𝑡𝑐

𝜎2
𝜖

≈ 𝑒−𝑑
2/2𝐿2

= 10−2 , (7.45)

which corresponds to the short distance between the dots 𝑑 ≈ 3𝐿 and
should be treated as the upper bound for noise in tunnel coupling. As a
result we set:

𝑆𝑡𝑐 (Ω) = 𝛼𝑆𝜖(Ω), 𝜎2
𝑡𝑐
= 𝛼𝜎2

𝜖 , (7.46)

while the amplitude of detuning noise is assumed to be approximately
the same as the fluctuations of single dot ground state energy, i.e.

𝜎2
𝜖 ≈ 𝜎2

𝐸 . (7.47)

Hence according Eq. (7.41) we assume small, but finite correlation of the
charge noise between two dots, which has been confirmed experimentally
for low-frequency noise in the Si-DQD system [187].
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We finally directly apply the developed theory to the transfer of electron
charge between GaAs- and Si-based quantum dots. Firstly in Sec. 8.1 we
reduce the multilevel structure of interdot transition in the semiconductor
quantum dot to the two-level system and define the problem in terms
of relevant parameters. Next in Sec. 8.2 we follow our work [1] and
consider classical noise in detuning, which leads to non-monotonic
function of the charge transfer error as a function of detuning sweep
and show numerical equivalence between classical simulation of 1/f
noise and adiabatic Master equation predictions. In the next Sec. 8.3 we
present results of [2], where we moved to the experimentally relevant
low-temperature limit in which relaxation and excitation rate are related
by a non-trivial Boltzmann factor. In particular we show that the charge
transfer error eventually vanishes for sufficiently slow sweep. From this
perspective we discuss difference between the interdot charge transfer in
GaAs and Si-based devices and show that additional minimum of the
error as a function sweep rate is expected for the latter.

8.1 The model

In general transfer of spin qubit between two-quantum dots constitutes
a multilevel adiabatic problem 1 . However from the perspective of the
coherent transport of quantum information, in the minimal model one
could first concentrate on the adiabatic evolution of lowest-lying adiabatic
state2 . The coherent communication is naturally impossible if the charge
transfer fails.

Two state reduction

We illustrate the typical energy spectrum for Si-DQD system in the
Fig. 8.1, where the states relevant for this chapter are marked using blue
line (ground) and red lines (excited).

In the figure we plot all the eight levels corresponding to the Hilbert
space spanned by the valley, spin and DQD degrees of freedom3 . In
such an extended space we assume that the initial state for large negative
detuning is given by:

|𝜓(𝑡𝑖)⟩ = |𝐿, ↓, 𝑣−⟩ ≡ |𝐿⟩ , (8.1)

i.e. the electron occupies the left dot, in the ground spin and valley state.
In the closed quantum system, purely adiabatic dynamics due to slow
enough detuning sweep results in the electron state being always in the
ground state of instantaneous Hamiltonian (i.e. following the blue line
in Fig. 8.1). Otherwise the initial spin-down electron is either left in the
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Figure 8.1: The typical instantaneous en-
ergy spectrum of the system of spin, val-
ley and charge degrees of freedom during
interdot transition as a function of dots
detuning 𝜖. By the blue line we marked
the state relevant for our analysis in this
chapter, which corresponds to the simul-
taneous ground state of valley, spin and
charge degree of freedom. By the red line
we marked an effective excited state. We
define 𝑄 as the probability of not occupy-
ing lowest lying energy state at the end of
the transition.

4: As mentioned above add spin degree
of freedom in Part III. For the analogous
problem of excited spin state transfer see
Chapter 11. For the dephasing between
spin components see Chapter 12. Finally
for the perspective on the role of valley
degree of freedom see brief discussion in
the outlook

5: See analysis in Sec.7.3, where we esti-
mated than relative power of the noise is
at most given by the factor 𝛼 = 10−2, also
the classical noise limit, where 𝛽Ω ≪ 1 is
most likely to work in the regime where
the gap is smallest, i.e. around avoided
crossing. In this region the transitions are
dominated by the detuning noise.

initial dot or ends up in the excited valley or spin state. The probability
of this event can be computed as:

𝑄 = 1 −
��〈𝜓−(𝑡 𝑓 )

��𝜓(𝑡𝑖)〉��2 , (8.2)

where the target state, localized in the right dot has an explicit form:��𝜓−(𝑡 𝑓 )
〉
= |𝑅, ↓, 𝑣−⟩ ≡ |𝑅⟩ . (8.3)

Note that in this way we approximately reduced multilevel problem to
minimal problem of charge transfer between two orbital states4 .

Reduction to two-level system allow us to use previously derived treat-
ment of driven orbital TLS, the unitary evolution of which is defined in
terms of Landau-Zener Hamiltonian

𝐻DQD(𝑡) =
𝜖(𝑡)
2

𝜎̂𝑧 +
𝑡𝑐

2
𝜎̂𝑥 . (8.4)

We attempt to model charge transfer in the realistic devices, where
influence of the environment cannot be neglected.

8.2 Classical noise limit (high temperature)

We start by considering classical noise in the parameters of time-dependent
Landau-Zener Hamiltonian

𝐻DQD(𝑡) =
𝜖(𝑡) + 𝛿𝜖(𝑡)

2
𝜎̂𝑧 +

𝑡𝑐 + 𝛿𝑡𝑐(𝑡)
2

𝜎̂𝑥 . (8.5)

Noise in detuning

First we explicitly concentrate on the 1/f charge noise in detuning with
the parameters reflecting experimental reality. We ignore fluctuations of
the tunnel coupling as they are typically much weaker in amplitude.5 This
means that the analysis in this section will be more relevant for Si-based
devices, where influence of phonons in many cases can be neglected, as
we will show later in this chapter. As discussed in Sec. 5.2, the leading
order correction due to classical noise of 1/ 𝑓 𝛽 with the spectral density
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6: Γ(𝑧) =
∫ ∞
0 𝑥𝑧−1𝑒−𝑧d𝑥

7: For the reminder 𝐴1 = 𝑆(𝜔1) is the
value of spectral density measured at 𝜔1 =

2𝜋(1/s)

8: The origin of exponential will become
natural when adiabatic Master equation is
used in Sec. 8.3

𝑆𝛽(𝜔) = 𝐴1(𝜔1/𝜔)𝛽 can be computed from the expression derived in
Eq. (5.50), which for 1/ 𝑓 𝛽 noise reads

𝛿𝑄𝜖𝜖 =
𝐴1𝑥𝜔1

2𝑣

∫ ∞

𝑡𝑐

dΩ
𝑡2𝑐

Ω2+𝛽
√

1 − 𝑡2𝑐/Ω2
=
𝐴1𝜔

𝛽
1

2𝑣
𝑡
1−𝛽
𝑐 ℎ(𝛽), (8.6)

where the ℎ(𝛽) function can be represented as:

ℎ(𝛽) =
∫ ∞

1

𝑑x
𝑥𝛽+1

√
𝑥2 − 1

=

∫ 𝜋/2

0
cos𝛽(𝛼)d𝛼 =

√
𝜋

2
Γ( 𝛽+1

2 )
Γ( 𝛽2 + 1)

, (8.7)

with Γ(𝑥) representing Γ function6 . The function ℎ(𝛽) decreases mono-
tonically with 𝛽, and its typical values read ℎ(1) = 1, ℎ(3/2) ≈ 0.87.

𝛽 = 1 case

We now compute the transfer error as a function of detuning sweep rate
𝑣 for the typically measured amplitudes of the charge noise, characterize
by the exponent 𝛽 = 1. In such case, the analytical formula for the leading
order correction Eq. (8.6) predicts that:

𝛿𝑄𝜖𝜖,1 =
𝐴1𝜔1

2𝑣
, (8.8)

which is independent of tunnel coupling7 .

This surprising result can be physically understood using simple model
from the introductory chapter, i.e. since the relaxation rate at the zero-
detuning reads Γ−(𝑡𝑐) ∝ 𝑆𝜖(−𝜔)/4 = 𝐴1𝜋/2𝑡𝑐 , while for linear sweep
typical time spent in the vicinity of the avoided crossing can be estimated
as 2𝑡LZ ≈ 2𝑡𝑐/𝑣. Together we have

𝛿𝑄𝜖𝜖,𝛽 ≈ 1
4𝐴𝛽(𝑡𝑐)

2𝑡𝑐
𝑣

=
𝐴1𝜔

𝛽
1

2𝑣
𝑡1−𝛽 , (8.9)

which exactly recreates result of the integral for 𝛽 = 1. In particular such
probability of excitation can be given in the typical units as:

𝛿𝑄𝜖𝜖,1 ≈ 5
𝐴1[𝜇eV2/Hz]
𝑣[𝜇eV/ns] , (8.10)

which predicts the 5% error for 𝐴1 = 1𝜇eV2/Hz and 𝑣 = 100𝜇eV/ns.

We confirmed the above prediction by direct comparison against nu-
merical simulation, in which we average the adiabatic evolution over
realisations of 1/ 𝑓 -noise in detuning with different amplitude 𝐴1. In
Fig. 8.2 we plot the probability of successful transfer 𝑃 = ⟨|𝑎− |2⟩ = 1 −𝑄
as a function of sweep rate 𝑣 for different values of tunnel couplings
𝑡𝑐 = 5, 15, 25𝜇eV. By a different colors we denote different amplitude of
the noise, the symbols denote results the averaging over realisations of the
classical noise, the dashed lines are leading order predictions 𝛿𝑄𝜖𝜖,1 while
the solid line are the exponential fit to the formula8 𝑄 = 1

2 (1 − 𝑒−2𝛿𝑄𝜖𝜖,1).
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Figure 8.2: The charge transfer in presence of 1/f classical noise in detuning. a) The semi-log plot of the probability of charge transfer
𝑃 = 1 −𝑄 as a function of sweep rate for three different amplitudes of 1/f noise (colors). In the right, the same but for the charge transfer
error 𝑄. The results marked by the symbols are obtained by averaging the driven evolution over 1000 realisations of the 1/f noise. The
dashed line is the leading order correction 𝛿𝑄𝜖𝜖,1 from Eq. (8.9). The solid line is the exponential fit 𝑄 = 1

2 (1 − 𝑒−2𝛿𝑄𝜖𝜖,1 ). Adapted from [1]

9: But still relevant for quantum informa-
tion processing

10: naturally when 1/ 𝑓 𝛽 noise has the
same power at 1Hz, i.e. 𝐴1 = 𝐴𝛽

11: which we set to 𝜔ℎ ≈ 15𝜇eV to reflect
typical tunnel coupling value

As it can be seen from Fig. 8.2a), for the fast sweeps the transfer error
is given by the Landau-Zener formula, where the shape of the transfer
probability as a function of 𝑣 depends on the value of tunnel coupling
only. In the opposite regime of slow sweeps the transfer probability
depends only on the amplitude of the noise

√
𝐴1, and as predicted is

independent of the tunnel coupling.

To show that the noise dominated error is initially inversely proportional
to the sweep rate, in Fig. 8.2b) we plot the transfer error 𝑄 = 1 − 𝑃 in the
full logarithmic scale. We concentrate on the low-error part of Fig. 8.2a),
which is denoted by a red rectangle. As shown in Fig. 8.2b) for the
relatively small9 error, the 𝑄 ∝ 1/𝑣 trend is visible in the regime where
Landau-Zener probability of non-adiabatic transition is exponentially
small, i.e. the transfer error does not depend on the tunnel coupling. As
one can see, the interplay between Landau-Zener and charge noise non-
adiabaticity, results in the optimal sweep rate at which the transfer error
𝑄 is minimal. For considered parameters the minimal error is predicted
to be as low as 𝑄 = 10−3 for 𝑡𝑐 = 25𝜇eV and

√
𝐴1 = 0.2 𝜇eV/

√
Hz.

𝛽 ≠ 1 case

In the above analysis we have shown that for 𝛽 = 1 case the noise induced
non-adiabaticity, resulting in transfer error does not depend on the tunnel
coupling. We now confirm that this is not the case for other exponents,
as the predicted leading order correction gives 𝑄𝜖𝜖 ∝ 𝑡1−𝛽𝑐 . In particular
since the error only depends on the spectral density at Ω = 𝑡𝑐 ≫ 1Hz, it
means that the error is expected to be larger for 𝛽 < 1 and smaller for
𝛽 > 1 then for the 𝛽 = 1 case10 . Let us now assume the 𝛽 = 1 and 𝛽 ≠ 1
spectra are equal not at 𝜔1 = 1Hz but at some high-frequency 𝜔ℎ

11 , i.e.

𝐴1(𝜔ℎ) = 𝐴𝛽(𝜔ℎ), (8.11)

the relative error depends now on the relation between 𝜔ℎ and tunnel
coupling 𝑡𝑐 . In particular the error for the 𝛽 ≠ 1 noise can be related to
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12: more precisely thermal energy 𝑘B𝑇

13: in particular to significantly limit the
energy consumption,

the transfer error for 𝛽 = 1 as

𝛿𝑄𝛽≠1 = 𝛿𝑄𝛽=1

(
𝑡𝑐

𝜔ℎ

)1−𝛽
ℎ(𝛽). (8.12)

Note that from the above formula the error for 𝛽 ≠ 1 at 𝜔ℎ = 𝑡𝑐 is
expected to be larger for 𝛽 < 1 and smaller then for 𝛽 > 1, since ℎ(𝛽)
is monotonically decreasing function of 𝛽. We confirm this analysis by
plotting in Fig. 8.3 the transfer probability 1−𝑄 averaged over numerically
generated realizations of 1/ 𝑓 1.5 noise.

Figure 8.3: Charge transfer probability
𝑃 = 1 − 𝑄 as a function of sweep rate
𝑣 in presence of 1/ 𝑓 1.5 noise for three
different values of tunnel couplings (col-
ors). The symbols corresponds to a nu-
merically averaged 100 realizations of the
classical noise. Solid lines are the exponen-
tial 𝑄 = 1

2 (1 − 𝑒−2𝛿𝑄𝜖𝜖,1 ). The black line
is the result for 1/ 𝑓 noise. We use the cal-
ibration described in Eq. (8.11), in which
𝑆1(𝜔ℎ) = 𝑆1.5(𝜔ℎ), where 𝜔ℎ = 15𝜇eV.
Adapted from [1]

The result in Fig. (8.3) is plotted for different tunnel couplings 𝑡𝑐 (colors)
and compared against 𝛽 = 1 noise (black line). We calibrate both noise
spectra at 𝜔ℎ = 15𝜇eV, and as expected the transfer probability at
𝑡𝑐 = 15𝜇eV for 𝛽 = 1.5 case is above 𝛽 = 1 case, since ℎ(1.5)/ℎ(1) = 0.87.
Physically it means that there is less power spectral densities in the
frequencies above Ω > 15𝜇𝑒𝑉 . For the same reason the result for large
tunnel coupling 𝑡𝑐 = 25𝜇eV, lies above the 𝛽 = 1 case. In the opposite
regime of 𝑡𝑐 = 5𝜇 eV, the spectral weight of 1/ 𝑓 1.5 is larger, and hence
the error increases.

High temperature regime

The above analysis has been developed using the assumption of the
classical fluctuations in detuning, for with the relaxation and excitation
rates are equal, i.e. Γ+ = Γ−. This can be associated with the relatively
high temperature12 in comparison to relevant energy scales, i.e. tunnel
coupling 𝑡𝑐 . We now attempt to estimate range of parameters, in which
classical noise approach can be applied.

Significance of high temperature

As a motivation we take the recently considered possibility of quantum
computation using spin qubits at relatively high temperature of 𝑇 = 1K.
Achieving this task is expected to be beneficial from the perspective of
saving resources13 and enabling integration to classical control electronic
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14: Using substitution 𝜒(𝑡) =

2
∫ ∞
𝑡

Γ(𝑡′)d𝑡′

15: See definition of spectral density for
𝜔 ≪ 𝑘B𝑇

inside the qubit array [188, 189]. For this reason we set the temperature
to 𝑇 = 1K, which corresponds to thermal energy of 𝑘B𝑇 ≈ 100𝜇eV.

Prediction of adiabatic Master equation

We now compute predictions of adiabatic Master equation in the limit of
high temperature, i.e. Γ+ = Γ− ≡ Γ. As usually in this thesis we assume
here that the electron is initially in the ground state, i.e. 𝑄0 = 0, which
from the Eq. (5.73) allows to write the final error as

𝑄cl(𝑡 𝑓 ) =
∫ 𝑡 𝑓

𝑡𝑖

d𝑡Γ(𝑡)𝑒−2
∫ 𝑡 𝑓

𝑡 Γ(𝑡′)d𝑡′ . (8.13)

We now expand the limits to infinity and compute the integral analyti-
cally14 , which gives

𝑄cl =
1
2

(
1 − 𝑒−2

∫ ∞
−∞ Γ(𝑡)

)
, (8.14)

and shows that in the limiting case of
∫ ∞
−∞ Γ(𝑡) ≫ 1, i.e. strong coupling

or relatively long evolution time, we obtain 𝑄cl = 1/2. Note that when
both detuning and tunnel coupling noise are considered, the relaxation
rate reads:

Γ(𝑡) = 1
4

[
𝑆𝜖(Ω[𝑡]) cos2 𝜗(𝑡) + 𝑆𝑡𝑐 (Ω[𝑡]) sin2 𝜗(𝑡)

]
, (8.15)

Numerical simulation

Motivated by the above we now move to numerical simulation, which
aims at reproducing classical noise approach at 𝑇 = 1K. To keep the
orbital gap below thermal energy we set initial and final detuning to
𝜖 = ±100𝜇eV. We consider here both 1/f and Johnson charge noise. For
the 1/f noise we use the 𝐴1(1𝐾) = (1.5)2 𝜇eV2/Hz, which using linear
scaling with temperature from Eq. (7.32) can be related to 𝐴1(0.1𝐾) =
(0.5)2 𝜇eV2/Hz. Since in the considered regime of temperatures, the
Johnson noise is effectively flat15 , for numerical simulation we model
Johnson noise by the white Gaussian Noise with the spectrum 𝑆 𝑗(𝜔) =
(0.3)2 𝜇eV2/Hz. For completeness we add also the fluctuations of tunnel-
coupling, which for both 1/f and Johnson noise spectra are reduced by a
factor of 10−2, i.e. 𝑆𝑡𝑐 (𝜔) = 10−2𝑆𝜖(𝜔).

In fig. (8.4) we plot the transfer error 𝑄 as numerical averages over
realization of the Johnson (filled dots) and 1/f (hollow dots) noise
processes in tunnel coupling and detuning. We plot the results for
different tunnel couplings (colors). The numerically averaged result
confirms predictions of adiabatic Master equation (AME) fed by the
spectral densities of the corresponding noise processes. The AME results
are plotted using solid lines for the noise in detuning, and dashed lines
for the noise in tunnel coupling.

First we see that in the limit of fast sweeps, the error is dominated by the
L-Z process. In the opposite limit noise-dominated error for 1/f noise is
independent of tunnel coupling for both fluctuations of tunnel coupling
and detuning as expected. The independence of 𝑡𝑐 is approximately true
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Figure 8.4: Charge transfer error as a func-
tion of sweep rate, plotted separately for
the evolution in presence of only 1/f noise
(hollow dots) or only Johnson noise (filled
dots), in the detuning (solid lines) or tun-
nel coupling (dashed lines) for two tunnel
couplings 𝑡𝑐 = 10, 20𝜇eV. We compare
the direct averaging over realisation of the
noise (symbols) versus the results of the
adiabatic Master equation (lines) with suit-
able spectral densities. Adapted from [2].

for the white noise in tunnel coupling and untrue for the white noise
in detuning. As the spectral density of white noise does not depend on
the energy gap, the difference can be understood from considerations
on amount of time during which, detuning and tunnel coupling noise
are transverse in the orbital basis. The detuning noise can be considered
transverse in vicinity of avoided crossing, for approximate time period of
∼ 2𝑡𝑐/𝑣. On the other hand the tunnel coupling noise is transverse away
from avoided crossing for the time period 2𝜖(𝑡 𝑓 )/𝑣 − 2𝑡𝑐/𝑣 ≈ 2𝜖(𝑡 𝑓 )/𝑣,
which for large detuning sweep range 2𝜖(𝑡 𝑓 ) ≫ 𝑡𝑐 weakly depends on
tunnel coupling. We finally conclude that difference between the error
caused by the white and 1/f noise is slightly larger for detuning noise.
This is because the relaxation due to detuning noise takes place around
avoided crossing, where less energy transfer is needed in comparison to
relaxation due to coupling noise, which takes place at larger energies at
which 1/ 𝑓 spectrum has less weight.

Overall we conclude this section by stating that in the limit of high-, but
still relevant for some applications temperature, the classical noise and
Master equation approaches predict equivalent transfer errors due to
typical amplitudes of charge noise. We now move to the low-temperature
limit, that is relevant for most ongoing experiments. In this limit the
classical noise approach is expected to fail, since the excitation rates are
thermally suppressed in comparison to relaxation.

8.3 Quantum noise limit

The end-goal of our analysis is the estimation of fidelity of coherence
electron transfer for the 𝜇m distance. For the transfer realised using
consecutive DQD transitions, it will require hundreds of pre-defined
quantum dots. The sequential structure of the transfer means that in
most likely scenario the transfer might be limited by a weak link, e.g.
pair of quantum dots, with low value of tunnel coupling. For this reason
we now concentrate on the limit when tunnel coupling is comparable to
typical thermal energy of 𝑘B𝑇 ∼ 10𝜇eV. In this limit, although excitation
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16: i.e. which prevent analysis using clas-
sical noise approach.

17: In recent demonstration of charge
transfer between two quantum dots, the
value of tunnel coupling strongly ex-
ceeded thermal energy, i.e. 𝑡𝑐 > 100𝜇eV
[100, 101], and in this way effectively sup-
pressed any thermal excitations. We expect
such regime would be difficult to achieve
in the limit of long quantum array.

rate is suppressed by the Boltzmann factor,16 i.e. Γ+ = Γ−𝑒−𝛽Ω, it cannot
be completely neglected17 . In particular it suggest finite probability of
excitation around avoided crossing, where the gap between ground and
excitated orbital state is minimal.

Figure 8.5: The schematic picture of the
interdot transition in presence of the high-
frequency environmental noise that causes
inelastic transitions between the levels. In
a) we plot the instantaneous spectrum of
the DQD charge transfer, together with the
insets which show most relevant processes
in a given regime. We illustrate the that
at typical temperatures most excitations
takes place around the avoided crossing,
where the levels have molecular-orbital
character (inset), while the relaxation takes
place between the dot-like states (inter-
dot) at larger detuning. In b) we show the
composition of the instantaneous states
which can be related to dot-like states (blue
dashed line) and molecular-orbital (green-
dashed line). Adapted from [2]

We illustrate the typical scenario in Fig. 8.5a), where the energy spectrum
of the DQD transition is showed as a function of dots detuning. We
schematically show the physical picture, in which for the initially occupied
ground state, the evolution is expected to be adiabatic up to the moment
where 𝑒−𝛽Ω is not negligibly small, which takes place around avoided
crossing. It is the place where most excitations takes place. For large,
positive detunings typically the relaxation process dominates, which
allow to recover some of the occupation of the ground state that is
being transferred to the target dot. Note that around avoided crossing
the transition between the instantaneous state are mostly caused by
the detuning noise Γ±,𝑧(∓Ω[𝑡]) ∝ 𝑆𝑧(∓Ω[𝑡]) sin2 𝜃, while the relaxation
at large detuning is caused by noise in tunnel coupling Γ−,𝑥(Ω[𝑡]) ∝
𝑆𝑥(Ω[𝑡]) cos2 𝜃. To illustrate dynamically change character of transverse
noise in Fig. 8.5b we plot the value of the sin2 𝜃 and cos2 𝜃 as a function
of detuning.

Coherent and incoherent evolution

In the limit of fast sweep we expect the error to be dominated by the
physics of the Landau-Zener transition, associated with the coherent
transition from ground to excited state. The probability of occupying
excited state due to such coherent coupling, was previously given as:

𝑄LZ = exp
(
−𝜋

2
𝑡2𝑐
2𝑣

)
, (8.16)
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18: See Eq. (5.70) for the exact form of
adiabatic Master equation in the Linblad
form

19: As we will show this approach would
be more suitable to electron transfer be-
tween Si-based quantum dot, where time-
scale needed for inelastic transition is
much longer.

20: which we estimated by the time dur-
ing which the orbital gap Ω =

√
𝑡2𝑐 + 𝜖(𝑡)2

is dominated by the tunnel coupling

which shows that the Landau-Zener error is suppressed exponentially
for sufficiently slow sweep rate 𝑣.

It also means that there exists the adiabatic regime, where 𝑡2𝑐/𝑣 ≫ 1 and
coherent coupling between adiabatic levels ¤𝜗 in the Master equation can
be neglected18 . In such case, the loss of occupation of the ground state 𝑄
due to presence of environment has the analytical form:

𝑄env =

∫ ∞

−∞
d𝜏Γ+(𝜏) exp

(
−

∫ 𝑡 𝑓

𝑡𝑖

Γ+(𝜏′) + Γ−(𝜏′)d𝜏′
)
. (8.17)

Since the general treatment of the nested integral might be complicated
for time-dependent relaxation rate, below we present a few approximate
treatment for noise induced charge error.

Single Excitation Approximation Limit

We continue with one of the simplest approaches, in which w assume that
at most a single transition from ground to excited state is possible. In such
case the equations of motion, from the Master equation can be solved
perturbatively, leading to a result in Single Excitation Approximation
Limit (SEAL)

𝑄SEAL =

∫ 𝑡 𝑓

𝑡𝑖

Γ+(Ω[𝑡]), (8.18)

where the excitation rate is evaluated at avoided crossing. The above
approach is applicable only if the typical 𝑄SEAL ≪ 1, since otherwise
relaxation process has to be considered19

We now take into account the time-dependence of the excitation rate,
which result from dynamically changing: orbital gap Ω(𝑡) and the com-
position of adiabatic states. In particular in typical situation where
the detuning noise dominates over the noise in tunnel coupling, i.e.
𝑆𝜖(Ω) ≫ 𝑆𝑡𝑐 (Ω) most transitions takes place at the avoided crossing,
when multiplicity factor of sin2 𝜃 ≈ 1. In such a case the integral in𝑄SEAL
can be computed in the approximate manner, by assuming that the relax-
ation rate around avoided crossing is approximately constant and given
by Γ+(𝑡𝑐) and the excitation takes place in a finite finite time-window Δ𝑡,
i.e.

𝑄SEAL ≈ Γ+(𝑡𝑐)Δ𝑡 (8.19)

In particular as we have showed in the classical noise considerations, in
high temperature limit the time-window is just given by the time spent
in vicinity of avoided crossing20 Δ𝑡 = 2𝑡𝑐/𝑣 i.e.

𝑄
(𝛽𝑡𝑐≪1)
SEAL = Γ−(𝑡𝑐)

2𝑡𝑐
𝑣
, (8.20)

For the lower temperature the excitation window Δ𝑡 is expected to be
smaller due to exponential suppression by the Boltzmann factor. To find
its effective width we expand the gap around 𝜖 = 0, i.e.

Ω(𝜏) ≈ 𝑡𝑐 +
1
2
(𝑣𝑡)2
𝑡𝑐

. (8.21)
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Single Excitation Limit Ap-
proximation (SEAL)

21: Naturally this approach is suitable in
low-temperature, in which relaxation rate
Γ− ≫ Γ+.

Healed Excitation Limit Ap-
proximation (HEAL)

22: which for constant detuning sweep
range can be related to 𝑡 𝑓 ∝ 1/𝑣

The resulting Gaussian integral in Eq. (8.19) can be computed by expand-
ing integration limits of to infinity. In such case we obtain:

𝑄
(𝛽𝑡𝑐≫1)
SEAL =

√
2𝜋
𝑣

√
𝑘B𝑇𝑡𝑐 Γ+(𝑡𝑐), (8.22)

Both in high- and low-temperature regimes we have showed that the
probability of the excitation at the avoided crossing is inversely propor-
tional to the sweep rate𝑄SEAL ∝ 1/𝑣, which together with Landau-Zener
probability, for which the𝑄LZ increases with higher 𝑣, predicts a trade-off
behaviour and the existence of optimal velocity. Below we will show that
this is further modified by possibility of ground state recovery.

Healed Excitation Approximation Limit

The effect of subsequent transitions is encapsulated by the exponen-
tial function in Eq. (5.73), however its exact computation might be
complicated for realistic Γ±(Ω[𝑡]). We proceed with an approximate
way of taking account relaxation process. We assume the excitation
can take place only once21 , in the vicinity of the avoided crossing, i.e.
Γ+(Ω[𝑡]) = 𝑄SEAL𝛿(𝑡), where 𝛿(𝑡) is the dirac delta. Consequently

𝑄HEAL = 𝑄
(𝛽𝑡𝑐≫1)
SEAL exp

(
−

∫ 𝑡 𝑓

0
Γ−(𝜏′)

)
, (8.23)

where 𝑄(𝛽𝑡𝑐≫1)
SEAL have been given by Eq. (8.22).

Relaxation-aided transfer

Figure 8.6: Sketch of the charge trans-
fer error as a function of sweep rate. For
weakly coupled case (red line), we expect
to local extrema: The local minimum at
𝑣opt at which 𝑄LZ(𝑣opt) = 𝑄SEAL(𝑣opt)
(See Eq. (5.18) and Eq. (8.22) respectively),
and the local maximum at 𝑣max at which∫ 𝑡 𝑓

0 Γ−(𝑡) = 1 (note that 𝑣 = 𝜖(𝑡 𝑓 ))/𝑡 𝑓 .
For the stronger coupling to environ-
ment (green line), similar estimation gives
𝑣max > 𝑣opt and hence result in the mono-
tonic behaviour of 𝑄(𝑣).

We now use the above formulas to discuss the additional effects due to
relaxation process, which can recover some occupation of the ground
state. In the limit of fast sweeps, which can be related to short transition
times 2𝑡 𝑓 22 . In such a case, the relaxation is often too slow to affect the
error dominated by the exponential form of the Landau-Zener excitations,
that scales as 𝑄LZ ∝ 𝑒−𝐴𝑡 𝑓 . For slower sweeps, at some point the error
becomes dominated by the single transitions from ground to excited
state which however is proportional to transfer time 𝑄SEAL ∝ 1/𝑣 ∝ 𝑡 𝑓 .
Finally when the transfer time becomes comparable with some effective
relaxation time Γ̃−, i.e.

𝜒HEAL =

∫ 𝑡 𝑓

0
Γ−(𝑡) ≈ Γ̃−𝑡 𝑓 ∼ 1, (8.24)
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Figure 8.7: Transition rates in the DQD
systems. We plot Relaxation (solid lines)
and excitation (dashed) rates in the double
quantum dot systems as a function of dots
detuning at 𝑡𝑐 = 20𝜇eV and 𝑇 = 100mK,
using models developed in Chapter 7.
We separately plot contributions from 1/f
noise (yellow line), Johnson noise (red),
and phonons in the three DQD mod-
els from Sec. 6.3: GaAs (green), Si/SiGe
(black) and SiMOS (blue). Adapted from
[2].

23: Similarly to 𝑄LZ

24: which we define via the relation

𝜒HEAL ∼ 1

25: which we define via

𝑄LZ(𝑣opt) = 𝑄SEAL(𝑣opt)

26: Which might not be the case in pres-
ence of non-negligible spatial correlation
of the noise. See Sec. 7.3 for discussion

27: as it ranges from 1/Γ̃(GaAs)
− (𝑡𝑐) =

0.2 ns to 1/Γ̃(GaAs)
− (200𝜇eV) = 20 ns

28: One can estimate that for 𝑣 = 10𝜇eV
and 𝑡𝑐 = 20𝜇eV the time spend around
𝜖 = 0 is 𝑡𝑐/𝑣 ∼ 2 ns.

the occupation of excited state becomes exponentially suppressed𝑄HEAL ∝
𝑒−2Γ̃−𝑡 𝑓 , which means the error start to decrease for slower sweeps23 . The
illustration of the expected non-monotonic behaviour of 𝑄(𝑣) is showed
in Fig. 8.6, where we denote the location of local minimum as 𝑣max

24

and location of local maximum as 𝑣opt
25 .

Note that the non-monotonic pattern is present only if 𝑣max < 𝑣min.
Otherwise the 𝑄(𝑣) is a monotonically increasing function of 𝑣, which is
a typical situation in the case of sufficiently fast relaxation rate.

Relaxation rates for realistic DQD devices

To prepare the ground for computing probability of charge transfer,
now in Fig. 8.7 we compute the values of relaxation (solid lines) and
excitation (dashed lines) rates due to phonons (Sec. 7.2) and charge noise
(Sec. 7.3), computed for three DQD devices from Sec. 6.3. We assume
the charge noise weakly depends on the dots geometry26 and separately
plot 1/f, Johnson and phonon transition rates for each of the considered
devices using different colors. We use parameters from the ballpark
of relevant experiments, i.e. 𝑡𝑐 = 20𝜇eV and 𝑇 = 100 mK for which
Γ+(𝑡𝑐)/Γ−(𝑡𝑐) ≈ 0.1

We start with GaAs-based device for which piezoelectric phonons dom-
inate both relaxation and excitation. In this case we see relatively fast
relaxation rate in vicinity of avoided crossing, with translates to excitation
timescale at the avoided crossing 1/Γ(GaAs)

+ (𝑡𝑐) ≈ 2ns and similar value
of typical relaxation time 1/Γ̃(GaAs)

− ≈ 1ns.27 This means that any sweep
that leads to ns-time spent in the vicinity of the avoided crossing would
leads to high probability of occupying the excited state28 . As discussed
above for sufficiently slow sweeps the fast relaxations is expected to bring
the qubit to thermal equilibrium value of

𝑄eq(Ω) ≈ Γ+(Ω)
Γ+(Ω) + Γ−(Ω) ≈ 𝑒−𝛽Ω , (8.25)
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29: In theory it would allow to park the
electron at sufficiently large detuning and
wait for the relaxation to take place. How-
ever as we will show in the Chapter 12 this
most likely would lead to spin dephasing
of shuttled electron

30: As it was pointed out in [111]

31: i.e. in the region of small 𝑣, where∫
Γ−(𝑡) is not negligible,

which for considered parameters gives 𝑄eq(𝑡𝑐) = 0.1 at the avoided
crossing. Note that away from the avoided crossing the equilibrium occu-
pation is decreasing exponentially, which means that for sufficiently slow
sweep rate 𝑣 the transfer is expected to be ideal provided

∫
Γ−(Ω[𝑡])d𝑡

is sufficiently large.

We now move to the case of Si-based device, in which the excitations
around the avoided crossing are dominated by charge noise. Note that
the predicted amplitude of 1/f and Johnson noise are comparable and
estimate excitation timescale as low as 1/Γ(SiGe)

+ (𝑡𝑐) = 100ns. This shows
that for the same sweep 𝑣 probability of transition from ground to
excited state is lower then in GaAs. However the weak coupling between
the electron and the environment also means that the relaxation aided
transfer is less probable, meaning that the speed at which relaxation
allows for significant recovery of the ground state is expected to be much
lower. In particular, relaxation aided transfer in SiGe devices requires
transfer time of the order of 𝑡 𝑓 ≈ 1/Γ̃− ∼ 100 ns (red line). The situation
might slightly improve in the SiMOS devices where smaller distance
between the dots allows for faster interdot phonon relaxation, which
gives 1/Γ̃− ∼ 10 ns but only at large detunings (blue line)29 .

We conclude that typical GaAs device represent the limit of strong cou-
pling, where possibly multiple transitions between the adiabatic levels are
expected. In contrast both Si-based devices show weak coupling, which
limits exciations around avoided crossing but prevent their subsequent
recovery away from avoided crossing.

Results and discussions

We finally use the above to compute and analyze electron charge transfer.
In Fig. 8.8 we compute charge transfer error 𝑄 as a function of sweep
rate for various tunnel couplings 𝑡𝑐 = 10, 20𝜇eV and the sweep range
Δ𝜖 = 1meV for the DQD devices from Sec. 6.3. For each tunnel coupling
and DQD system we compute transition rates Γ±(𝜏) using methods from
Chapter 7. In the figure we compare exact solution of adiabatic Master
equation (AME, filled and hollow squares) against approximate solutions,
i.e. 𝑄SEAL (dashed line) and 𝑄HEAL (solid line). By hollow squares we
denote results obtained beyond the expected limits of validity of AME in
the Linblad form30 . Additionally we plot bare Landau-Zener probability
using dotted black line. Below we discuss separately results of GaAs-
and Si-based nanostructures.

Si-based devices

We start with the analysis of Si-based devices, which shows relatively
weaker coupling to environmental fluctuations. The picture is similar for
SiMOS (blue) and SiGe (red) devices, however in the former case, the
error in the relaxation dominated region31 is smaller thanks to larger
role of interdot phonons.

Commonly for both SiGe and SiMOS we observe the non-monotonic
structure of the charge transfer error 𝑄(𝑣) as a function of sweep rate.
For slowest sweeps 𝑣 < 𝑣max the error increases with 𝑣, since the electron
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Figure 8.8: Charge transfer error during interdot transition 𝑄 for 𝑡𝑐 = 10, 20𝜇eV and 𝑇 = 50, 100mK. Using different colors we plot the
results for the GaAs (green), Si/SiGe (red) and SiMOS (blue) devices from Sec. 6.3. The dashed lines are the predictions of the 𝑄SEAL from
Eq. (8.22). The solid lines are the predictions of the 𝑄HEAL from Eq. (8.23). Symbols shows the result of the adiabatic Master equations.
Hollow symbols shows the regime where Landau-Zener transition (black dotted line) dominates. Adapted from [2].

32: Hence the error decreases for faster
sweeps

33: from the equation Γ̃− Δ𝜖
𝑣opt

∼ 1

34: As it can be seen from 𝑡𝑐 = 20𝜇eV,
𝑇 = 100mK case from Fig. (8.8)

has less time to relax from the excitation that took place around avoided
crossing. Next the character of the curve changes at 𝑣 > 𝑣max, where
𝜒HEAL < 1, and hence ground state recovery is inefficient. In this limit,
dominated by 𝑄 ∼ 𝑄SEAL ∼ 1/𝑣, the slower sweeps leads to more time
spent around avoided crossing where unaided excitations take place.32

Finally at the fastest sweeps 𝑣 > 𝑣opt the error start to increase due to
coherent excitations described by the Landau-Zener model.

Note that this picture is common for all 𝑡𝑐 = 10, 20𝜇eV and 𝑇 =

50, 100mK, where however the𝑄HEAL formula works best for 𝑡𝑐 = 20𝜇eV
and 𝑇 = 100mK limit, where the time-window for relaxation is the
smallest. Also the location of 𝑣opt and 𝑣max is modified, however their
location is consisted with the predictions based on the transition rates.
Note that based on the computed rates from Fig. 8.7, for 𝑡𝑐 = 20𝜇eV
and 𝑇 = 100mK, typical relaxation rate in Si Γ̃− ∼ 0.01 ns−1 one can
estimate33 𝑣opt ≈ 10𝜇eV/ns, which agrees with numerical data.

GaAs device

The non-monotonic structure of 𝑄(𝑣) is absent in GaAs-based device,
where relatively stronger coupling to piezoelectric phonons is present.
This is indicated by at least order of magnitude stronger 𝑄SEAL, which
shows how much larger probability of excitation at avoided crossing in
GaAs is in comparison to Si. In fact when its square becomes comparable
to unity 𝑄2

SEAL ≈ 1, we expect more than a single excitation from ground
to excited state, which means that the 𝑄HEAL approximation is no longer
expected to work34 . The absence of the local maximum can be attributed
to estimated value of 𝑣max > 100𝜇eV/ns which is larger or at least
comparable to the intersection of 𝑄LZ and 𝑄SEAL.
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35: which corresponds to reported value
of tunnel coupling used to demonstrate
charge transfer in the array of 9 quantum
dots [98]

36: See the discussion in the Sec. 13.2.

Although higher probability of excitations at avoided crossing leads
to possibly larger error in the vicinity of 𝑣 ≈ 100𝜇eV/ns, where 𝑄LZ
becomes dominated by the incoherent contribution, orders of magnitude
faster relaxation allows for much lower transfer error for slower sweeps in
comparison to Si-based devices. In particular the charge transfer error is
expected to be 𝑄 < 10−4 for 𝑣 < 10𝜇eV/ns in all the considered cases.

Larger tunnel coupling

We move to larger tunnel coupling. We take 𝑡𝑐 = 40𝜇eV,35 and similarly
to before in Fig. 8.9 plot charge transfer error as a function of 𝑣. For
𝑇 = 100mK, previously described difference between the 𝑄 for Si- and
GaAs-based devices is even more visible: the charge transfer in the
former is better at faster sweeps and worse in the slower sweeps where in
principle relaxation processes can be used for the recovery of the ground
state occupation.

Figure 8.9: Charge transfer error during
interdot transition 𝑄 for 𝑡𝑐 = 40𝜇eV and
two different temperatures 𝑇 = 500mK (a)
and 𝑇 = 100mK (b). With different colors
we plot the results for the GaAs (green),
Si/SiGe (red) and SiMOS (blue) devices
from Sec. 6.3. The solid lines are the pre-
dictions of the𝑄HEAL from Eq. (8.23). The
black dotted line is the Landau-Zener for-
mula. Adapted from [2].

Note that larger tunnel coupling generally allows for faster transfer, i.e.
the 𝑣opt = 400𝜇eV for Si-based devices, which translates to much more
practical few-ns transfer. In this regime the error for GaAs device is more
then order of magnitude larger then for Si-based devices, for which it
becomes close to 𝑄 = 10−4 at 𝑣opt. We highlight that such transfer error
could easily allow for shuttling over 𝑁 ∼ 10 dots (𝐿 ∼ 1𝜇m), but might
become above 1% for 𝑁 > 100dots (𝐿 > 10𝜇m) since 100𝑄 > 10−2.36

To analyze possibility of electron shuttling at higher temperatures we
include here also result for the temperature of 𝑇 = 0.5𝐾. In this case the
probability of excitation naturally increases, but the position of the 𝑣max
and 𝑣opt for Si remains approximately the same. The difference is much
bigger for the GaAs-based device for which higher temperature hinders
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37: Increased equilibrium occupation of
the excited state

relaxation-aided transfer37 , which is visible by making the 𝑄(𝑣) line less
steep and much more comparable to Si at low 𝑣.





III. Spin degree of freedom during
charge transfer





1:

ĝ =


𝑔𝑥𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑦𝑥 𝑔𝑦𝑦 𝑔𝑦𝑧
𝑔𝑧𝑥 𝑔𝑦𝑧 𝑔𝑧𝑧

 (9.3)

2: Which allows to minimize corrections
from the electron cyclotron motion [30]

9 Spin qubit in semiconductor
quantum dot
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We now focus on the electron internal degree of freedom, the spin,
which is used as a carrier of quantum information in quantum dot-based
quantum devices. We start in Sec. 9.1 by introducing undriven spin qubit
in a single quantum dot. We first define its Hamiltonian and show that
in absence of spin-orbit coupling the source of non-unitary evolution
are the nuclear spins. We discuss the nuclear-induced dephasing and
discuss most important difference between the spin qubit in GaAs- and
Si-based devices. Next in Sec. 9.2 we discuss the intrinsic and synthetic
spin-orbit coupling and show how it leads to correlation between spatial
and spin degrees of freedom. We finally in Sec. 9.3 argue that in presence
of such a correlation spin qubit inherits from the charge qubit sensitivity
to environmental fields, previously discussed in context of orbital states
of DQD.

9.1 Electron spin qubit

From the analysis of the coupling between orbital TLS and environmental
fields from Sec. 7.1, one can infer that the influence of the environment
can be minimized if the quantum information is encoded in an internal
degree of freedom (such as spin), characterized by similar wavefunction.
Thus, natural candidate for the quantum information precessing using
electron trapped in the semiconductor quantum dot is the electron spin.
In presence of external magnetic field B, the states associated with
intrinsic angular momentum splits into two levels known as spin-up and
spin-down, i.e. 𝐻̂spin |↑⟩ = 𝐸𝑧/2 |↑⟩ and 𝐻̂spin |↓⟩ = −𝐸𝑧/2 |↓⟩, where 𝐸𝑧
is called the Zeeman splitting. The general Hamiltonian of the electron
occupying quantum dot can be written as:

𝐻̂spin(𝑡) =
1
2
(𝝈̂ · b(𝑡)), (9.1)

where 𝜎̂ are the Pauli operators in some basis, which in general is not
the eigenbasis of 𝐻̂spin. Such Hamiltonian generates precession around
instantaneous effective magnetic field b(𝑡), which at any time can be
related to external magnetic field B by the equation:

b(𝑡) = 𝜇𝐵ĝ(𝑡)B(𝑡), (9.2)

where ĝ(𝑡) is the so-called g-factor tensor,1 that translates external mag-
netic field B(𝑡) into the precession axis b(𝑡). Due to much stronger
confinement in the transverse direction the external magnetic field is
usually applied in-plane,2 i.e.

B0 = 𝐵0(cos 𝜑𝐵 , sin 𝜑𝐵 , 0), (9.4)
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3: and negative as a consequence of elec-
tron negative charge. We will use the con-
vention in which only absolute value of
g factor matter, i.e. adjust the direction of
external magnetic field such that 𝐸𝑧 > 0
for both considered materials.

4: that couples to spin degree of freedom
due to presence of spin-orbit interaction

5: This includes uncontrolled fluctuations
of electric field (charge noise) and lattice
vibrations.

where the angle 𝜑𝐵 donates angle with respect to x-axis defined here as
[110] crystallographic axis.

For the isolated electron the g-factor is isotropic3 , i.e. 𝑔𝑖𝑖 = 𝑔 and
𝑔𝑖≠𝑗 = 0 with 𝑔 = −2.002319 [169], while for the electron confined in the
quantum dot, the g-factor tensor is often significantly anisotropic due to:
cubic symmetry of the crystal lattice, presence of spin-orbit interaction,
and anisotropic shape of the quantum dot, all of which reduces SU(2)
symmetry of the spin in vacuum [30].

In most application, the Zeeman splitting is caused by the to external
magnetic field. They can by related by Eq. (9.2), i.e. 𝐸𝑧 = |b|, using which
the Hamiltonian of isolated spin reads

𝐻̂spin,iso =
1
2
𝐸𝑧𝑠𝑧 , (9.5)

where 𝑠𝑧 Pauli operator, points along direction of b0 = 𝜇𝐵ĝB0.

Spin-qubit control

The possibility of modulating magnetic field of the g-factor tensor in time
allows for coherent control of electron spin qubit. In the basis of 𝐻̂spin,iso
the control is realized by the the perpendicular component, i.e.

𝐻̂spin,ctrl =
1
2
(𝑏⊥(𝑡)𝑠+ + 𝑏∗⊥(𝑡)𝑠−) , (9.6)

where 𝑠± = (𝑠𝑥 ± 𝑠𝑦)/2. It is often used to drive Rabi rotations, which
can be achieved if 𝑏⊥(𝑡) ≈ 𝐴 cos(𝜔𝑡), where 𝜔 ≈ 𝐸𝑧 and 𝐴 ≪ |𝜔 − 𝐸𝑧 |.
Two most popular methods uses time-dependent magnetic field known
as electron spin resonance and time-dependent electric field,4 known as
Electric dipole spin resonance (EDSR) [190]. We highlight that in view of
building quantum computer the second method allows to significantly
improve scalability and the speed of the coherent control. However
it requires a creation of finite effective electric dipole moment of the
electron. This is usually done by coupling the electron spin to orbital
degree of freedom, which by design makes the spin qubit sensitive to
environmental electric fields5 .

9.2 Spin-orbit coupling

We now discuss origin of the interaction between the two lowest-lying in
energy, bound states of the electron in the quantum dot and its internal
spin states used for quantum information processing. We continue to use
here an effectively 1D model, within which general form of the spin-orbit
Hamiltonian reads:

𝑉̂so(𝑥̂ , 𝑝̂𝑥) =
1
2
(
bso · ŝ

)
=

1
2

(
𝛿𝑏(so)

∥ (𝑥̂ , 𝑝̂𝑥)𝑠𝑧 + 𝛿𝑏(so)
⊥ (𝑥̂ , 𝑝̂𝑥)𝑠𝑥

)
, (9.7)

where we introduced position 𝑥̂ and momentum operator 𝑝̂𝑥 along
relevant axis and the spin Pauli operators 𝑠𝑖 . In general we assume that
the spin-orbit coupling is weak, such that the orbital wavefunctions
introduced in Sec. 6.1 can be used as the basis for perturbative expansion.
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6: For the spherical symmetry the spin-
orbit coupling reduces to

𝐻̂so ∝ L̂ · Ŝ. (9.8)

i.e. the inner product between orbital and
intrinsic (spin) angular momentum oper-
ators. The gate-defined dots in semicon-
ductor are not spherically symmetric.

7: Such that the spin-orbit Hamiltonian
has to share the same symmetry as the
dots, i.e. transforms under the same sym-
metry operations

8: This can be caused by the presence of
electric field along z axis, or the fact that
materials on two sides of heterointerface
are different.

Below we explicitly specify contribution from the intrinsic and synthetic
spin-orbit coupling and then show how they influence wavefunctions of
the spin qubit states.

Intrinsic spin-orbit coupling

Physically the intrinsic spin-orbit interaction is related to the motion of
the electron. When electron is moving, relativistic transformation to the
frame co-moving with it transforms part of electric field in the stationary
frame to magnetic field in moving frame.6 Many gate-defined quantum
dots, including relevant for this thesis GaAs- and Si-based ones, have
a 𝐶2v point-group symmetry, which is the same as 𝐻2𝑂 molecule [191].
As a result of symmetry considerations7 the planar part of the general
spin-orbit Hamiltonian has a form:

𝑉̂so,xy ∼ 𝐴𝑝̂𝑥𝑠𝑐,𝑦 + 𝐵𝑝̂𝑦𝑠𝑐,𝑥 = 𝑉̂so,𝐷 + 𝑉̂so,𝑅 , (9.9)

where the spin Pauli operators defined with respect to crystallographic
axes, i.e. 𝑠𝑥,𝑐 generates rotation around 𝑥̂ ∼ [110] while 𝑠𝑦,𝑐 around
𝑦̂ ∼ [110]. The above formulation is commonly expressed in terms of
separated parameters 𝐴 = (𝛼 + 𝛽)/2 and 𝐵 = (𝛼 − 𝛽)/2 and in this way
the Dresselhaus 𝐻so,𝐷 = 𝛽(𝑝̂𝑥𝑠𝑐,𝑦 + 𝑝̂𝑦𝑠𝑐,𝑥) and Rashba (or Bychkov-
Rashba) terms 𝐻so,𝑅 = 𝛼(𝑝̂𝑥𝑠𝑐,𝑦 − 𝑝̂𝑦𝑠𝑐,𝑥) are defined. In this thesis we
assume shuttling takes place along 𝑥−axis, which allows us to neglect
contribution from 𝑝̂𝑦 .

We now briefly discuss microscopic origin of Rashba and Dresselhaus
contribution. The Rashba spin-orbit mechanism 𝐻̂so originates from the
lack of symmetry between the structure above and below the quantum
dot8 . Such structure inversion asymmetry (SIA) is common for both
GaAs- and Si-based nanostructures. The second, Dresselhaus term 𝐻̂so,𝐷
is caused by the lack of inversion symmetry of the crystal and is typical
for zincblende lattice like GaAs (group III-V) semiconductor. In principle
it should be absent in group IV semiconductors like Si. However its
non-zero value of 𝛽 ∼ 50m/s measured in Si-based quantum dots [192] is
caused by the interface, which effectively breaks the inversion symmetry
of the QD. The commonly assumed parameters of intrinsic spin-orbit
interaction for the devices related to previously introduced models of
GaAs, SiGe and SiMOS QD are given in Tab. 6.1.

For the in-plane magnetic field is applied at the angle 𝜑𝐵 with respect to
x-axis (See Eq. (9.4)), the Pauli operators can be rotated 𝑠𝑐,𝑦 = − sin 𝜑𝐵𝑠𝑥+
cos 𝜑𝐵𝑠𝑦 , such that in the basis of spin-qubit the components of intrinsic
spin-orbit field reads:

𝛿𝑏(so-int)
∥ (𝑝̂𝑥) = − sin 𝜑𝐵

𝛼 + 𝛽

2
𝑝̂𝑥

𝛿𝑏(so-int)
⊥ (𝑝̂𝑥) = cos 𝜑𝐵

𝛼 + 𝛽

2
𝑝̂𝑥 , (9.10)

note that the rotation of magnetic field allows to switch between longitu-
dinal and transverse contribution from the intrinsic spin-orbit coupling
[193].
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9: Note that in general ∇ · B = 0, how-
ever in vicinity of DQD the change can
effectively along single direction

10: The effect of which on two-level system
was discussed in Sec.4.3

Synthetic spin-orbit coupling

Another physical way to induce coupling between spin and orbital state
is the application of a magnetic field gradient. In the materials, where the
intrinsic spin-orbit coupling is relatively weak introducing such gradient
might be the only way to allow for all-electrical control of electron spin
state. We assume that the relevant part of the gradient is applied only
along x-axis,9 which allows to write

𝛿𝑏
(so-syn)
∥ (𝑥̂) = 𝑎∥ 𝑥̂

𝛿𝑏
(so-syn)
⊥ (𝑥̂) = 𝑎⊥ 𝑥̂ , (9.11)

where

𝑎∥ = cos 𝜑𝐵 𝜕𝛿𝑏𝑥 (𝑥)
𝜕𝑥 − sin 𝜑𝐵

𝜕𝛿𝑏𝑦 (𝑥)
𝜕𝑥 ,

𝑎⊥ = sin 𝜑𝐵
𝜕𝛿𝑏𝑥 (𝑥)

𝜕𝑥 + cos 𝜑𝐵
𝜕𝛿𝑏𝑦 (𝑥)

𝜕𝑥 . (9.12)

We will assume that on the scale of few quantum dots the gradient can
be assumed constant, i.e. terms 𝜕𝛿𝑏𝑖 (𝑥)

𝜕𝑥 and hence the gradients 𝑎𝑖 do not
depend on 𝑥.

9.3 Non-unitary evolution of stationary spin
qubit

We conclude this chapter by discussing non-unitary evolution of the
undriven spin qubit in a single quantum dot.

Nuclear spins

We start by introducing a model of interaction between electron spin-qubit
and the nuclear spins, which constitutes the only source of non-unitary
evolution in absence of spin-orbit coupling. Due to relatively large
extend of the electrically-defined quantum dot, the electron-nuclear spin
interaction is dominated by the Fermi contact interaction [194], which for
the kth nuclear spin interacting with the electron has the form:

𝐻̂el-nuc,𝑘 = 𝐴𝑘 Î𝑘 · Ŝ, (9.13)

where Î𝑘 is the spin operator of kth nucleus, Ŝ denotes electron spin
operator, while 𝐴𝑘 ∝ |𝐹(𝑟𝑘)|2 is the coupling constant, proportional to
the overlap squared between the envelope function of the electron in the
dot (see Sec. 6.1), evaluated at the position of the nucleus [195]).

In typical experiments, which do not involve spin echo or dynamical
decoupling sequence the dynamics of nuclear spins is much slower than
the dynamics of the qubit. In particular, the state of nuclear bath is hardly
changing on the timescale of typical free evolution experiment. For this
reason the influence of nuclear spins is conveniently described in terms
of classical, quasistatic noise10 . In particular, this means that for each
realization of the experiment we expect slightly modified nuclear field,
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11: The typical root-mean square of ran-
dom component of magnetic field 𝛿𝑏 ≈
𝑚T and orders of magnitude less in Si,
depending on the level of isotopic purifi-
cation. See discussion below.
12: In such case the transverse component
induces tilt of quantization axis. The shift
of the qubit splitting is given by 𝐸̃𝑧 =√
(𝐸𝑧 + 𝛿𝑏𝑛,𝑧)2 + 𝛿𝑏2

𝑛,⊥, i.e. is quadratic
in transverse component

𝐸̃𝑧 − 𝐸𝑧 ≈
𝛿𝑏𝑛,𝑧
𝐸𝑧

+
𝛿𝑏2

𝑛,⊥
2𝐸2

𝑧

. This is consistent with the initial assump-
tion that we neglect the renormalizaiton
of the energy gap due to typically weak in
magnitude transverse noise.

13: We highlight that expected correlation
length of the Overhauser field 𝑥𝑐 ≪ 𝑑

might be different from the correlation
length of the charge noise. Recently weak
correlation between the dephasing noise
in two quantum dots has been measured
in Si/SiGe device [187].

known as the Overhauser field, which is added to external magnetic field.
The Overhauser field can be effectively modelled as(

𝑁∑
𝑘

𝐴𝑘 Î𝑘

)
→ 𝑔𝜇𝑏𝛿B𝑛 ≡ 𝛿b𝑛 . (9.14)

Now due to slow character of the noise and typically much stronger
constant magnetic field11 the transverse component can be neglected12 ,
which means that effective influence of the nuclear spins can be encapsu-
lated by the pure-dephasing Hamiltonian:

𝑉̂𝜙 ≈ 1
2
𝛿𝑏𝑛,𝑧𝑠𝑧 . (9.15)

Spatial correlation

Thanks to its contact interaction origin, the Overhauser field is expected
to have relatively short correlation length. In particular, in case of double
quantum dot the random contribution to Larmor Frequency in the left
𝛿𝐸𝑧,𝐿 and in the right dot 𝛿𝐸𝑧,𝑅 are expected to be uncorrelated13 , such
that the fluctuation of the average reads:

⟨𝐸2
𝑧⟩ =

〈(
𝐸𝑧,𝐿 + 𝐸𝑧,𝑅

2

)2
〉
≈ 1

4
(
⟨𝐸2

𝑧,𝐿⟩ + ⟨𝐸2
𝑧,𝑅⟩

)
≈ 1

2 ⟨𝛿𝑏
2
𝑛,𝑧⟩. (9.16)

Note that in comparison to fluctuations of the Zeeman splitting in a
single dot, the fluctuations of the average 𝐸𝑧 are reduced as a result of
short correlation length of the Overhauser field. The continuous version
of this phenomenon is known as the motional narrowing. Similarity for
the difference between the fluctuations of spin-splitting in each dot reads:

⟨Δ𝐸2
𝑧⟩ = ⟨𝐸𝑧,𝐿 − 𝐸𝑧,𝑅⟩ ≈ 1

2
(
⟨𝐸2

𝑧,𝐿⟩ + ⟨𝐸2
𝑧,𝑅⟩

)
≈ ⟨𝛿𝑏2

𝑛,𝑧⟩. (9.17)

From the above we also conclude that ⟨𝐸𝑧Δ𝐸𝑧⟩ = 0.

Dephasing time due to nuclear spins

As discussed above, the nuclear spins are the source of typically slowly
varying, random magnetic field, which in absence of active electron
control modifies the spin coherence by averaging over random magnetic
field. Hence the coherence can be written as:

𝑊(𝑡) =𝑊0𝑒
−𝑖𝐸𝑧 𝑡 ⟨𝑒−𝑖𝛿𝑏𝑛,𝑧 𝑡⟩𝛿𝑏𝑛,𝑧 =𝑊0𝑒

−𝑖𝐸𝑧 𝑡 𝑒−(𝑡/𝑇∗
2 )2
, (9.18)

where the dephasing time is defined in terms of variance of the longitu-
dinal component of nuclear field 𝛿𝑏𝑛,𝑧 as:

𝑇∗
2 =

√
2

𝑔𝜇𝐵

√
⟨𝛿𝑏2

𝑛,𝑧⟩
≡

√
2

𝜎𝑁
, (9.19)

where using the electron g-factor 𝑔 and Bohr magneton 𝜇𝐵 and we have
related the measured 𝑇∗

2 to the effective power of quasistatic noise due to
nuclear spins 𝜎2

𝑁
analogous to the noise from Sec. 4.4.
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14: The DQD case will be considered in
next Chapter 10

We comment on the typical magnitude of 𝛿𝑏𝑛,𝑧 . First its value is propor-
tional to the magnetic field measured for ideally polarized nuclear bath,
which for GaAs was measured to be 𝛿𝑏𝑛,max = 5𝑇 [33, 196]. For the unpo-
larized case the statistical fluctuations follows rule for large numbers and
gives typical 𝛿𝑏𝑛,𝑧 ∝ 𝛿𝑏𝑛,max/

√
𝑁 where 𝑁 denotes number of spinful

nuclei. Now if some fraction 𝑥 of the nuclear spins has zero spin, which
is true for natural Si for which 𝑥 = 0.95, the magnitude of Overhauser
field is reduced by a factor of

√
1 − 𝑥, since both maximum field and 𝑁

are reduced by 1 − 𝑥.

Numerical parameters

We apply the above analysis to the Si- and GaAs-based devices from
Sec. 6.3. We assume both Si-devices are isotopically purified such that
only 0.01%29Si is left. From the [194] this means about 10 nuclei remains
in each dot, which result in 𝑇∗

2,Si ∼ 5𝜇s. This can be compared with
experimentally measured values of 𝑇∗

2,Si ≈ 10𝜇s. When translated to
power of quasistatic noise, it gives 𝜎𝑁,Si ≈ 0.1neV.

In contrast in the GaAs devices number of spinful nuclei is orders of
magnitude larger, and can be estimated as 106, which translates into
relatively short 𝑇∗

2,GaAs = 10ns and as a consequence into 𝜎𝑁,GaAs ≈
0.1𝜇eV. Note that the amplitude of the Overhauser field is three orders
of magnitude above the value for isotopically purified Si. This not only
limits the coherence of spin-qubit in GaAs but also affect the interference
pattern during spin qubit transition between two quantum dots, as we
describe in Chapter 11.

Coupling to random electric fields

As another source of spin qubit non-unitary evolution we identify finite
coupling between the spin and orbital degrees of freedom. We will
show that its dephasing and dissipation can be caused by environmental
electric fields.

Wavefunction of spin qubit in single quantum dot

We start by showing how the wavefunciton of single dot spin qubit is
affected by the presence of the spin-orbit interaction of the form 𝑉̂so(𝑥̂ , 𝑝̂𝑥),
given previously by Eq. (11.4).

For the illustration purpose we assume here the spin qubit occupies a
single quantum dot14 . Typically the orbital splitting of the dot is much
larger then the Zeeman splitting, i.e. 𝐸orb ≫ 𝐸𝑧 , which allow us to use
the first order perturbation theory for the correction to the instantaneous
spin states:

|↑̃⟩ ≈ |0, ↑⟩ +
∑
𝑛>0

(
⟨𝑛, ↑| 𝑉̂so |0, ↑⟩

𝐸𝑛
|𝑛, ↑⟩ + ⟨𝑛, ↓| 𝑉̂so |0, ↑⟩

𝐸𝑛 − 𝐸𝑧
|𝑛, ↓⟩

)
|↓̃⟩ ≈ |0, ↓⟩ +

∑
𝑛>0

(
⟨𝑛, ↓| 𝑉̂so |0, ↓⟩

𝐸𝑛
|𝑛, ↓⟩ + ⟨𝑛, ↑| 𝑉̂so |0, ↓⟩

𝐸𝑛 + 𝐸𝑧
|𝑛, ↑⟩

)
.

(9.20)
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15: Such that the only non-vanishing ma-
trix elements read ⟨0| 𝑥̂ |1⟩ = 𝐿/

√
2 and

⟨0| 𝑝̂𝑥 |1⟩ = 𝑖𝑚∗𝐸orb𝐿/
√

2

16: see analysis in Chapter 3,

where for brevity we omitted the arguments of spin-orbit Hamiltonian
𝑉̂so = 𝑉̂so(𝑥̂ , 𝑝̂𝑥) from Eq. (11.4) and 𝐸𝑛 is the energy between nth orbital
state |𝑛⟩ with respect to ground orbital state |0⟩. We take into account
only the first excited state15 , and compute modification of the spin states
as

|↑̃⟩ ≈ |0, ↑⟩ + Δ𝐸𝑧

4𝐸orb
|1, ↑⟩ − 1

2
𝑡01

𝐸orb − 𝐸𝑧
|1, ↓⟩

|↓̃⟩ ≈ |0, ↓⟩ − Δ𝐸𝑧

4𝐸orb
|1, ↓⟩ − 1

2
𝑡01

𝐸orb + 𝐸𝑧
|1, ↑⟩ . (9.21)

where we have defined the difference in orbit-dependent Zeeman splitting
as Δ𝐸𝑧 , and the coupling between ground and excited orbital state with
a spin-flip as 𝑡01, i.e.

Δ𝐸𝑧 = ⟨1| 𝑏∥(𝑥̂ , 𝑝̂𝑥) |1⟩ − ⟨0| 𝑏∥(𝑥̂ , 𝑝̂𝑥) |0⟩
𝑡01 = ⟨1| 𝑏⊥(𝑥̂ , 𝑝̂𝑥) |0⟩ , (9.22)

which are expressed in terms of 𝑏∥ and 𝑏⊥ corresponding to the compo-
nents of spin-orbit field bso from Eq. (11.4) along and perpendicular to
the external magnetic field B0 from Eq. (9.4).

As we showed the spatial wavefunction corresponding to lower and
higher energy spin state are shifted in space. As showed below such
correlation between spin and position degree of freedom exposes the
spin qubit to fluctuations of electric fields.

Spin relaxation

We start by computing spin-relaxation due to transverse field. Following
Fermi Golden rule from Eq. (3.6), we first calculate transverse coupling
in the spin basis as:

𝑉̂⊥,spin = ⟨↓̃|𝑉̂fld(𝑥̂)|↑̃⟩+h.c. ≈ −𝑡01

∫
d𝑥𝑉̂fld(𝑥)

(
𝜓0𝜓1

𝐸orb − 𝐸𝑧
+ 𝜓0𝜓1

𝐸orb + 𝐸𝑧

)
(9.23)

where we used real-valued wavefunctions. If we neglect small quadratic
term (𝐸𝑧/𝐸orb)2, it can be written as:

𝑉̂⊥,spin = ⟨↓̃|𝑉fld(𝑥̂)|↑̃⟩ ≈ − 𝑡01
𝐸orb

𝑉̂⊥,orb , (9.24)

where 𝑉̂⊥,orb = ⟨0| 𝑉̂fld(𝑥̂) |1⟩ + h.c is the transverse component of the
environmental field in the orbital basis. Since the relaxation rate is
proportional to spectral density of transverse noise,16 which is quadratic
in the 𝑉̂−,orb operator, the spin-relaxation rate can be expressed in terms
of orbital relaxation rate as

Γ−,spin =
|𝑡01 |2
4𝐸2

orb
𝑆⊥(𝐸𝑧), (9.25)

where 𝑆⊥(𝐸𝑧) =
∫

Tr{𝑉̂′
⊥,orb(𝑡)𝑉̂

′
⊥,orb(0)𝜌̂𝑒}𝑒

−𝑖𝐸𝑧 𝑡d𝑡 is the spectral density
of the environment, coupled transversly in the orbital basis, which is
evaluated at the Zeeman splitting 𝐸𝑧 .
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17: See Sec. 5.4 for discussion

18: For the spin-qubit the coherence reads

𝑊spin(𝑡) = exp
(
− 1

2
𝜎2

spin𝑡
2
)
,

or equivalently

𝑇∗
2 =

√
2/𝜎spin

.

Dephasing due to charge noise

Similarly in the leading order, the dephasing of spin qubit due to spatially
varying field is proportional to the square the longitudinal coupling in
the spin basis 𝑉̂𝜙,spin

17 . Such coupling can be written as:

𝑉̂𝜙,spin =

∫
d𝑥

(
𝑉̂fld(𝑥)

(
|𝜓↑̃(𝑥)|

2 − |𝜓↓̃(𝑥)|
2) ) ≈

≈ Δ𝐸𝑧

2𝐸orb
Re

{
⟨0| 𝑉̂fld(𝑥̂) |1⟩

}
=

Δ𝐸𝑧

2𝐸orb
𝑉̂𝑥,orb , (9.26)

where 𝑉̂𝑥,orb = 𝑉̂+,orb + 𝑉̂−,orb and we neglected terms quadratic in
typically small (𝐸𝑧/𝐸orb)2. The means that in leading order, the spin-
dephasing is caused by the environmental field transverse in the orbital
basis. At the same time the decoherence of spin qubit remains insensitive
to the fluctuations longitudinal in the orbital basis. In particular, this
means that the power of the spin-longitudinal noise, that causes spin
dephasing18 is related to slow, transverse noise in the orbital basis via

𝜎̃2
spin =

Δ𝐸2
𝑧

4𝐸2
orb

𝜎̃2
⊥,orb , (9.27)

which according to effective quasistatic noise model from Sec. 4.4 can be
computed from:

𝜎̃2
⊥,orb = 2

∫ 𝜋/𝑡

𝜋/𝑇𝑎
d𝜔𝑆⊥(𝜔)d𝜔. (9.28)

Note that in the crucial for dephasing low-frequency range we have
𝑆⊥(𝜔) = 𝑆⊥(−𝜔). In this way we showed additional source of the spin
qubit dephasing, which is activated by non-zero spin-orbit coupling.
As mentioned above the finite correlation between the spin and charge
degrees of freedom leads to the sensitivity of the former to the environ-
mental electric fields (which are transverse in the orbital basis).
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In this chapter we consider the electron in a double quantum dot (DQD),
that undergoes interdot L-Z transition. First in Sec. 10.1 we show effects
of spin-orbit coupling in absence of the environment. Next in Sec. 10.2
we show these effects in the adiabatic frame and in the final Sec. 10.3
we couple the system to the environment. In particulair we derive there
the Lindblad form of adiabatic Master equation, that will be used in the
subsequent chapters to produce numerical results.

10.1 Closed but driven qubit-orbit system

Model Hamiltonian

Uncoupled spin states

We start by introducing the model of the system. We consider the system
of two-lowest lying levels of DQD, that undergoes a Landau-Zener
transition, i.e.

𝐻̂𝑜(𝑡) = − 𝜖(𝑡)
2

𝜎̂𝑧 +
𝑡𝑐

2
𝜎̂𝑥 , (10.1)

where 𝜎̂𝑧 = |𝐿⟩⟨𝐿| − |𝑅⟩⟨𝑅 |, while |𝐿⟩, |𝑅⟩ are Hund-Mulliken orbitals
localized in the left and right dots respectively1 . We now add spin degree

Figure 10.1: Instantaneous energy spec-
trum of the Hamiltonian 𝐻̂𝑠𝑜(𝑡) = 𝐻̂𝑜(𝑡)+
𝐻̂𝑠 that corresponds to the electron in the
DQD with internal degrees of freedom
(spin) in absence of spin-orbit coupling.
Using colored lines, we show adiabatic
path corresponding to the ground orbital
state corresponding to spin-up |−, ↑⟩ (red)
and spin-down |−, ↓⟩ (blue). We also de-
note qubit splitting𝐸𝑧 and tunnel coupling
𝑡𝑐 and show the dot composition of the
instantaneous states at large negative and
large positive detunings.

of freedom, the Hamiltonian of which is written as:

𝐻̂s =
𝐸𝑧

2
𝑠𝑧 , (10.2)
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2: See analysis in Sec.9.1

3: we assume that the gradient is symmet-
ric with respect to dots, i.e. 𝛿𝑏𝑥(𝑑/2) =

−𝛿𝑏𝑥(−𝑑/2).

4: Note that the for consider wave-
functions ⟨𝐿| 𝑥̂ |𝑅⟩ = ⟨𝑅 | 𝑥̂ |𝐿⟩, while
⟨𝐿| 𝑝̂𝑥 |𝑅⟩ = − ⟨𝑅 | 𝑝̂𝑥 |𝐿⟩

where 𝑠𝑧 = |↑⟩⟨↑| − |↓⟩⟨↓| are the Pauli operator in the spin basis |↑⟩, |↓⟩
and 𝐸𝑧 ≡ 𝐸𝑧 is the orbit-average Zeeman splitting. In Fig. 10.1 we plot
the instantanous energy spectrum of qubit-orbit Hamiltonian

𝐻̂𝑠𝑜(𝑡) = 𝐻̂𝑜(𝑡) + 𝐻̂𝑠 , (10.3)

as a function of 𝜖. By the thicker lines we denote ground orbital eigenstates
corresponding to spin-up (red) and spin-down (blue).

Consequence of spin-orbit coupling

We now introduce weak coupling between the electron spin and its
charge degree of freedom. Similarly to the single dot analysis, for the
semiconductor system it originates from the artificial or synthetic spin-
orbit interaction.2 The effect of 𝑉̂so(𝑥̂ , 𝑝̂𝑥) can be encapsulated by the
Hamiltonian in the basis of |𝐿⟩ , |𝑅⟩ states as:

𝑉̂𝑠𝑜 =
Δ𝐸𝑧

4
𝑠𝑧 𝜎̂𝑧 +

𝑡
(int)
flip

2
𝑠𝑦 𝜎̂𝑦 +

𝑡
(syn)
flip

2
𝑠𝑥 𝜎̂𝑧 , (10.4)

where we define the difference in dot-dependent spin-splitting as:

Δ𝐸𝑧 = ⟨𝑅 | 𝑏∥(𝑥̂ , 𝑝̂𝑥) |𝑅⟩ − ⟨𝐿| 𝑏∥(𝑥̂ , 𝑝̂𝑥) |𝐿⟩ , (10.5)

the contribution from transverse magnetic field gradient3 :

𝑡
(syn)
flip = ⟨𝑅 | 𝑏(syn)

⊥ (𝑥̂) |𝑅⟩ − ⟨𝐿| 𝑏(syn)
⊥ (𝑥̂) |𝐿⟩ ≡ 𝑎⊥𝑑, (10.6)

and finally spin-flip contribution from intrinsic spin-orbit coupling as

𝑡
(int)
flip = ⟨𝐿| 𝑏(int)

⊥ (𝑝̂𝑥) |𝑅⟩ , (10.7)

which in contrast to synthetic contribution is associated with the tunneling
between the dots4 . We assume the spin-orbit coupling is weak in
comparison to both average Zeeman splitting 𝐸𝑧 and the gap between
ground and excited charge state Ω(𝑡), the minimum of which is set by
the tunnel coupling 𝑡𝑐 . In Fig. 10.2 we plot the instantaneous energy
spectrum of the combined Hamiltonian

𝐻̂(𝑡) = 𝐻̂𝑠𝑜(𝑡) + 𝑉̂so(𝑡), (10.8)

as a function of detuning. In the figure we illustrate the way in which
parameters of spin-orbit coupling: Δ𝐸𝑧 , and

|𝑡ff | =
√
[𝑡(int)

flip ]2 +
[
𝑡𝑐
𝐸𝑧
𝑡
(syn)
flip

]2 (10.9)

affect the instantaneous spectrum.

Numerical values

We quickly estimate orders of magnitude associated with the coupling
between the spin and charge degree of freedom in the typical semicon-
ductor devices. For the typical gradients of Δ𝑏𝑥/Δ𝑥 ∼ 1 mT/nm, which
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Figure 10.2: Instantaneous energy spec-
trum of the Hamiltonian 𝐻̂(𝑡) = 𝐻̂𝑜(𝑡) +
𝐻̂𝑠 + 𝑉̂so corresponding to the electron in
the DQD with internal degrees of freedom
(spin), in presence of spin-orbit coupling.
Using colored lines, we show adiabatic
path corresponding to the ground orbital
states corresponding to spin-up |−, ↑⟩ (red)
and spin-down |−, ↓⟩ (blue). The different
spin spitting in the left and right dot give
rise to Δ𝐸𝑧 = 𝐸

(𝐿)
𝑧 − 𝐸(𝑅)𝑧 and shifts the

spin-up and spin-down transitions with
respect to each other. The tunnel coupling
with the spin-flip 𝑡flip give rise to addi-
tional avoided crossings between the flip-
flop states |+, ↓⟩ and |−, ↑⟩. The size of the
energy gap at such crossing is given by 𝑡ff
(See Eq. (10.9)).

5: to provide the coherent control of the
spin-qubit from Sec. 9.1

6: often spin-orbit coupling in Si/SiGe
devices is expected to be smaller, however
we will assume their value to be the same
as in SiMOS

corresponds to

𝑎∥ ≈
0.1𝜇eV
𝑛𝑚

(10.10)

the contribution from synthetic spin-orbit interaction for 𝑑 = 100nm
distance between the dots is expected to be of the order of magnitude:

𝑡
(syn)
flip ≈ 10𝜇eV ≫ Δ𝐸

(syn)
𝑧 . (10.11)

Above we used the fact that gradient is usually oriented in the transverse
direction5 such that Δ𝐸𝑧 can be safely assumed to be much smaller. We
now estimate the contribution from intrinsic spin-orbit coupling, for
which the operators 𝑏(int) have been given explicitly in Eq. (9.10). We
ignore the factor coming from the orientation of magnetic field and
estimate the order of magnitude. We start with estimating momentum
matrix element between the left and right dot. We use a toy model in
which we treat DQD system as a single dot with size 𝐿dqd = 𝑑 ≈ 100nm.
Next we concentrate at the zero-detuning point at witch the symmetric
state |+⟩ = (|𝐿⟩ + |𝑅⟩)/

√
2 and anti-symmetric state |−⟩ = (|𝐿⟩ − |𝑅⟩)/

√
2

can be treated as ground and excited state of large dot with effective
splitting 𝑡𝑐 . In such a case the element ⟨−| 𝑥̂ |+⟩ ≈ 𝑑 and the momentum
element | ⟨−| 𝑝̂𝑥 |+⟩ | ≈ 𝑑 𝑚∗𝑡𝑐 . Finally we use this toy model to estimate:

⟨𝐿| 𝑝̂𝑥 |𝑅⟩ ≈ 𝑑 𝑚∗𝑡𝑐 ≈ 10−27kg m/s (10.12)

for typical 𝑡𝑐 ≈ 10𝜇eV, 𝑑 = 100 nm and 𝑚∗ = 0.2𝑚𝑒 , where we use the
fact that |𝐿⟩ = (|+⟩+ |−⟩)/

√
2 and |𝑅⟩ = (|+⟩− |−⟩)/

√
2. We now multiply

the typical momentum operator times the combination of Rashba and
Dresselhaus parameters, which for the SiMOS reads (𝛼Si+𝛽Si)/2 ≈ 50m/s
[2]6 . Together this allows to estimate the flipping element as:

𝑡
(int)
flip,Si ∼ 0.1𝜇eV, (10.13)

For the GaAs devices we expect the momentum matrix element to be
comparable, as a result of typically larger dinstance between the dots
and smaller effective mass. However due to typically larger spin-orbit
coefficients 𝛼GaAs given by (𝛼GaAs + 𝛽GaAs)/2 ≈ 103 m/s [193] we can
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estimate:
𝑡
(int)
flip,GaAs ∼ 1𝜇eV. (10.14)

We highlight that the above estimations lies close to directly measured
electron tunneling with a spin flip, which provides the energy splitting
between the singlet and triplet two-electron state close to their degeneracy
point [178, 193, 197].

10.2 Adiabatic frame

Diagonal spin-orbit coupling

We now represent the total Hamiltonian in the basis of the instantaneous
states, which have been introduced in Eq. (5.1). We define the diagonal
terms of the combined Hamiltonian as:[

𝐻̂so(𝑡) + 𝑉̂so
]

diag =
𝜖(𝑡) + 1

2Δ𝐸𝑧𝑠𝑧

2
𝜎̂𝑧 +

𝑡𝑐

2
𝜎̂𝑥 , (10.15)

which allows to introduce the spin-dependent detuning 𝜖𝑠 = 𝜖(𝑡)+ 𝜎𝑠
2 Δ𝐸𝑧

leading to spin-dependent orbital angle:

𝜗𝑠(𝑡) = ctan
(
𝜖(𝑡) + 𝜎𝑠

2 Δ𝐸𝑧

𝑡𝑐

)
, (10.16)

for 𝜎↑ = 1 or 𝜎↓ = −1. We now move to the spin-dependent adiabatic
basis using the transformation,

𝑆̂(𝑡) =
∑
𝑠=↑,↓

exp
(
−𝑖𝜗𝑠

2
𝜍̂𝑦

)
|𝑠⟩⟨𝑠 | , (10.17)

using which the Hamiltonian in the adiabatic frame reads:

Ĥ= 𝑆̂†(𝑡)
( [
𝐻̂so(𝑡) + 𝑉̂so

]
diag

)
𝑆̂(𝑡) − 𝑖𝑆̂†(𝑡) ¤̂𝑆(𝑡) =

=
𝐸𝑧

2
𝑠𝑧 +

∑
𝑠=↑,↓

(
Ω𝑠(𝑡)

2
𝜍̂𝑧 −

¤𝜗𝑠(𝑡)
2

𝜍̂𝑦

)
|𝑠⟩⟨𝑠 | (10.18)

where we have used Pauli operators in the adiabatic basis, i.e. 𝜍̂𝑧 =

|+⟩⟨+| − |−⟩⟨−| and

Ω𝑠(𝑡) =
√
(𝜖 + 𝜎𝑠

2 Δ𝐸𝑧)2 + 𝑡2𝑐 ,

𝜗𝑠(𝑡) =
𝑣𝑡𝑐

Ω𝑠(𝑡)
, (10.19)

where 𝜎𝑠 = ±1 for 𝑠 =↑ and ↓ respectively. This means that the non-zero
difference between dot-dependent Zeeman splitting Δ𝐸𝑧 ≠ 0 leads to a
delay in transitions of spin-up and spin-down components. In particular,
it is convenient to define difference in spin-dependent orbital splittings,
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7: This statement will be proved in a nu-
merical simulation where ¤𝜗𝑠 𝜍̂𝑦 is kept.

8: i.e. when Landau-Zener probability
𝑄LZ ≪ 1 is neglegibley small

9: see Sec. 3.2 for the analysis of secular
approximation in the undriven case

10: and without mixing between charge
levels

and difference in spin-dependent orbital angle as

ΔΩ(𝑡) = Ω↑(𝑡) −Ω↓(𝑡),
Δ𝜗(𝑡) = 𝜗↑(𝑡) − 𝜗↓(𝑡). (10.20)

Orbital adiabatic limit

In general the assumption of weak coupling, means that the effects of
environment will be visible only for sufficiently slow sweeps. This is
visible in the analysis of charge transfer in realistic DQD systems (for
instance in Fig. 8.9), where the evolution in the limit of fast sweeps, was
well approximated by the Landau-Zener formula. This means that in the
analytical analysis of the environmental effect we might as well neglect
the term responsible for coherent mixing between the charge levels7 ,
i.e. off-diagonal term ∝ ¤𝜗𝑠 . This effectively means that in the adiabatic
limit,8 the dynamics of the uncoupled spin-orbit system is given by the
Hamiltonian that is diagonal in the adiabatic frame:

Ĥ0 =
𝐸𝑧

2
𝑠𝑧 +

1
2

(
Ω(𝑡) + 1

2ΔΩ(𝑡)𝑠𝑧
)
𝜍̂𝑧 . (10.21)

Off-diagonal spin-orbit coupling

We now apply the same transformation to the non-diagonal coupling
between the spin and charge states, i.e.

V̂𝑠𝑜(𝑡) = 𝑆̂†(𝑡)
(
[𝑉̂𝑠𝑜]non-diag

)
𝑆̂(𝑡) =

𝑡
(int)
flip

2

(
sin

Δ𝜗(𝑡)
2

𝑠𝑥 + cos
Δ𝜗(𝑡)

2
𝑠𝑦 𝜍̂𝑦

)
+
𝑡
(syn)
flip

2

(
cos𝜗(𝑡)𝑠𝑥 𝜍̂𝑧 − sin𝜗(𝑡)𝑠𝑥 𝜍̂𝑦

)
, (10.22)

where additionally we defined average of spin-dependent orbital angle
𝜗(𝑡) = 𝜗↑(𝑡) + 𝜗↓(𝑡).

Secular approximation for spin-orbit coupling

We finally simplify the off-diagonal interaction V̂𝑠𝑜(𝑡) using secular
approximation, i.e. use the fact that weak coupling leads to mixing
between the levels only in the limit of sufficient long evolution time, in
which strongly nonresonant transitions are suppressed9 . In analogy to
undriven case we move here to the interaction picture with respect to
adiabatic Hamiltonian, diagonal in the adiabatic basis,

V̂′
𝑠𝑜(𝑡) = Û†

0 (𝑡)V̂𝑠𝑜 Û0(𝑡), (10.23)

where the evolution operator in the adiabatic picture10 , reads:

Û0(𝑡) =
∑
𝑠=↑,↓

exp
(
− 𝑖

2

∫ 𝑡

𝑡𝑖

(𝜍̂𝑧Ω𝑠(𝑡′) + 𝜎𝑠𝐸𝑧)d𝑡′
)
|𝑠⟩⟨𝑠 | , (10.24)

where 𝜎𝑠 = ± for spin-up and spin-down respectively. Due to dynamical
drive we argue that some terms will be secular only locally, i.e. when
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11: Alternatively one can consider pertur-
bative corrections to |±, 𝑠⟩ states due to
presence of V̂𝑠𝑜 . In the simplest approach
we use 𝑡 as the parameter and compute
time-independent corrections to the state
|−, ↓⟩ as:

| ˜−, ↓⟩ = |−, ↓⟩+
∑
𝑑=±

⟨𝑑, ↑| V̂𝑠𝑜 |−, ↓⟩
Δ𝐸𝑑(𝑡)

|𝑑, ↑⟩ ,

where Δ𝐸−(𝑡) = −𝐸𝑧 for |−, ↑⟩ correction
andΔ𝐸+(𝑡) = −𝐸𝑧−Ω(𝑡) for |+, ↑⟩. Which
means that corrections scales as 𝑡flip/𝐸𝑧 ≪
1 for all couplings. On the contrary for the
spin-up state |−, ↑⟩ we have

| ˜−, ↑⟩ = |−, ↑⟩+
∑
𝑑=±

⟨𝑑, ↓| V̂𝑠𝑜 |−, ↑⟩
Δ𝐸𝑑(𝑡)

|𝑑, ↓⟩ ,

where Δ𝐸+(𝑡) = 𝐸𝑧 for admixture with
|+, ↑⟩, but Δ𝐸−(𝑡) = 𝐸𝑧 −Ω(𝑡) due to cou-
pling with |+, ↓⟩, Which shows that for
sufficiently large 𝑡𝑐 > 𝐸𝑧 , there exist a
time instant at which 𝐸𝑧 − Ω(𝑡) and the
states |+, ↓⟩, |−, ↑⟩ hybridize even for weak
𝑡flip. This justifies why the terms 𝜍̂∓ 𝜎̂± are
kept

two eigenstates of Hamiltonian Ĥ0 from Eq. (10.21) become close in
energy. In particular, this will happen in vicinity of the point at which
Ω(𝑡) = 𝐸𝑧 > 0.

We now argue that the only, locally secular term is the flip-flop term
𝜍̂±𝑠∓, since in the interaction picture with respect to adiabatic basis it
reads:

Û†
0 (𝑡)𝜍̂±𝑠∓ Û0(𝑡) = 𝜍̂±𝑠∓𝑒

±𝑖
∫ 𝑡

𝑡𝑖
(Ω(𝑡′)−𝐸𝑧 )d𝑡′

. (10.25)

As showed previously in Eq. (5.47), any time integral of the above
expression would be dominated by the stationary point of the phase,
which takes place at Ω(𝑡) = 𝐸𝑧 . Note that due the fact that both 𝐸𝑧 > 0
and Ω(𝑡) > 0 the stationary phase is absent in the remaining terms
of V̂𝑠𝑜(𝑡). Also the presence of stationary phase, and hence effective
coupling between the qubit and charge states requires that 𝑡𝑐 < 𝐸𝑧 , since
otherwise Ω(𝑡) ≠ 𝐸𝑧 at all times.11

The above analysis allows us to use secular form of transverse spin-orbit
coupling in the adiabatic basis, which reads:

V̂
(sec)
𝑠𝑜 (𝑡) = 𝑡ff(𝑡)

4
𝜍̂+𝑠− + ℎ.𝑐, (10.26)

where we have defined the complex flip-flop term, which reads:

𝑡ff(𝑡) = 𝑡(int)
flip cos

Δ𝜗(𝑡)
2

− 𝑖𝑡(syn)
flip sin

(
𝜗(𝑡)

)
. (10.27)

Effective Hamiltonian

Above considerations of the weak spin-orbit coupling allows us to write
the qubit-orbit Hamiltonian in the adiabatic basis as:

H0(𝑡) + V
(sec)

so ≈
Ω0(𝑡) + 1

2ΔΩ(𝑡)𝑠𝑧
2

𝜍̂𝑧 +
𝐸𝑧

2
𝑠𝑧 +

𝑡ff 𝜍̂+𝑠− + ℎ.𝑐
2

, (10.28)

where we additionally assumed that the spin-average orbital splitting is
effectively indepedent of spin-orbit coupling i.e.

Ω(𝑡) ≈ Ω0(𝑡) =
√
𝜖2 + 𝑡2𝑐 , (10.29)

In spin basis, the longitudinal contribution is related to difference in the
orbital splittings for spin-up and spin-down given by:

ΔΩ(𝑡) =
√(

𝜖 + Δ𝐸𝑧
2

)2 + 𝑡2𝑐 −
√(

𝜖 − Δ𝐸𝑧
2

)2 + 𝑡2𝑐 (10.30)

while the coupling between the spins enters via the flip-flop term,

𝑡ff = 𝑡
(int)
flip − 𝑖 𝑡𝑐

𝐸𝑧
𝑡
(syn)
flip . (10.31)

Note that by definition |𝑡ff | gives the gap between the avoided crossing
between |+, ↓⟩ and |−, ↑⟩ states, as it was illustrated in Fig. 10.2.
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Figure 10.3: Spin-flip avoided crossing.
The scheme of the avoided crossing be-
tween adiabatic levels |+, ↓⟩ (red) and
|−, ↑⟩ (green), the size of which is given
by |𝑡ff |.

Avoided crossing between the flip-flop states

The regime of 𝐸𝑧 > 𝑡𝑐 is relevant for the long-range shuttling, in which
tunnel couplings are expected to be relatively low. In this regime the
additional avoided crossings take place at:

Ω(𝑡±) = 𝐸𝑧 =⇒ 𝑡± ≈ ±𝐸𝑧
𝑣
. (10.32)

Additionally these crossings involves the flip-flop states |+, ↓⟩, |−, ↑⟩,
which in the limit 𝐸𝑧 ≫ 𝑡𝑐 can be treated as the diabatic basis for the
flip-flop avoided crossing. We illustrate such crossing schematically in
Fig. 10.3.

To prove the above point, we assume now that the evolution is adiabatic
in the charge degrees of freedom and concentrate on the two flip-flop
states. In their basis the Hamiltonian Ĥ0(𝑡) + 𝑉̂ (sec)

𝑠𝑜 (𝑡) reduces to:

Ĥff(𝑡) = −Ω(𝑡) − 𝐸𝑧
2

𝜎̂(ff)
𝑧 + 𝑡ff

2
𝜎̂(ff)
𝑥 =

[
−Ω(𝑡) + 𝐸𝑧 𝑡ff(𝑡)

𝑡∗ff(𝑡) Ω(𝑡) − 𝐸𝑧

]
, (10.33)

where we introduced flip-flop Pauli matrices, e.g. 𝜎(ff)
𝑧 = |−, ↑⟩⟨−, ↑| −

|+, ↓⟩⟨+, ↓|. The above Hamiltonian produces double Landau-Zener
passage with the avoided crossings located at the points 𝑡±. Its effective
detuning sweep rate in the 𝐸𝑧 ≫ 𝑡𝑐 limit coincides with 𝑣 since:

𝜕𝑡(Ω(𝑡) − 𝐸𝑧)
����
𝑡=𝑡±

=
𝑣𝜖√
𝑡2𝑐 + 𝜖2

����
𝑡=𝑡±

= 𝑣

√
𝐸2
𝑧 − 𝑡2𝑐
𝐸𝑧

≈ 𝑣. (10.34)

The effective tunnel coupling between the flip-flop levels as:

𝑡ff ≡ 𝑡ff(𝑡±) ≈ 𝑡(int)
flip − 𝑖 𝑡𝑐

𝐸𝑧
𝑡
(syn)
flip = |𝑡ff |𝑒 𝑖𝜙ff , (10.35)

where we evaluated the off-diagonal term in Hff(𝑡) at the vicinity of
flip-flop crossings, where Δ𝜗(𝑡±) ≪ 1 and sin𝜗(𝑡±) ≈ sin𝜗0(𝑡±) =

𝑡𝑐/Ω(𝑡±) ≈ 𝑡𝑐/𝐸𝑧 , while the complex phase reads:

𝜙ff = − arctan©­«
𝑡𝑐
𝐸𝑧
𝑡
(syn)
flip

𝑡
(int)
flip

ª®¬. (10.36)

We finally conclude that the probability of the non-adiabatic transition
through flip-flop avoided crossing, which corresponds to staying in the
same flip-flop state, e.g. |−, ↑⟩ → |−, ↑⟩ is given by:

𝑄ff = exp
(
−𝜋

2
|𝑡ff |2
𝑣

)
≈ 1 − 𝜋

2
|𝑡ff |2
𝑣

, (10.37)

where the expansion assumed that |𝑡ff |2/𝑣 ≪ 1, i.e. the probability of
spin-flip is relatively small. We will show that this regime is typical for
realistic devices. Note however that in contrast to charge adiabaticity,
where unwanted adiabaticity scales exponentially with 𝑣, here probability
of spin-flip falls as 1/𝑣, which makes it difficult to avoid.
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12: This would be the typical case if each
contributions comes from uncoupled or
sufficiently weakly coupled environmen-
tal fluctuators.
13: where 𝜌̂𝑒 is the density matrix of the
environment at thermal equilibrium with
its Hamiltonian, i.e. 𝜌̂𝑒 ∝ 𝑒−𝛽𝐻̂𝑒

10.3 Coupling to environment

Orbit-environment coupling in the adiabatic basis

We now include the interaction between the environment and the charge
states, of the form:

𝑉̂𝑜𝑒 =
𝑉̂𝑥

2
𝜎̂𝑥 +

𝑉̂𝑧

2
𝜎̂𝑧 , (10.38)

which originate from fluctuations the of tunnel coupling 𝑉̂𝑥 and the
detuning 𝑉̂𝑧 due to electron-phonon coupling and the charge noise.

We first express the above coupling in the adiabatic basis. We assume that
the fluctuations of detuning and tunnel coupling are weakly correlated12

, such that the cross-terms Tr{𝑉̂𝑥𝑉̂𝑧 𝜌̂𝑒} can be neglected13 . We write the
interaction in the form:

V̂𝑜𝑒 =
1
2
(
𝑉̂𝑥Σ̂𝑥(𝑡) + 𝑉̂𝑧Σ̂𝑧(𝑡) + V̂𝜙(𝑡)𝜍̂𝑧

)
, (10.39)

where we separated the dissipative terms Σ𝑖(𝑡) and the dephasing-like
term V̂𝜙(𝑡), which can be written explicitly as

Σ̂𝑥(𝑡) = 𝜍̂𝑥 cos 𝜗̂

Σ̂𝑧(𝑡) = −𝜍̂𝑥 sin 𝜗̂,

V̂𝜙(𝑡) = 𝑉̂𝑧 cos 𝜗̂ + 𝑉̂𝑥 sin 𝜗̂. (10.40)

In the above, for brevity we introduced the spin-diagonal operator:

𝜗̂(𝑡) =
∑
𝑠=↑,↓

𝜗𝑠(𝑡) |𝑠⟩⟨𝑠 | , (10.41)

where 𝜗𝑠(𝑡) was given in Eq. (10.16).

Non-dissipative evolution

Following previously considered cases, we assume that the non-dissipative
part of system-environment coupling 𝑉̂𝜙 can be safely treated using clas-
sical noise approximation, i.e.

V̂𝜙(𝑡) = 𝛿𝜖 cos 𝜗̂ + 𝛿𝑡𝑐 sin 𝜗̂, (10.42)

where we assume that 𝛿𝜖 and 𝛿𝑡𝑐 are effectively quasistatic noise with
their power computed using methods from Sec. 4.4.

Dissipative evolution - adiabatic master equation

We now discuss the method to treat disispative evolution of spin-charge
system expressed in terms of the operators,

Σ̂𝑗(𝑡) =
∑
𝑗

𝑐 𝑗 ,𝑠(𝑡)(𝜍̂−,𝑠 + 𝜍̂+,𝑠), (10.43)

where we have introduced the spin-diagonal, orbital ladder operator
𝜍̂−,𝑠 = 𝜍̂− |𝑠⟩⟨𝑠 |, with the real coefficients 𝑐 𝑗 ,𝑠(𝑡), that can be read from
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14: In the interaction picture with respect
to Ĥ(𝑡) = ∑

𝑠 Ω𝑠 |𝑠⟩⟨𝑠 |

Eq. (10.40), i.e. 𝑐𝑥,𝑠(𝑡) = cos𝜗𝑠(𝑡), while 𝑐𝑧,𝑠(𝑡) = − sin𝜗𝑠(𝑡) for s = ↑ and
↓.

Adiabatic-Bloch-Redfield equation

We will now start from the form of Adiabatic-Bloch-Redfield equation,
derived previously in Eq. (5.64), i.e.

¤𝜚(𝑡) = −𝑖
[
Ĥ(𝑡) + V̂𝑠𝑜(𝑡), 𝜚(𝑡)

]
−

∑
𝑗=𝑥,𝑧

[
Σ̂𝑗(𝑡), R̂𝑗(𝑡)𝜚(𝑡)

]
+ ℎ.𝑐. (10.44)

where we assume that the unitary part includes the complete Hamilto-
nian Ĥ(𝑡), given by Eq. (10.18) and spin-orbit coupling V̂𝑠𝑜(𝑡) given by
Eq. (10.22), in the adiabatic frame. The non-unitary part is generated by
the Bloch-Redfield adiabatic tensor of the form:

R̂𝑗(𝑡) =
1
4

∫ ∞

0
𝑒−𝑖H0(𝑡)𝑟Σ̂𝑗(𝑡)𝑒 𝑖H0(𝑡)𝑟𝐶 𝑗(𝑟)d𝑟

=
1
4

∑
𝑠=↑,↓

𝑐 𝑗 ,𝑠(𝑡)
∫ ∞

0

(
𝜍̂−,𝑠 𝑒

𝑖Ω𝑠 𝑟 + 𝜍̂+,𝑠 𝑒
−𝑖Ω𝑠 𝑟

)
𝐶 𝑗(𝑟)d𝑟 (10.45)

We now introduce spectral density of the environment defined as𝑆 𝑗(𝜔𝑠) =∫ ∞
−∞ 𝐶 𝑗(𝑟)𝑒

𝑖𝜔𝑠 𝑟d𝑟 and ignore the deterministic Lamb shift (see Sec. 3.2 for
analogous derivation and discussion). As a result each commutator can
be written as:[

Σ̂𝑗 , R̂𝑗(𝑡)𝜚
]
= (10.46)

=
1
8
∑
𝑠,𝑠′

𝑐 𝑗 ,𝑠 𝑐 𝑗 ,𝑠′

( [ (
𝜍̂−,𝑠 + 𝜍̂+,𝑠

)
,
(
𝜍̂−,𝑠′𝑆 𝑗(Ω𝑠′) + 𝜍̂+,𝑠′𝑆 𝑗(−Ω𝑠′)

)
𝜚
]
.

Local secular approximation

We now attempt at performing secular approximation, which amounts
to neglecting terms with rapidly oscillating phase factors14 . This would
naturally allow to keep spin-diagonal terms of the form 𝜍̂±,𝑠𝜍∓,𝑠 . However,
in view of analysis coherence between the spins states we keep the terms

𝜍̂+,↑𝜍̂−,↓, and 𝜍̂−,↑𝜍̂+,↓, (10.47)

as they are associated with the relatively small phase ∝
∫ 𝑡

𝑡𝑖
ΔΩ(𝑡′)d𝑡′. We

term this operation local-secular approximation [138] as we neglect terms
which do not conserve the energy in the orbital subspace, i.e. 𝜍̂±,𝑠 𝜍̂±,𝑠′ .

After local secular approximation the commutator reads:[
Σ̂𝑗(𝑡), R̂𝑗(𝑡)𝜚(𝑡)

]
=

1
8

∑
𝑠,𝑠′=↑,↓

𝑐 𝑗𝑠 𝑐 𝑗𝑠′
[
𝜍̂−,𝑠 , 𝜍̂+,𝑠′𝑆 𝑗(−Ω𝑠′)𝜚(𝑡)

]
+
[
𝜍̂+,𝑠′ , 𝜍̂−,𝑠𝑆 𝑗(Ω𝑠)𝜚(𝑡)

]
, (10.48)
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15: Note that in the numerical we do not
perform any approximations to V̂𝑠𝑜(𝑡)

Linblad form

We now write equations of motion for the blocks of density matrix, i.e.
𝜚 𝑠𝑠′ ≡ ⟨𝑠 | 𝜚 |𝑠′⟩:

𝜕

𝜕𝑡
𝜚 𝑠𝑠′ = −𝑖(Ĥ𝑠𝜚 𝑠𝑠′ − 𝜚 𝑠𝑠′Ĥ𝑠′) − 𝑖 ⟨𝑠 |

[
V̂so(𝑡), 𝜚

]
|𝑠′⟩ +

+1
8

∑
𝑗=𝑥,𝑧

(
− 𝑐2

𝑗𝑠

(
𝜍̂− 𝜍̂+𝜚 𝑠𝑠′𝑆 𝑗(−Ω𝑠) + 𝜍̂+ 𝜍̂−𝜚 𝑠𝑠′𝑆 𝑗(Ω𝑠)

)
− 𝑐2

𝑗𝑠′
(
𝜚 𝑠𝑠′ 𝜍̂− 𝜍̂+𝑆 𝑗(−Ω𝑠′) + 𝜚 𝑠𝑠′ 𝜍̂+ 𝜍̂−𝑆 𝑗(Ω𝑠′)

)
+ 𝑐 𝑗𝑠 𝑐 𝑗𝑠′

(
𝜍̂+𝜚 𝑠𝑠′ 𝜍̂−

[
𝑆 𝑗(−Ω𝑠) + 𝑆 𝑗(−Ω𝑠′)

] )
+ 𝑐 𝑗𝑠 𝑐 𝑗𝑠′

(
𝜍̂−𝜚 𝑠𝑠′ 𝜍̂+

[
𝑆 𝑗(Ω𝑠) + 𝑆 𝑗(Ω𝑠′)

] ))
. (10.49)

where we have defined the spin-diagonal part

Ĥ𝑠 ≡ ⟨𝑠 | Ĥ |𝑠⟩ = Ω𝑠

2
𝜍̂𝑧 −

¤𝜗𝑠
2
𝜍̂𝑦 . (10.50)

Note that the only coupling between the blocks 𝜚 𝑠𝑠′ is provided by the
transverse spin-orbit coupling V̂𝑠𝑜(𝑡) defined by Eq. 10.22.15 We conclude
that the first two terms in dissipative evolution can be directly related to
the charge excitation and relaxation rates since

Γ𝑗 ,∓(Ω𝑠) =
1
4
𝑐2
𝑗𝑠𝑆 𝑗(±Ω𝑠) (10.51)

However last two lines involves cross-terms, which cannot be directly
related to Γ±(Ω𝑠) unless 𝑐 𝑗𝑞 = 𝑐 𝑗𝑞′ , which makes this formula difficult to
represent using Linblad form analogous to Eq. (5.70). However if only the
the arithmetic average of spectral densities is replaced by the geometric
one, i.e.

𝑆 𝑗(±Ω𝑞) + 𝑆 𝑗(±Ω𝑞′)
2

→
√
𝑆 𝑗(±Ω𝑞)𝑆 𝑗(±Ω𝑞′) (10.52)

the dissipative evolution can be generated by the Linblad form of Master
equation given by Eq. (5.70), with time-dependent Linbladians:

𝐿̂ 𝑗 ,+ = 𝜍̂+
∑
𝑠=↑,↓

√
Γ𝑗 ,+(Ω𝑠) |𝑠⟩⟨𝑠 |

𝐿̂ 𝑗 ,− = 𝜍̂−
∑
𝑠=↑,↓

√
Γ𝑗 ,−(Ω𝑠) |𝑠⟩⟨𝑠 | , (10.53)

for 𝑗 = 𝑥, 𝑧. We highlight that transition to a Linblad form of Master
equation will not modify the spin-diagonal evolution, since for 𝑠 = 𝑠′

the two averages are equal. Also in the elements corresponding to
orbital coherence ⟨±| 𝜚 𝑠𝑠′ |∓⟩ modified cross-terms are absent. The only
possibly modified elements are the coherences in the ground and excited
instantaneous states, which we define as:

𝑊±(𝑡) = ⟨±| 𝜚↑↓(𝑡) |±⟩ . (10.54)

Naturally the effect of modification introduced in (10.52) depends on the
shape of spectral density and difference between spin-dependent orbital
gap ΔΩ, however for typically flat spectrum and in weak coupling limit
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16: See Fig. 8.7 for the typical relaxation
rates as a function of sweep rate

the difference is expected to be negligible. For instance, for the spectrum
of the form 𝑆(Ω) ∝ Ω𝛼 the relative rate between arithmetic and geometric
average of the spin-dependent spectrum reads:

𝑆(Ω↑) + 𝑆(Ω↓)
2
√
𝑆(Ω↑)𝑆(Ω↓)

− 1 ≈ 𝛼2

2
Δ𝐸2

𝑧

Ω2 ≤ 0.05, (10.55)

where the equlity holds for the extreme case of 𝛼 = 3 (deformation
phonons), Ω = 10𝜇eV and Δ𝐸𝑧 = 1𝜇eV. In reality the ratio is expected
to be orders of magnitude smaller since at the small orbital splitting
the spectrum is flatter16 . For this reason we find the Linblad form of
adiabatic Master equation for composite spin-charge system sufficient to
describe the physics of spin qubit shuttling between two tunnel-coupled
quantum dots.

Equations of motion

Using Linblad equation one can find the equations of motion for the
coherences at time 𝑡, i.e.

¤𝑊±(𝑡) = −𝑖 ⟨±, ↑|
[
Ĥ(𝑡) + V̂𝑠𝑜(𝑡), 𝜚(𝑡)

]
|±, ↓⟩ + (10.56)

+
∑
𝑗=𝑥,𝑧

√
Γ𝑗 ,±(Ω↑)Γ𝑗 ,±(Ω↓)𝑊∓(𝑡) −

Γ𝑗 ,∓(Ω↑) + Γ𝑗 ,∓(Ω↓)
2

𝑊±(𝑡).

Crucially in the limit where the coherent coupling between the spins
and the orbital states can be neglected, i.e. Ĥ+ V̂𝑠𝑜(𝑡) → Ĥ0, the above
differential equations involve only𝑊±(𝑡) terms, i.e.

¤𝑊±(𝑡) ≈ −𝑖ΔΩ
2
𝑊±(𝑡) +

∑
𝑗=𝑥,𝑧

√
Γ𝑗 ,±(Ω↑)Γ𝑗 ,±(Ω↓)𝑊∓(𝑡)+

−
Γ𝑗 ,∓(Ω↑) + Γ𝑗 ,∓(Ω↓)

2
𝑊±(𝑡), (10.57)

which will be used in Sec. 12.3 for the analytical analysis.
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Let us now compute the probability of a successful interdot transfer of
an electron in an excited spin state, i.e. we consider the initial state given
by

|𝜓(𝑡𝑖)⟩ = |−, ↑⟩ ≈ |↑⟩ ⊗ |𝐿⟩ , (11.1)

and analyze the loss of occupation of the ground adiabatic spin-up state,
during adiabatic transition from the left to the right dot. Thus the figure
of merit is defined by the observable:

𝑄↑ = 1 − 𝑃↑. (11.2)

where the probability of successful spin-up transfer 𝑃↑ has an explicit
form:

𝑃↑ = |
〈
−(𝑡 𝑓 ), ↑

�� 𝜚(𝑡 𝑓 ) ��−(𝑡 𝑓 ), ↑〉 |2 , (11.3)

where
��−(𝑡 𝑓 ), ↑〉 ≈ |𝑅, ↑⟩. In Sec. 11.1 we compute 𝑄↑ in absence of the

environment. In Sec. 11.2 we show how the low-frequency noise can affect
𝑄↑. Next in Sec. 11.3 we include also high-frequency noise. In particulair
we propose there an experimental realizaiton of the Elitzur-Veidman
bomb testing. In the final Sec. 11.4 we compute 𝑄↑ for the realistic DQD
devices from Sec. 6.3.

11.1 Transfer in absence of an environment

We start by neglecting the presence of environment and computing
coherent evolution generated by the Hamiltonian:

𝐻̂(𝑡) = 𝐻̂𝑜(𝑡) + 𝐻̂𝑠(𝑡) + 𝑉̂𝑠𝑜(𝑡), (11.4)

where 𝐻̂𝑜 =
1
2 (𝜖(𝑡)𝜎̂𝑧 + 𝑡𝑐 𝜎̂𝑥), 𝐻̂𝑠(𝑡) = 1

2𝐸𝑧𝑠𝑧 and the coupling between
spin and orbital degree of freedom 𝑉̂so was given in Eq. (10.4). We
consider two regimes: that of low (𝐸𝑧 < 𝑡𝑐) and high (𝐸𝑧 > 𝑡𝑐) magnetic
field.

Figure 11.1: Instantaneous energy spec-
trum of the total Hamiltonian 𝐻̂(𝑡) from
Eq. (11.4), a) in the regime of large mag-
netic field 𝐸𝑧 > 𝑡𝑐 and b) small magnetic
field 𝐸𝑧 < 𝑡𝑐 . Green line corresponds to
the energy of the ground orbital spin-up
state |−(𝑡), ↑⟩. The main difference is the
absence of the spin-flip avoided cross-
ing in the 𝐸𝑧 < 𝑡𝑐 case. We highlight
however that finite mixing between the
|+, ↑⟩ (green) and |+, ↓⟩ due to spin-orbit
coupling will lead to possibility of spin-
relaxation (See Fig. 11.6).



124 11 Shuttling of the excited spin state

1: of the form |𝜓±⟩ ∝ |+, ↓⟩ ± |−, ↑⟩

2: In a different context, an analogy be-
tween adiabatic transitions, two-slit ex-
periment and LZSM interferometer was
analyzed in [198]

Figure 11.2: The spin-flip interferometer.
In the relevant region of 𝜖, we denoted
the energy of the |−, ↑⟩ state using green
and the energy of the |+, ↓⟩ state using
red line. They gives the upper and lower
path of the spin-flip interferometer respec-
tively. We plotted the colored lines using
expression for the energy of the orbital adi-
abatic states from Eq. (11.6), which agrees
with the instantaneous spectrum of total
Hamiltonian 𝐻̂(𝑡) for typical regime of
𝑡ff ≪ 𝑡𝑐 . We symbolically illustrated the
relative phase between the paths as 𝜙int.

3: No coherent transtitions between |±, 𝑠⟩
states
4: Note that the Hermitian conjugate here
is due to the fact that the second transition
is a mirror image of the first

5: Note that the |+, ↓⟩ goes through up-
per branch of spin-down orbital crossing,
while |−, ↑⟩ goes across lower branch of
spin-up orbital crossing

As it can be seen from the instantaneous energy spectrum drawn in
Fig. 11.1a), in the first case 𝐸𝑧 < 𝑡𝑐 the adiabatic evolution of spin-up state
in absence of environment should be similar to Landau-Zener model (see
Sec. 5.1). In the second case shown in Fig. 11.1b), the 𝐸𝑧 > 𝑡𝑐 large gives
rise to additional avoided crossings, due to presence of non-negligible
spin-orbit interaction. It leads to repulsion of instantaneous orbital states
|+, ↓⟩ , |−, ↑⟩ at times 𝑡± ≈ 𝐸𝑧/𝑣, where the gap between the hybridized
states1 at avoided crossing is given by:

|𝑡ff | =
√[

𝑡
(int)
flip

]2 +
[
𝑡𝑐
𝐸𝑧
𝑡
(syn)
flip

]2
, (11.5)

where 𝑡(int)
flip and 𝑡

(syn)
flip are related to intrinsic and synthetic spin-orbit

interaction defined in Eq. (10.7) and Eq. (10.6) respectively.

LZSM interferometer

Since each of the avoided crossings can be treated as a Landau-Zener
crossing, adiabatic evolution through both of them leads to Landau-Zener-
Stuckelberg-Majorana interference [97]. As a result, the final population
of target |−, ↑⟩ state, defined as 𝑃↑, will depend on the phase difference
𝜙int for the two paths of the interferometer denoted in Fig. 11.2 using
green and red lines2 .

Adiabatic-impulse approximation

We now treat the interferometer using adiabatic-impulse approximation
(see Sec. 5.1), assuming the avoided crossings take place at 𝑡+ and 𝑡−. We
assume the modification of the energy due to small spin-orbit coupling
can be ignored, and hence the adiabatic evolution amounts to integral
over energy of the instantaneous orbital states,

𝐸±,↑(𝑡) =
𝐸𝑧

2
± 1

2

√
(𝑣𝑡 + Δ𝐸𝑧

2 )2 + 𝑡2𝑐

𝐸±,↓(𝑡) = −𝐸𝑧
2

± 1
2

√
(𝑣𝑡 − Δ𝐸𝑧

2 )2 + 𝑡2𝑐 . (11.6)

Assuming orbital adiabaticity3 and absence of environment the evolution
can be computed in the flip-flip subspace, i.e. the evolution operator
reads:

𝑈̂ff(𝑡 𝑓 , 𝑡𝑖) = 𝐴̂ff(𝑡 𝑓 , 𝑡++𝛿𝑡)𝑇̂†
ff 𝐴̂ff(𝑡+−𝛿𝑡 , 𝑡−+𝛿𝑡)𝑇̂ff𝐴̂ff(𝑡−−𝛿𝑡 , 𝑡𝑖), (11.7)

which is in full analogy to Eq. (5.26)4 . We assume 𝛿𝑡 → 0 and hence the
adiabatic evolution matrix reads:

𝐴̂ff(𝑎, 𝑏) =
[
𝑒 𝑖

∫ 𝑏

𝑎
𝐸+,↓(𝑡)d𝑡 0

0 −𝑒−𝑖
∫ 𝑏

𝑎
𝐸−,↑(𝑡)d𝑡 ,

]
(11.8)

where we included the relative shift of 𝑒 𝑖𝜋 = −1 generated by adiabatic
transition across different branches of orbital avoided crossing5 . The
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Figure 11.3: Spin-flip avoided crossing.
The scheme of the avoided crossing be-
tween orbital adiabatic levels |+, ↓⟩ (red)
and |−, ↑⟩ (green), the size of which is
given by |𝑡ff |. This time we highlight that
the orbital adiabatic states |+, ↓⟩ and |−, ↑⟩
can be seen as the diabatic states of the
spin-flip avoided crossing as it was plot-
ted using green and red lines in the inset.
The true instantaneous states around the
spin-flip avoided crossing are the linear
combinations of the above and their en-
ergy spectrum is plotted using black lines.

6: which for mosty non-adiabatic spin-flip
crossing will be close to 𝛼𝑠,ff ≈ 𝜋/4. Note
that the value is consistent with pertur-
bation theory given by Eq. (5.20), since
[1, 0]𝑇ff[0, 1]𝑇 ≈

√
𝑖𝑡2𝑐𝜋/2𝑣

7: Region of 𝜖 for which two spin-flip
states hybridises.

Spin-flip interference

8: which in our case are attributed to pres-
ence of nuclear spins

9: intrinsic versus synthetic spin-orbit con-
tribution to 𝑡ff from Eq. (10.35)

transfer matrix for the spin-flip avoided crossing 𝑇̂ff reads:

𝑇ff =

[ √
𝑄ff

√
1 −𝑄ff𝑒

𝑖𝛼𝑠,ff

−
√

1 −𝑄ff𝑒
−𝑖𝛼𝑠,ff √

𝑄ff

]
, (11.9)

where𝑄ff = exp
(
−𝜋

2
|𝑡ff |2
2𝑣

)
. Note that the above form of the transfer matrix

is different from T̂, previously introduced in Eq. (5.28). There we wrote
the transfer matrix in the basis of adiabatic states |±⟩ with respect to
considered avoided crossing. Here the transition matrix was written in
the flip-flip basis of the states |+, ↓⟩ , |−, ↑⟩, i.e. the diabatic levels for the
spin-flip avoided crossing (see Fig. 11.3).

As before we have included the deterministic Stokes phase6 . We expect
the AIA to be a reliable method for computing effects of spin-flip avoided
crossing, since in the limit of weak coupling the widths of the crossings7

are small in comparison to other energy scales.

Interference pattern

We now compute the loss of occupation of the target | − (𝑡 𝑓 ), ↑⟩ state
using AIA, i.e.

𝑄↑(𝑡 𝑓 ) = 1 −
��〈−(𝑡 𝑓 ), ↑�� 𝑈̂ff(𝑡 𝑓 , 𝑡𝑖) |−(𝑡𝑖), ↑⟩

��2 = 4(1 −𝑄ff)𝑄ff cos2(𝜙int
2 )

(11.10)
where the relative phase 𝜙int can be written as:

𝜙int =

∫ 𝑡+

𝑡−

[𝐸𝑧 −Ω(𝑡)]d𝑡 , (11.11)

in which Ω(𝑡) = 1
2 [Ω↑(𝑡) + Ω↓(𝑡)] ≈

√
𝑣2𝑡2 + 𝑡2𝑐 is the average orbital

splitting. Note that in the AIA the dependence on Δ𝐸𝑧 is not present for
the symmetry reasons. In the limit of 𝐸𝑧 ≫ 𝑡𝑐 the interference phase can
be computed as:

𝜙int =
2𝐸2

𝑧

𝑣
− 𝑡𝑐
𝑣

(
𝐸𝑧

√
1 + 𝐸2

𝑧

𝑡2𝑐
+𝑡𝑐 ln

(
𝐸𝑧/𝑡𝑐 +

√
𝐸2
𝑧/𝑡2𝑐 + 1

))
≈ 𝐸2

𝑧

𝑣
, (11.12)

where we have neglected a logarithmic correction. This shows that the
phase is expected to be sensitive to the fluctuations of 𝐸𝑧8 .

Numerical result

We now numerically test the above prediction and show that the origin
of spin-orbit interaction9 introduces only non-relevant phase-shift of
quickly changing interference pattern. In Fig. (11.4) we plot the loss of
occupation of the spin-up state 𝑄↑ as a function of dimensionless sweep
rate 𝑣/𝑡2𝑐 . In the figure we use 𝑡𝑐 = 2𝐸𝑧 = 50|𝑡ff | = 10Δ𝐸𝑧 , which would be
typical ballpark of parameters in the semiconductor quantum dots. In the
figure we compare the results for 𝑡ff = 𝑡

(int)
flip (blue) and 𝑡ff = −𝑖 𝑡𝑐𝐸𝑧 𝑡syn (red),

which enters the simulation via the full spin-orbit interaction 𝑉̂𝑠𝑜(𝑡), given
by Eq. (10.4). In the figure we see the black lines corresponding to the
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Figure 11.4: Probability of losing the oc-
cupation of the orbital ground state cor-
responding to spin-up component during
interdot electron transition 𝑄↑, as a func-
tion of dimensionless sweep rate 𝑣/𝑡2𝑐 . We
use 𝑡𝑐 = 2𝐸𝑧 = 50|𝑡ff | = 10Δ𝐸𝑧 param-
eters and plot the numerical simulation
of the unitary dynamics in presence of:
intrinsic (green) and synthetic (blue) spin-
orbit interaction leading to the same value
of |𝑡ff | = 𝑡𝑐/50. With dashed black line
we plot 𝑄LZ, and with a solid black line
4𝑄ff. The latter is the upper bound on the
spin-flip interference effect.
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10: This can be related to the different time-
dependence of two spin-orbit coupling in
vicinity of spin-flip avoided crossing. See
Eq. (10.22)

11: We expect the intrinsic SOI to be dom-
inant in the GaAs-based devices, and syn-
thetic in Si

12: This would be particularly relevant for
GaAs device

probability of Landau-Zener orbital transition𝑄LZ = exp
(
−𝜋

2
𝑡2𝑐
2𝑣

)
(dashed

line) and predicted in Eq. (11.10) upper limit of the 𝑄↑(𝑡 𝑓 ) (solid line),
which for 𝑄ff ≪ 1 can be approximated as:

𝑄↑,max(𝑡 𝑓 ) = 4𝑄ff , (11.13)

where 𝑄ff = exp
(
−𝜋

2
|𝑡ff |2
2𝑣

)
. In the limit of fast sweeps the loss of spin-up

occupation can be related to coherent transitions to the |+, ↑⟩ state,which
can be seen by agreement between numerical simulations and the
Landau-Zener curve. For slower sweeps the probability of 𝑄ff becomes
non-negligible which results in the interference pattern, with rapidly
oscillating phase 𝜙int. The upper limit of the oscillation is approximately
given by 4𝑄ff. The significant difference between the synthetic and in-
trinsic spin-orbit coupling is visible only for the slowest sweeps, where
the two interference patterns are slightly shifted10 . Due to the rapidly
oscillating phase we will not aim here at defining optimal sweep rate
at which the destructive interference of 𝑄↑ takes place. Instead we aim
at discovering how the envelope of the oscillation is modified by the
presence of environment.

Thus for the rest of thesis we will assume that 𝑡ff is a real parameter. Its
value will be chosen to be of a typically measured order of magnitude.11

11.2 Transfer in presence of quasistatic noise

We now consider the influence of low-frequency noise, which we model
by the quasistatic noise in the parameters of the Hamiltonian (11.4), in
the form of detuning and tunnel coupling noise caused by the charge
noise and fluctuations of Zeeman splitting 𝛿𝐸𝑧 due to presence of nuclear
spins12 :

𝜖′ = 𝜖(𝑡) + 𝛿𝜖, 𝑡′𝑐 = 𝑡𝑐 + 𝛿𝑡𝑐 , 𝐸′
𝑧 = 𝐸𝑧 + 𝛿𝐸𝑧 . (11.14)

In principle the above fluctuations might affect 𝑄ff via slow modification
of 𝑡ff or dynamical noise in detuning. However we highlight that in the
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Dephased spin-flip interfer-
ence

13: Due to symmetric limits of integra-
tions

considered regime of almost-diabatic transition both can be neglected,
as we have shown in Eq. (5.41) where polynomial correction to Landau-
Zener probability due to slow fluctuation of tunnel coupling was shown,
and in Chapter 8 where we showed that Landau-Zener excitation should
dominate the noise-induced corrections.

With the assumptions above, from Eq. (11.10) 𝑄↑ depends now only on
the value of 𝜙int, an expression for which is given in Eq. (11.11). We now
evaluate the 𝑄↑, averaged over realizations of the low-frequency noise,
which gives:

⟨𝑄↑⟩ = 4(1 −𝑄ff)𝑄ff

〈
cos2

(
𝜙(0)

int+𝛿𝜙int
2

)〉
≈ 𝑄↑

1 + cos (𝜙(0)
int)⟨𝑒 𝑖𝛿𝜙int⟩
2

,

(11.15)
where 𝛿𝜙int(𝛿𝜖, 𝛿𝑡𝑐 , 𝛿𝐸𝑧) is the zero-average correction to deterministic
phase 𝜙int. As it can be seen in the limit of strong fluctuations𝑄↑ averaged
realizations of the noise tends to the incoherent limit

𝑄↑ = 2(1 −𝑄ff)𝑄ff , (11.16)

which corresponds to completely random interference phase 𝜙int for
which ⟨cos2(𝜙int)⟩ → 1/2. Below we compute the central quantity
⟨𝑒 𝑖𝛿𝜙int⟩ for each of the independent contributions.

Noise in detuning

We first consider noise in detuning 𝛿𝜖 which affects the spin-averaged
splitting, i.e. in the leading order in Δ𝐸𝑧 and 𝛿𝜖 reads

Ω(𝑡) ≈ Ω0(𝑡) cos𝜗0(𝑡)𝛿𝜖 + sin𝜗2
0(𝑡)

𝛿𝜖2

Ω0
, (11.17)

where cos𝜗0(𝑡) = 𝑣𝑡/Ω0(𝑡) and sin𝜗0(𝑡) = 𝑡𝑐/Ω0(𝑡) with Ω0(𝑡) =√
𝑣2𝑡2 + 𝑡2𝑐 . With these definitions the random contribution to phase

is related to the quadratic term13 , i.e.

𝛿𝜙int(𝛿𝜖) = 𝛿𝜖2𝑡2𝑐

∫ 𝐸𝑧/𝑣

−𝐸𝑧/𝑣
Ω−3

0 =
2𝛿𝜖2

𝑣
, (11.18)

which averaged over realizations of the noise gives only polynomial
correction:

⟨𝑒 𝑖𝛿𝜙int⟩𝛿𝜖 =
(
1 − 𝑖 4𝜎

2
𝜖

𝑣

)−1/2

. (11.19)

Noise in tunnel coupling

We now move to the noise in tunnel coupling, for which the modification
to average orbital splitting is non-vanishing already in the first order, i.e.

Ω(𝑡) ≈ Ω0(𝑡) + sin𝜗0(𝑡)𝛿𝑡𝑐 , (11.20)
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14: we can corresponds to Stokes phase
for instance

15: such that coherent, L-Z coupling be-
tween spin-diagonal state can be neglected

which translates into fluctuation of the phase, given by:

𝛿𝜙int(𝛿𝑡𝑐) = 𝑡𝑐𝛿𝑡𝑐
∫ 𝐸𝑧/𝑣

−𝐸𝑧/𝑣
sin𝜗0(𝑡)d𝑡 =

𝑡𝑐𝛿𝑡𝑐
𝑣

ln
(
4𝐸2

𝑧

𝑡2𝑐

)
, (11.21)

and as a consequence leads to the averaged phase:

⟨𝑒 𝑖𝛿𝜙int⟩𝛿𝑡𝑐 = exp

(
− 1

2

[
𝜎𝑡𝑐 𝑡𝑐
𝑣

ln
(
4𝐸2

𝑧

𝑡2𝑐

)]2
)
. (11.22)

Fluctuations of spin splitting

We finally consider fluctuations of the Zeeman splitting. In sec 9.1, we
discussed that in most cases the fluctuations in the left and right dot
can be treated as independent. We use here the direct estimation of the
interference phase 𝜙int ≈ 𝐸2

𝑧/𝑣, using which the modification of Zeeman
splitting 𝐸𝑧 → 𝐸𝑧 + 𝛿𝐸𝑧 introduces phase shift,

𝛿𝜙int(𝛿𝐸𝑧) =
2𝐸𝑧𝛿𝐸𝑧
𝑣

, (11.23)

which translates into the averaged phase:

⟨𝑒 𝑖𝛿𝜙int⟩𝛿𝐸𝑧 = exp
(
−2
𝐸2
𝑧

𝑣2 𝜎
2
𝐸𝑧

)
. (11.24)

11.3 Transfer in presence of high-frequency
noise

We now consider corrections to fidelity of spin-up transfer in presence
of high-frequency noise, which as shown in Sec. 5.3 introduces inelastic
transitions between the instantaneous levels.

Interference pattern at high magnetic fields

We start with the limit of 𝐸𝑧 > 𝑡𝑐 , where the spin-flip avoided crossings
are created. We assume that probability of inelastic transitions before the
first spin-flip avoided crossing located at 𝑡− = −𝐸𝑧/𝑣 is negligible. Just
after the avoided crossing the general state can be written as:

|𝜓(𝑡+ + 𝛿𝑡)⟩ =
√
𝑄ff |−, ↑⟩ + 𝑒 𝑖𝜙0

√
1 −𝑄ff |+, ↓⟩ , (11.25)

where we have included some initial phase14 𝑒 𝑖𝜙0 . With such an initial
condition we now use the AME from Sec. 5.3 to compute evolution
in-between the spin-flip anticrossings, i.e. 𝑡 ∈ (𝑡− , 𝑡+). Note that with
spin-diagonal coupling to environment, and away from spin-flip avoided
crossing we can treat the dynamics of each superposition component
separately.

For sufficiently slow sweeps15 , probability of occupying each of the
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16: in which
∫ 𝑡+
𝑡−

Γ+ ≪ 1

17: Note that in principle relaxation pro-
cess can recover part of irrelevant in low-
temperature leakage to |+, ↑⟩ state

18: for instance the phonon

instantaneous states can be computed from the differential equation:

¤𝑃±,𝑠 = −Γ±(Ω𝑠)𝑃±,𝑠 + Γ∓(Ω𝑠)𝑃±,𝑠 , (11.26)

where the excitation and relaxation rates Γ±(Ω𝑠[𝑡]) are in general time-
dependent. For initial conditions 𝑝−,↑ = 𝑄ff, 𝑝+,↓ = 1 − 𝑄ff and 𝑝−,↓ =

𝑝+,↑ = 0, the above equation can be solved as:

𝑃−,↑ = 𝑄ff

(
𝑒
−

∫ 𝑡+
𝑡− Γ++Γ− +

∫ 𝑡+

𝑡−

Γ−(𝑡′)𝑒−
∫ 𝑡+
𝑡′ Γ++Γ−

)
𝑃+,↓ = (1 −𝑄ff)

(
𝑒
−

∫ 𝑡+
𝑡− Γ++Γ− +

∫ 𝑡+

𝑡−

Γ+(𝑡′)𝑒−
∫ 𝑡+
𝑡′ Γ++Γ−

)
. (11.27)

In the low-temperature limit,16 the probability of excitation can be ne-
glected, which means

𝑃−,↑ ≈ 𝑄ff

𝑃+,↓ ≈ (1 −𝑄ff) exp
(
−

∫ 𝑡+

𝑡−

Γ−(𝑡′)d𝑡′
)
. (11.28)

The above result shows that the amplitude of excited orbital state with
flipped spin |+, ↓⟩ is more likely to decay. Note that the described above
leakage from mostly lower branch of interferometer17 bounds transfer of
the spin-up state, since 𝑃↑ ⩽ 𝑃−,↑ + 𝑃+,↓, or equivalently

𝑄↑ ⩾
(
1 −𝑄ff

) (
1 − 𝑒−

∫ 𝑡+
𝑡− Γ−(𝑡′)d𝑡′ ) . (11.29)

Elitzur-Veidman bomb

The above formula takes into consideration averaging over many runs
of the experiment. However one can imagine a situation in which the
emission of energy quanta18 in a single realization could be detected
by measuring the state of transferred electron. For instance we take
a situation in which the interference term is fined-tuned towards the
constructive one with 𝜙int = 2𝑘𝜋, while the sweep rate is slow enough
so that𝑄ff ≈ 1/2. In such case the the probability of the excited spin state
staying in the initial dot, would be close to unity

𝑄↑,constr = 4𝑄ff(1 −𝑄ff) ≈ 1. (11.30)

This means that in absence of the environment the spin-up electron is
guaranteed to stay in the initial dot. Now in presence of the relaxation
from the lower branch of the interferometer, the electron would also stay
in the initial dot, unless the relaxation takes place.

To show this is the case we consider a single realization of the experiment,
which is schematically plotted in Fig. 11.5. After first spin-flip crossing,
for 𝑄ff = 1/2 the electron state reads:

|𝜓(𝑡− + 𝛿𝑡)⟩ = 1√
2

(
|+(𝑡−), ↓⟩ + 𝑒 𝑖𝜙 |−(𝑡−), ↑⟩

)
. (11.31)

If phonon is not emitted, the electron continues the evolution and as a
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Figure 11.5: Realization of
Elitzur–Vaidman bomb testing ex-
periment from [199]. Four possible
quantum paths of the spin-up evolution
during interdot transition. In the 1a) we
plot evolution in absence of the environ-
ment, where initial state |−, ↑⟩ (green)
becomes first superimposed with |+, ↓⟩
(red), and then ends up in the |𝐿, ↓⟩ (blue)
as a result of constructive interference i.e.
𝜙int = 2𝑘𝜋 for 𝑘 ∈ Z and 𝑄ff = 1/2. In
the remaining cases a phonon is emitted
from the lower branch (red) around the
avoided crossing (wavy red line). In 2)
case, the superposition "collapses" into
the ground energy state and ends up
in |𝑅, ↓⟩ state. In cases 1b) and 3) the
superposition "collapses" into the upper
branch of the interferometer and with
equal probability ends in the states |𝐿, ↓⟩
or |𝑅, ↑⟩. In the most interesting case 3)
(orange box), the emission of the phonon
was detected, without physical relaxation
of the electron.

19: where |state⟩ denotes measured state
and ph = 1 if phonon was emitted and
ph = 0 if it was not emitted

result of the constructive interference ends up in |𝐿, ↓⟩ state (1a option
in Fig. 11.5). If however the phonon emission takes place at time 𝑡𝑟 , the
superposition state from (11.31) "collapses" with probability 1/2 to |−, ↑⟩
state and relaxes with probability 1/2 to the ground energy state |−, ↓⟩,
where the probabilities are given by the absolute values squared of the
amplitudes in Eq. (11.31). In the first option, the electron arrives at the
second spin-flip avoided crossing in a single branch, from which with
probability 𝑄ff = 1/2 ends up in the

��+(𝑡 𝑓 ), ↓〉 ≈ |𝐿, ↓⟩ state (1b) and
with probability 1 −𝑄ff = 1/2 ends up in the state |−, ↑⟩ = |𝑅, ↑⟩ (2). If
however the second option is realized, i.e. the electron relaxes to |−, ↓⟩
state, it ends up in the |𝑅, ↓⟩ state (3).

We now discuss now all possible outcomes of the single realization of the
experiment, together with the conditional probabilities, 𝑝(|state⟩ |ph):19 .
Thus, if the electron was detected in the state:

1. |𝐿, ↓⟩ (Left dot, flipped spin). This could mean that either phonon
was not emitted (a), i.e.

𝑝(|𝐿, ↓⟩ |0) = 1

or was emitted (b), in case of which probability to end up at |𝐿, ↑⟩
equals

𝑝(|𝑅, ↑⟩ |1) = 0.5(1 −𝑄ff) = 0.25

2. |𝑅, ↓⟩ (Right dot, flipped spin). This means the phonon was emitted
and the electron relaxed to the ground state. This gives conditional
probability:

𝑝(|𝑅, ↓⟩ |1) = 0.5

3. |𝑅, ↑⟩ (Right dot, unflipped spin). This means that although relax-
ation took place (phonon was emitted), the electron did not move to
the lowest lying level. This is possible with conditional probability:

𝑝(|−, ↑⟩ |1) = 0.5𝑄ff = 0.25.

Note that the third outcome can be seen as the apparent contradiction to
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20: Using optical interferometers

21: see Eq. (10.4) for the expression for V̂𝑠𝑜

Figure 11.6: Schematic picture showing
the process of losing of occupation of
the dressed spin-up state |−̃, ↑⟩ due to
relaxation to the ground state |−̃, ↓⟩. This
process is activated by the non-zero tun-
nel coupling with the spin flip 𝑡flip, See
Eq. (11.34).

22: i.e. in the absence of the environment it
would vanish away from avoided crossing

23: understood as the relaxation rate be-
tween |−̃(0), ↑⟩ and the |−(0), ↓⟩ states

the conservation of the energy, and is a consequence of the phenomenon
of the quantum superposition. In the original proposal of Elitzur-Veidman
[199], the emission of phonon would be associated with the active bomb,
while the lack of emission means inactive bomb (a dud). The original
proposal states that a similar setup20 can be used to distinguish the active
bomb from the dud. In particular when the third scenario is realised,
an active bomb has been detected without its physical detonation. This
phenomenon was called in [199] interaction-free measurement.

Spin relaxation in low magnetic fields

In the limit of sufficiently low magnetic field, i.e. 𝐸𝑧 < 𝑡𝑐 , the spin-flip
avoided crossing is absent, however presence of the environment can
induce the transition from |−, ↑⟩ to |−, ↓⟩ around the avoided crossing,
where the mixing between the spin states due to V̂𝑠𝑜 is non-negligible.21

This process is schematically illustrated in Fig. 11.6.

Time-independent approach

We first use the fact that around the avoided crossing the orbital splitting
is approximately constant and equal to Ω(0) ≈ 𝑡𝑐 . In this analysis we
neglect Δ𝐸𝑧 as its exact value does not matter as long as Δ𝐸𝑧 ≪ 𝑡𝑐 . We
concentrate on the initially populated state |−(𝑡), ↑⟩ and its composition
at the avoided crossing, i.e. for 𝑡 = 0. Similarly to Eq. (9.20), we compute
perturbative modification of the spin-up state as:

|−̃(0), ↑⟩ ≈ |−(0), ↑⟩ + ⟨+(0), ↓| V𝑠𝑜(0) |−(0), ↑⟩
𝑡𝑐 − 𝐸𝑧

|+(0), ↓⟩ , (11.32)

which shows that the around the avoided crossing the initially occupied
spin-up state becomes mixed with |+(0), ↓⟩ state.

Although the above-derived admixture is temporary22 it exposes the
electron to spin-diagonal relaxation to lowest-lying state |−(0), ↓⟩. In
particular, we use an approach similar to that from Eq. (9.25) to show
that the spin relaxation23 around avoided crossing Γ↑↓ can be related to
the relaxation between the states |−(0), ↑⟩ and |−(0), ↓⟩, i.e.

Γ↑↓(𝑡𝑐) ≈ | ⟨+(0), ↓| −̃(0), ↑⟩|2Γ−(𝑡𝑐) =
| ⟨+(0), ↓| V̂𝑠𝑜(0) |−(0), ↑⟩ |2

(𝑡𝑐 − 𝐸𝑧)2
Γ−(𝑡𝑐),
(11.33)

where Γ−(𝑡𝑐) is the spin-diagonal relaxation rate computed in Chapter
7. The matrix element can be directly related to the secular term V̂𝑠𝑜(0),
given previously in Eq. (10.26). This together with the limit of 𝑡𝑐 ≫ 𝐸𝑧
gives:

Γ↑↓(𝑡𝑐) ≈
|𝑡(int)

flip − 𝑖𝑡(syn)
flip |2

4𝑡2𝑐
Γ−(𝑡𝑐). (11.34)

Note that in the above formula the suppression of the synthetic contribu-
tion by a factor of 𝑡𝑐/𝐸𝑧 , that was present in 𝑡(syn)

flip is missing. This makes
the synthetic spin orbit interaction (magnetic field gradient) relatively
more relevant.
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24: see Eq. for similar assumption leading
to correct estimation of charge transfer
error

Spin relaxation at the avoided
crossing

25: see estimation around Eq. (10.11)

26: 𝑡(int)
flip , which would rather correspond

to GaAs then Si.
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Figure 11.7: Relaxation rates for the DQD
computed using methods from Chapter 7
using parameters from Tab. 6.1.

27: For the parameters of DQD models
see Sec. 6.3
28: assuming around 𝑁 = 10000 experi-
mental shots. See Eq. (4.48) for connection
between power of the 1/f noise and data
acquisition time

29: which corresponds to 0.01% abun-
dance of Si29

Let us now estimate the loss of population from the adiabatic spin-up
state during adiabatic transfer. We assume the rate can be treated as
constant in the vicinity of avoided crossing, which has a typical width of
𝑡LZ = 2𝑡𝑐/𝑣24 . In such case the spin-up transfer error reads:

𝑄↑ ≈ Γ↑↓(𝑡𝑐)
2𝑡𝑐
𝑣

=
|𝑡(int)

flip − 𝑖𝑡(syn)
flip |2

2𝑣𝑡𝑐
Γ−(𝑡𝑐). (11.35)

Next if we assume that

|𝑡(int)
flip − 𝑖𝑡(syn)

flip | ≈ 1𝜇eV (11.36)

which would correspond to Δ𝐵/Δ𝑥 = 0.1mT/nm25 or relatively large
intrinsic spin-orbit interaction26 result in

𝑄↑ ∼
Γ−(𝑡𝑐)[1/ns]

2𝑡𝑐[𝜇eV]𝑣[𝜇eV/𝑛𝑠] , (11.37)

which gives 𝑄↑ ≈ 10−2 at 𝑣 = 25𝜇eV/ns and 𝑡𝑐 = 20𝜇eV (see Fig. 11.9 for
confirmation).

11.4 Application to spin qubit shuttling

We finally use the above example to analyze numerical simulations of
the spin-up electron transfer between realistic semiconductor quantum
dots. We consider here three models of DQD systems, which correspond
to model GaAs, SiGe and SiMOS quantum dots from Sec. 6.3.

Parameters used

In the analysis we we will start with the published result on the effect on
the interference pattern of nuclear spins purification in Si at relatively
small 𝑡𝑐 = 10𝜇eV. Later for two tunnel couplings of 𝑡𝑐 = 20, 60𝜇eV at
𝑇 = 100mK, we will compute the error loss of occupation of the spin-up
ground state𝑄↑. We will use corresponding relaxation rates from Chapter
7, which we replot together with the relaxation rates for 𝑡𝑐 = 60𝜇eV in
Fig. 11.7 below.

As the difference between SiGe and SiMOS is not expected to be significant
we concentrate on the first of them and compare against the GaAs
device.27 For both we consider the quasistatic fluctuations of detuning,
tunnel coupling and Zeeman splitting. The first two originates from 1/ 𝑓
charge noise, with the amplitude 𝐴1 = 12 𝜇eV2/Hz, that we translate
to effective RMS of quasistatic noise 𝜎̃1/ 𝑓 = 5𝜇eV.28 For the noise in
Zeeman splittings we take 𝜎𝑁 = 0.1 neV for the Si-based devices 29 and
𝜎𝑁 = 1 neV for the GaAs-device [194].

We highlight that without spin-flip tunnel coupling 𝑡ff the transfer of
spin-up and spin-down component can be computed using methods
previously developed in Chapter 8 for the spin-down transfer. For this
reason we consider here a non-zero value of spin-flip tunnel coupling,
which is commonly set to |𝑡ff | = 0.1𝜇eV. It reproduces measured value in
SiMOS devices [197], a rather optimistic case in GaAs, where |𝑡ff | = 0.5𝜇eV
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Model name Si GaAs
Tunnel coupling 𝑡𝑐 (𝜇eV) 20, 60
Detuning range 𝜖 (𝜇eV) (−500, 500)
RMS of quasistatic detuning noise 𝜎̃𝜖 (𝜇eV) 5
RMS of Overhauser field 𝜎𝑁 (neV) 0.1 100
Average zeeman splitting 𝐸𝑧 (𝜇eV) 2, 120
G-factor difference between the dots Δ𝑔/𝑔 10−3

Tunnel coupling with a spin-flip 𝑡ff (𝜇eV) 0.1
Temperature 𝑇 (mK) 100

Table 11.1: Parameters describing the
model of the environment of the DQD
system, which we have used in the simu-
lations of the averaged adiabatic Master
equation.

30: Note that due to approximately 5-
times smaller g-factor in GaAs devices,
the same selection of Zeeman splittings
𝐸𝑧 = 120, 2𝜇eV corresponds to 𝐵GaAs ≈
5, 0.1 T.

was measured [57], and a rather pessimistic prediction for SiGe model,
where effects of 𝑡ff have not been directly observed yet. On top of this, we
consider two values of average Zeeman splittings 𝐸𝑧 = 120, 2𝜇eV, which
in Si-based devices approximately corresponds to magnetic fields30 of
𝐵Si ≈ 1, 0.02T. Finally we assume that the difference in dot-dependent
Zeeman splittings Δ𝐸𝑧 is dominated by the g-factor difference between
the dots Δ𝑔/𝑔 = 10−3, and hence is proportional to the constant magnetic
field Δ𝐸𝑧 = 0.12, 0.002𝜇eV for 𝐸𝑧 = 120, 2𝜇eV respectively. Introduced
parameters are summarized in Tab. 11.1.

Nuclear spin content in Si

We start by discussing the effect of decreasing number of spinful nuclei
on the interference pattern, generated by the spin-flip avoided crossings
from Sec. (11.1). In Fig. (11.8) we plot the fidelity of spin-up transfer, i.e.
𝑃↑ = Tr

{
| − (𝑡 𝑓 ), ↑⟩⟨−(𝑡 𝑓 ), ↑ |𝜚(𝑡 𝑓 )

}
as a function of sweep rate. We use

Figure 11.8: Probability of successful spin
up transfer in presence of nuclear spins
in Si. Due to fast oscillations we plot only
their envelopes. Using different colors we
plot the results for the Natural Si (yellow),
100%29Si (red) and relevant for this thesis
0.01%29Si (yellow) content of spinful nu-
clei. We show how they converge to the
decohered result of the spin-flip interfer-
ence (black dashed line) from Eq. (11.16).
Adapted from [1].

different colors to plot result of interference for various concentration of
spinful Si29 isotope, and due to rapidly oscillating interference pattern
(see Fig. 11.4) we plot only the envelope of the oscillations. In particular
we show how the amplitude shrinks towards completely dephased result
𝑄↑ = 2𝑄ff(1 −𝑄ff) (dashed black line) at slowest sweep rates. In the plot
we use tunnel coupling of 𝑡𝑐 = 10𝜇eV, 𝐸𝑧 = 120𝜇eV and 𝑡ff = 0.1𝜇eV.
We use the analysis above to show that isotopically purified Si-devices
with 0.01%29Si allows for maximum contrast of the interference pattern
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Figure 11.10: The instantaneous energy
spectra of total Hamiltonian from Eq. (12.1)
in two regimes of magnetic field used in
this chapter. The 𝐸𝑧 = 2𝜇eV < 𝑡𝑐 (top)
and 𝐸𝑧 = 120𝜇eV > 𝑡𝑐 (bottom)

even at the sweep rate of 𝑣 = 1𝜇eV/ns. This level of purification typically
translates to 𝑇∗

2 ≈ 10𝜇s and will used in the remainder of the thesis.

Numerical results

Small tunnel coupling

We start by showing the result for relatively small 𝑡𝑐 = 20𝜇eV and
compare the prediction for large and small magnetic fields, i.e. 𝐸𝑧 =

120𝜇eV ≫ 𝑡𝑐 = 20𝜇eV and 𝐸𝑧 = 2𝜇eV ≪ 𝑡𝑐 respectively. In Fig. 11.9 we
plot the loss of occupation of the spin-up state 𝑄↑ as a function of sweep
rate.

Figure 11.9: Probability of losing occu-
pation of |−(𝑡), ↑⟩ state, 𝑄↑ as a func-
tion of sweep rate for the spin-flip cou-
pling of 𝑡ff = 0.1𝜇eV, tunnel coupling of
𝑡𝑐 = 20𝜇eV and two Zeeman splittings
𝐸𝑧 = 120, 2𝜇eV, which for Si-device cor-
responds to 𝐵 = 1, 0.02 T, drawn using
squares and triangles respectively. Two
colors correspond to GaAs (green) and
SiGe (red) devices from Tab. 6.1. By dashed
lines we plot theoretical predictions: for Si
single-excitation approximation limit from
Eq. (8.22) (red), for GaAs spin-relaxation
around avoided crossing from Eq. (11.35)
(green) and for both decohered interfer-
ence pattern from Eq. (11.16) (black). For
both numerical simulations and analytical
predictions we used relaxation rates from
Fig. (11.7) and parameters from Tab. 11.1. In
numerical results (symbols and lines for
guidance) we averaged over 𝑁 = 100 real-
izations of slow noise using averaged Mas-
ter equation method from Appendix A.
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As it can be seen from Fig. 11.9, for the fast sweeps, the transfer of
spin-up for both devices is limited by the Landau-Zener transitions
from the ground |−, ↑⟩ to the excited |+, ↑⟩ orbital states. Next around
𝑣 ≈ 100𝜇eV/ns the result is identical to𝑄↓, i.e. the Si device shows smaller
error due to weaker coupling to the environment. In particular for the
slower sweeps the Si device (red symbols) follows a single excitation
line, which can be seen by the proximity between numerically simulated
symbols and the red dashed line, which represents 𝑄SEAL ∝ 1/𝑣 given
previously in Eq. (8.22). At slower sweeps the result for large and small
magnetic field starts to differ, since the case of 𝐸𝑧 > 𝑡𝑐 (squares), suffers
from the spin-flip interference in both GaAs (red squares) and SiGe
(green squares) at slowest sweeps, the error converges to the completely
dephased result of the interference (black dashed line), given by 𝑄 =

2(1 −𝑄ff)𝑄ff from Eq. (11.16).

In contrast, the case of weaker magnetic field, i.e. 𝐸𝑧 < 𝑡𝑐 (triangles),
avoids creation of spin-flip avoided crossings and in Si (red triangles) ben-
efits from relaxation aided transfer, which resembles 𝑄HEAL mechanism
from Eq. (8.23). This also proves that due to relatively slow relaxation in
Si, Γ−(𝑡𝑐) ∼ 0.1 ns−1, the spin-relaxation mechanism due to admixture of
spin states around avoided crossing from Eq. (11.35) is not effective. The
result is different for the GaAs device (green triangles), where for the
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31: for the analysis see Sec. 7.3

small magnetic field the relaxation decreases the error only in the regime
of 𝑣 > 10𝜇eV/ns. For slower sweeps the transfer gets worse as the time
spent in vicinity of avoided crossing increases. This agrees well with the
formula for spin-relaxation around avoided crossing (Eq. (11.35)), which
for relatively fast relaxation rate in Γ− ∼ 5 ns−1 is plotted using green
dashed line.

Large tunnel coupling

We now move to the case of relatively large tunnel coupling of 𝑡𝑐 = 60𝜇eV,
for which using models from Chapter 7 we compute the modified
transition rates and plot them in Fig. 11.7. The remaining parameters from
Tab. 11.1 are kept unchanged. In the Fig. 11.7 one can observe that the
relaxation (solid line) and the excitation (dashed) rates in the Si device
are weakly dependant on the detuning, which can be attributed to the
dominant role of the Johnson charge noise, the spectrum of which grows
linearly with energy 𝑆(𝜔) ∝ 𝜔, but at the same time falls 𝑡2𝑐/Ω2 due to
dominant role of detuning noise31 . The corresponding value of typical
relaxation, i.e. Γ−,Si ≈ 0.1ns−1 gives excitation rate at avoided crossing
Γ+,Si(𝑡𝑐) ≈ 10−4ns−1. In GaAs the dominant role of phonons allows to
leads to rapid decay of the relaxation rate away from avoided crossing.
However its relatively large value of Γ−,GaAs(𝑡𝑐) ≈ 10ns−1 translates to
non-negligible excitation rate Γ+,GaAs(𝑡𝑐) ≈ 10−2ns−1.
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Figure 11.11: Probability of losing occupa-
tion of |−(𝑡), ↑⟩ state, 𝑄↑ as a function of
sweep rate for 𝑡ff = 0.1𝜇eV, 𝑡𝑐 = 60𝜇eV
and 𝐸𝑧 = 120, 2𝜇eV, drawn using squares
and triangles respectively. Two colors cor-
respond to GaAs (green) and SiGe (red)
devices from Tab. 6.1. We plot the ana-
lytical result of spin-flip interference us-
ing gray color, i.e. upper bound repre-
sents constructuve interference 4𝑄ff and
solid gray line is the dephased result from
Eq. 11.35. The red dashed line is the effect
of single-excitation approximation limit
from Eq. (8.22) in Si. The dotted lines repre-
sent the effect of spin relaxation at avoided
crossing from Eq. (11.35) for the GaAs
(green) and Si (red). For both numerical
simulations and analytical predictions we
used relaxation rates from Fig. (11.7) and
parameters from Tab. 11.1. In numerical
results (symbols and lines for guidance)
we averaged over 𝑁 = 100 realizations of
slow noise using averaged Master equa-
tion method from Appendix A.

In Fig. 11.11 we plot 𝑄↑ as a function of 𝑣 for 𝑡𝑐 = 60𝜇eV. Similarly to the
result for smaller tunnel coupling, the error for fast sweeps is limited by
𝑄LZ. The biggest difference is the result for large magnetic field 𝐸𝑧 > 𝑡𝑐 ,
for which the transfer in both Si and GaAs is limited by the spin-flip
interference pattern, which we illustrate using gray shaded region. For the
GaAs much stronger fluctuations of 𝐸𝑧 lead to faster convergence towards
decohered result of𝑄↑, which corresponds to dashed line in the middle of
the shaded region. For Si the oscillations are visible up to 𝑣 ≈ 10𝜇eV/ns,
below which mostly the fluctuations of 𝐸𝑧 and 𝑡𝑐 leads to the same result.
Note however that the oscillations of 𝑄↑ are generally contained below
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result of constructive interference 𝑄↑ = 4𝑄ff(1−𝑄ff), which corresponds
to upper limit of shaded region. For the low magnetic field regime of
𝐸𝑧 = 2𝜇eV≪ 𝑡𝑐 , the error is generally smaller in comparison to result
illustrated in Fig. 11.9 due to larger 𝑡𝑐 in comparison to 𝑘B𝑇. Another
difference can come from the slight modification of the relaxation rates
as a function of 𝜖 (See comparison of relaxation rates in Fig. 11.7). The
results in both devices can be reproduced by the spin relaxation around
avoided crossing from Eq. (11.35) (dotted lines).

Note that the charge transfer in Si, shows two local minima. First around
𝑣 = 103 𝜇eV/ns due to interplay between the coherent and incoherence
excitation to the higher energy level |+, ↑⟩. The second at 𝑣 ≈ 1𝜇eV/ns
due to interplay between the recovery of ground state occupation via the
relaxation from |+, ↑⟩ to |−, ↑⟩ states and the spin-flip relaxation from
ground spin-up |−, ↑⟩ to ground spin-down state |−, ↓⟩. As we will show
in the next Chapter 12 the second minimum will be modified by the spin
dephasing due to slow environmental noise.
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We finally arrive at computing the spin coherence of the electron that
underwent interdot transfer. As mentioned in Chapter 1, such transfer
constitutes a single building block, which in principle can allow for
coherent communication between distant registers in semiconductor-
based quantum processor. However to achieve this task, the transfer of
both spin components, together with low enough phase error.

12.1 The model

Similarly to the previous chapters we consider here the Hamiltonian the
spin-dot system:

𝐻̂(𝑡) = 𝐻̂𝑜(𝑡) + 𝐻̂𝑠 + 𝑉̂𝑠𝑜 , (12.1)

where 𝐻̂𝑜(𝑡) = 1
2 𝜖(𝑡)𝜎̂𝑧 + 1

2 𝑡𝑐 𝜎̂𝑥 , 𝐻̂𝑠 =
1
2𝐸𝑧 𝜎̂𝑧 and the form of spin-orbit

interaction 𝑉̂so is given in Eq. (10.4). As a result of linear sweep of
interdot detuning the character of the ground state changes, from the
one localized in the left dot |−(𝑡𝑖)⟩ ∼ |𝐿⟩ to the one localized in the right
dot

��−(𝑡 𝑓 )〉 ∼ |𝑅⟩. Thus the for us a figure of merit is the spin coherence
in the ground state, which is given by the off-diagonal element of the
density matrix

𝑊−(𝑡 𝑓 ) = 2 Tr
{��−(𝑡 𝑓 ), ↓〉〈−(𝑡 𝑓 ), ↑�� 𝜚(𝑡 𝑓 )} , (12.2)

where 𝜚(𝑡 𝑓 ) is the density matrix of the composite spin-dot-environment
system. Note that for electron initialized in a spin superposition in the
left dot

|𝜓(𝑡𝑖)⟩ = |−(𝑡𝑖)⟩ ⊗
|↑⟩ + |↓⟩√

2
, (12.3)

we have 𝑊−(𝑡𝑖) = 1. It is convenient to consider the influence of the
environment that is modeled as a classical noise. In such case the density
matrix of the spin-orbit system should be averaged over realization of the
noise, i.e. the coherence in the ground state can be defined equivalently
to expression from Eq. (12.2) as:

𝑊−(𝑡 𝑓 ) = 2
〈
−(𝑡 𝑓 ), ↑

�� 𝜚(𝑡 𝑓 ) ��−(𝑡 𝑓 ), ↓〉 = 2
〈
|𝑐−,↑(𝑡 𝑓 )| |𝑐∗−,↓(𝑡 𝑓 )|𝑒

𝑖𝜙
〉
, (12.4)

where the coefficients are the complex amplitudes corresponding to the
pure states |−, 𝑠⟩, i.e. 𝑐−,𝑠 = ⟨−, 𝑠 |𝜓(𝑡)⟩, 𝜙 is the complex phase difference
between them and ⟨. . .⟩ denotes classical averaging. In this analysis we
are mostly interested in the limit of small error, defined as the

𝛿𝑊−(𝑡 𝑓 ) ≡ 1 − |𝑊−(𝑡 𝑓 )| < 10−1 , (12.5)

which is still relevant for the future quantum computers, working at the
quantum error correction threshold. In the small error limit the loss of
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1: This result can be obtained from
Eq. (12.4) by considering leading order
corrections to the probability of occupy-
ing spin-up and spin-down state i.e.

𝑃𝑠 = |𝑐−,𝑠 |2 = 1
2 + 𝛿𝑃𝑠

for 𝑠 =↑, ↓ from which |𝑐−,𝑠 | ≈ (1 +
𝛿𝑃𝑠 )/

√
2. Next we consider random con-

tribution to a phase 𝜙 = 𝜙0 + 𝛿𝜙 with
⟨𝛿𝜙⟩ = 0, which together allows to write:

𝑊−(𝑡 𝑓 ) ≈ 𝑒 𝑖𝜙0
〈
(1 + 𝛿𝑃↑ + 𝛿𝑃↓)

× (1 − 𝑖𝛿𝜙 − 𝛿𝜙2

2 )
〉

(12.7)

We now compute the average by taking
only leading order in small parameters,
such that the loss of coherence 𝛿𝑊− =

1 − |𝑊−(𝑡 𝑓 )| can be written as

|𝛿𝑊− | ≈ 1
2 ⟨𝛿𝜙

2 + 2𝛿𝑃↑ + 2𝛿𝑃↓⟩, (12.8)

where finally we can associate change in
occupation probability with previously
computed probability of losing occupation
of particular spin state, i.e.𝑄𝑠 = 𝛿𝑃𝑠/𝑃𝑠,0,
where initial occupation 𝑃𝑠,0 = 1/2 for
both spin components.

2: As a reminder Ω0(𝑡) =
√
𝜖2(𝑡) + 𝑡2𝑐

with 𝜖(𝑡) = 𝑣𝑡

coherence can be written as:

𝛿𝑊−(𝑡 𝑓 ) ≈ 1
2 (𝑄↑ +𝑄↓ + ⟨𝛿𝜙2⟩). (12.6)

which means that in the leading error the loss of spin coherence can
be related to the sum of three contributions1 . The first two of them are
associated with the failure of occupying adiabatically transferred state
associated with spin-up and spin-down components 𝑄↓ and 𝑄↑, which
have been extensively analyzed in Chapter 8 and Chapter 11 respectively.
In this chapter we concentrate on the remaining component ⟨𝛿𝜙2⟩, which
is related to the non-deterministic phase due to presence of uncontrolled
environment.

In Sec. 12.2 we analyze the loss of coherence due low-frequency transverse
noise affecting the orbital degree of freedom, which influences the qubit
via the non-zero correlation between spin and spatial degree of freedom
due to non-zero Δ𝐸𝑧 . We analyze also loss of coherence due to slow
fluctuations of nuclear spins, which leads to spin dephasing independent
of the orbital drive. Next in Sec. 12.3 we move to the random phase
evolution activated by the transition between the adiabatic levels, and in
particular show how the random phase can be introduced by temporal
occupation of the excited state. Finally in Sec. 12.4 we describe the
numerically computed loss of coherence against theoretical predictions
for the realistic problem of electron transfer between models of GaAs-
and Si-based DQD system from Sec. 6.3.

12.2 Dephasing due to low-frequency noise

Quasistatic charge noise

We start by considering non-dissipative operator in the adiabatic basis,
i.e.

V̂𝜙(𝑡) =
∑
𝑠

(
𝑉̂𝑧 cos 𝜗̂𝑠(𝑡) + 𝑉̂𝑥 sin 𝜗̂𝑠(𝑡)

)
|𝑠⟩⟨𝑠 | , (12.9)

where ctan(𝜗𝑠(𝑡)) = − 𝜖(𝑡)+𝜎𝑠Δ𝐸𝑧/2
Ω0(𝑡) with 𝜎𝑠 = ±1 for 𝑠 =↑, ↓ respectively2 .

Following Chapter 4 we assume dephasing is caused by the classical noise,
and as such we replace the operators 𝑉̂𝑧 and 𝑉̂𝑥 by classical fluctuations
of detuning 𝛿𝜖(𝑡) and 𝛿𝑡𝑐(𝑡) respectively. With this identification a single
realization of the noise produces a phase

𝛿𝜙 =

∫ 𝑡 𝑓

𝑡𝑖

⟨−, ↑| V̂𝜙(𝑡) |−, ↑⟩ − ⟨−, ↓| V̂𝜙(𝑡) |−, ↓⟩ d𝑡

=
1
2

∫ 𝑡 𝑓

𝑡𝑖

(
𝛿𝑡𝑐(𝑡)[sin𝜗↑(𝑡) − sin𝜗↓(𝑡)] + 𝛿𝜖(𝑡)[cos𝜗↑(𝑡) − cos𝜗↓(𝑡)]

)
d𝑡 ,

(12.10)

This shows that the random phase vanishes if 𝜗↑ = 𝜗↓, which is the
case for Δ𝐸𝑧 = 0. Otherwise we compute the integrals using quasistatic
approximation from Sec. 4.4, i.e. by assuming 𝛿𝜖, 𝛿𝑡𝑐 are constant on the
time scale of single evolution (i.e. 𝑡 = 𝑡 𝑓 − 𝑓𝑖). This amounts to integration
of functions of the orbital angle, i.e. sin𝜗𝑠 = 𝑡𝑐/Ω𝑠 and cos𝜗𝑠 = 𝜖/Ω𝑠
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Dephasing due low-frequency
detuning noise

3: See Eq. (4.48) for the formula for the
effective power of quasistatic noise in case
of 1/f noise

where Ω𝑠 =
√
(𝜖 − 𝜎𝑠Δ𝐸𝑧/2)2 + 𝑡2𝑐 . In the integrand we use the weak

coupling limit, i.e. assume Δ𝐸𝑧 ≪ 𝑡𝑐 using which

sin𝜗↑(𝑡) − sin𝜗↓(𝑡) ≈ −Δ𝐸𝑧

2Ω0
sin(2𝜗0(𝑡))

cos𝜗↑(𝑡) − cos𝜗↓(𝑡) ≈
Δ𝐸𝑧

Ω0
sin2(𝜗0(𝑡)), (12.11)

where 𝜗0 = 𝑣𝑡/Ω0. For the quasistatic noise and in the symmetric limits,
i.e. 𝑡𝑖 = −𝑡 𝑓 , the contribution from 𝛿𝑡𝑐 noise vanishes for the symmetry
reasons, while the term multiplying 𝛿𝜖 gives the random contribution:

𝛿𝜙 ≈ Δ𝐸𝑧

𝑣
𝛿𝜖̃, (12.12)

where we have evaluated the integral by extending the limits to infin-
ity −𝑡𝑖 = 𝑡 𝑓 → ∞. As a result the variance of random phase, which
contributes to loss of spin coherence is given by:

⟨𝛿𝜙2⟩ =
(
Δ𝐸𝑧

𝑣

)2

𝜎̃2
𝜖 , (12.13)

where 𝜎2
𝜖 is the power of quasistatic noise in detuning3 .

An alternative derivation

We now present an alternative derivation of the above result, which
uses the result of Eq. (9.27), in which we have shown that in presence
of longitudinal spin-orbit coupling Δ𝐸𝑧 the power of spin dephasing
noise for the spin-qubit occupying its ground orbital state is related to
the fluctuations, that are transverse in the orbital basis.

First we assume 𝜖 ≪ 𝑡𝑐 , in case of which the ground and excited orbital
states are given by:

|±(0)⟩ ≈ 1√
2
(|𝐿⟩ + |𝑅⟩) , (12.14)

The splitting between two levels is given by Ω(0) = 𝑡𝑐 . We now assume
the presence of the classical noise in detuning and tunnel coupling, i.e.

𝐻̂noise =
𝛿𝜖
2
𝜎̂𝑧 +

𝛿𝑡𝑐
2

𝜎̂𝑥 , (12.15)

where the Pauli operators are written in the dot basis, i.e. 𝜎̂𝑧 = |𝑅⟩⟨𝑅 | −
|𝐿⟩⟨𝐿|. We now express the above Hamiltonian in the basis of |±(0)⟩
states, such that the

𝐻̂noise =
𝛿𝜖
2
𝜎̂⊥ + 𝛿𝑡𝑐

2
𝜎̂∥ , (12.16)

where 𝜎̂∥ = |+(0)⟩⟨+(0)|−|−(0)⟩⟨−(0)| and 𝜎̂⊥ = |+(0)⟩⟨−(0)|+|−(0)⟩⟨+(0)|.
One can directly check that ⟨+(0)| 𝐻̂noise |−(0)⟩ = 𝛿𝜖/2, and hence 𝛿𝜖 is
transverse in the basis of orbital states |±(0)⟩.

We now add the spin degree of freedom. We initialize the electron in the
ground orbital state, at zero detuning, in the spin superposition, such
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that the initial state reads:

|𝜓(𝑡𝑖)⟩ = |−(0)⟩ ⊗ 1√
2
(|↑⟩ + |↓⟩) . (12.17)

To show how orbital fluctuations affect spin coherence we add coupling be-
tween orbital and spin degrees of freedomΔ𝐸𝑧 = ⟨𝑅 | 𝑉̂so |𝑅⟩−⟨𝐿| 𝑉̂so |𝐿⟩,
where the spin-orbit interaction 𝑉̂so was given in Eq. (10.4). In analogy to
Eq. (9.20) we write the correction to the ground orbital state |−(0), 𝑠⟩ as:

|−̃(0), 𝑠⟩ = |−(0), 𝑠⟩ + 𝜎𝑠
Δ𝐸𝑧

4𝑡𝑐
|+(0), 𝑠⟩ . (12.18)

One can easily show that the effectively longitudinal noise in the spin
basis reads:

𝜉𝜙,spin = ⟨−̃(0), ↑|𝐻̂noise |−̃(0), ↑⟩ − ⟨−̃(0), ↓|𝐻̂noise |−̃(0), ↓⟩ =
Δ𝐸𝑧

2𝑡𝑐
𝛿𝜖,

(12.19)
from which the variance of spin-dephasing noise reads:

𝜎̃2
spin =

(
Δ𝐸𝑧

𝑡𝑐

)2

𝜎̃2
𝜖 . (12.20)

Now if the evolution goes from large negative to large positive detuning
in the form 𝜖(𝑡) = 𝑣𝑡, one can estimate that the spin-qubit spends
𝑡LZ ≈ 2𝑡𝑐/𝑣 time around the avoided crossing, where detuning noise
is transverse in the adiabatic basis. As a result the dephasing of spin
superposition, during the adiabatic transfer of electron charge reads:

𝛿𝑊(𝑡) ≈ 1 − 𝑒−
1
2 𝜎

2
spin𝑡

2
LZ ≈ 1

2
𝜎2
𝜖

(
Δ𝐸𝑧

𝑡𝑐

)2 (
𝑡𝑐

𝑣

)2

=
1
2

(
Δ𝐸𝑧

𝑣

)2

𝜎2
𝜖 , (12.21)

which reconstructs the result of Eq. (12.13).

Nuclear spins

The dephasing due to slow charge noise should be compared with
that caused by nuclear spins. As discussed in Sec. 9.3, we expect the
Overhauser field to be uncorrelated between two dots, which allows
to use the 𝑇∗

2 time as the upper bound for coherent transfer time. In
particular the spin dephasing due to nuclei depends on the transfer
time Δ𝑡 = Δ𝜖

𝑣 , where Δ𝜖 is the sweep range. For Δ𝜖 = 1meV sweep, and
𝜎2
𝑁
= (

√
2/𝑇2)2 reads:

⟨𝛿𝜙2⟩ =
(
Δ𝜖
𝑣

)2

𝜎2
𝑁 =


(

102

𝑣[𝜇eV/𝑛𝑠]

)2
, for GaAs(

10−1

𝑣[𝜇eV/𝑛𝑠]

)2
, for Si

(12.22)

. which shows that for GaAs 𝑣 > 100𝜇eV/ns is required for significantly
coherent transfer, while orders of magnitude lower 𝑣 ≈ 0.1𝜇eV/ns would
allow to neglect the effects of nuclear spins in isotopically purified Si.
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4: i.e.𝑊′
±(𝑡) =𝑊±𝑒

∓ 𝑖2 ΔΩ(𝑡)

5: Since

ΔΩ =

√
(𝑣𝑡 + Δ𝐸𝑧/2)2 + 𝑡2𝑐−

√
(𝑣𝑡 − Δ𝐸𝑧/2)2 + 𝑡2𝑐

12.3 Dephasing due to high-frequency noise

We now show that inelastic transitions between the orbital states in
presence non-zero longitudinal coupling Δ𝐸𝑧 can also lead to spin
dephasing.

We use the adiabatic Master equations in which we neglect coherent
coupling between the adiabatic orbital levels ¤𝜗𝑠(𝑡) and the coupling
between the spin-components possibly leading to spin-flip avoided
crossing 𝑡ff. Additionally we assume the difference between spin-up and
spin-down relaxation rates are negligible and use equations of motion
for the coherence in the ground and excited states 𝑊± = ⟨±| 𝜚↑↓ |±⟩,
previously derived in Eq. (10.57). In the rotating frame4 they read:

¤𝑊 ′
+(𝑡) = −Γ−(𝑡)𝑊 ′

+(𝑡) + Γ+(𝑡)𝑊 ′
−(𝑡)𝑒−𝑖

∫
ΔΩ(𝑡)

¤𝑊 ′
−(𝑡) = −Γ+(𝑡)𝑊 ′

−(𝑡) + Γ−(𝑡)𝑊 ′
+(𝑡)𝑒 𝑖

∫
ΔΩ(𝑡). (12.23)

The main source of dephasing, activated by the high-frequency noise,
are inelastic transitions between two energy levels of possibly different
Zeeman splittings. For non-zero value of Δ𝐸𝑧 , the time spent in the
state with spin splitting different that the one corresponding to perfectly
adiabatic evolution, will lead to additional phase between two spin
components. Due to the stochastic nature of the inelastic transition,
this time period and hence the phase become random. As a result the
averaging of such random phase over many realisation of the experiment
will lead to non-negligible dephasing. We now show a few relevant
examples.

Dephasing during excitation

We start with the computing contribution to a random phase acquired
during excitation taking place around the avoided crossing. We follow
the SEAL approximation from Eq. (8.22), in which we assumed most
exciations are taking place in the vicinity of the avoided crossing, i.e.
|𝜖 | ≪ 𝑡𝑐 where we have Ω𝑠(𝑡) ≈ 𝑡𝑐 + 𝑣2𝑡2

2𝑡𝑐 , Γ+(𝑡) = Γ−(𝑡𝑐)𝑒−𝛽Ω𝑠 (𝑡) and the
difference between the orbital splitting can be approximated5 as:

ΔΩ ≈ 𝑣𝑡Δ𝐸𝑧

𝑡𝑐
. (12.24)

We use the initial state

|𝜓(0)⟩ = |↑⟩ + |↓⟩
2

⊗ |−(𝑡𝑖)⟩ , (12.25)

which corresponds to initial condition 𝑊−(0) = 1 and 𝑊+(0) = 0, and
using Eq. (12.23) in the leading order of perturbation theory we obtain
𝑊 ′

−(𝑡) ≈ 𝑒−Γ+(𝑡𝑐 )𝑡 and as a consequence:

𝑊 ′
+(𝑡) ≈ Γ−(𝑡𝑐)𝑒−𝛽𝑡𝑐

∫ 𝑡

0
d𝑡 exp

[(
𝑖
𝑣Δ𝐸𝑧

2𝑡𝑐
− 𝛽𝑣2

2𝑡𝑐

)
𝑡2 − Γ+(𝑡𝑐)𝑡

]
. (12.26)

In the relevant regime the excitation rate in the exponent can be omitted,
which allows to compute the loss of coherence during a single transition
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from ground to excited state as:

𝑊 ′
+(𝑡) = Γ−(𝑡𝑐)𝑒−𝛽𝑡𝑐

√
𝑡𝑐

𝑣

1√
𝛽𝑣 − 𝑖Δ𝐸𝑧

, (12.27)

where we moved the limit of integration 𝑡 → ∞. This means that for
𝑣 ≫ Δ𝐸𝑧 𝑘B𝑇 the loss of coherence 𝛿𝑊+ ∝ 1/𝑣, while at slower sweep
rates 𝛿𝑊+ ∝ 1/

√
𝑣.

Dephasing during relaxation

We now move to the relaxation process and compute the loss of coherence
during recovery of the ground state occupation. We consider the situation
in which the electron occupies an excited orbital state, i.e. 𝑊+(0) = 1
and 𝑊−(0) = 0. In such case, analogously to the excitation process the
coherence in the ground state after the relaxation can be computed as:

𝑊 ′
−(𝑡) =

∫ 𝑡

0
d𝑡′ Γ−(Ω[𝑡′]) 𝑒 𝑖

∫ 𝑡′
0 ΔΩ(𝑡′′)−Γ−(Ω[𝑡′′])d𝑡′′ . (12.28)

We assume the relaxation rate is relatively flat as a function of transferred
energy Ω and takes place in the detunned regime where ΔΩ ≈ Δ𝐸𝑧 .
Hence we treat the variables as time-independent and compute the
integral as:

𝑊 ′
−(𝑡) =

Γ−
Γ− − 𝑖Δ𝐸𝑧

(
1 − 𝑒(𝑖Δ𝐸𝑧−Γ−)𝑡

)
→ Γ−

Γ− − 𝑖Δ𝐸𝑧
, (12.29)

where the final expression was taken in the limit of Γ−𝑡 ≫ 1, i.e. in the
limit when the qubit is transferred from excited to the ground state. We
conclude that during the relaxation process the spin coherence acquires
a phase shift, which in the limit of Δ𝐸𝑧 ≫ Γ− reads 𝑒 𝑖𝜋/2. Additionally
the absolute value of the coherence left in the ground state is reduced
since:

|𝑊− | =
Γ2
−√

Γ2− + Δ𝐸2
𝑧

≈ 1 − 1
2

(
Δ𝐸𝑧

Γ−

)2

, (12.30)

where the last expression was written in the limit of Δ𝐸𝑧 ≪ Γ−.

This shows that fast orbital relaxation allows for conservation of spin
coherence. Note that the obtained coherence error reconstructed result of
Eq. (1.27), where dephasing during relaxation was related to the variance
of random phase ⟨𝛿𝜙2⟩ = (Δ𝐸𝑧/Γ−)2.

Two-way transitions

We finally consider the case where both relaxation and excitation are
active. For illustration purposes we assume the transition rates and
difference in orbital-dependent spin splitting can be treated as time-
independent. This corresponds to the case of stationary qubit or the
case where the rates Γ±(𝑡) and ΔΩ are approximately constant on the
timescale set by 1/Γ±.
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6: In particular in the limit of fast relax-
ation Γ− ≫ ΔΩ we expand:

𝐴 =
√
(Γ+ + Γ− − 𝑖ΔΩ)2 + 4𝑖ΔΩΓ+

≈ Γ+ + Γ− + 𝑖ΔΩ − 2𝑖
ΔΩΓ+
Γ−

− 2
ΔΩ2Γ+
Γ2−

,

while in the limit of slow relaxation Γ− ≪
ΔΩ we have:

𝐴 =
√
(Γ+ − Γ− + 𝑖ΔΩ)2 + 4Γ−Γ+

≈ Γ+ − Γ− + 𝑖ΔΩ − 2𝑖
Γ+Γ−
ΔΩ

− 2
Γ2
−Γ+
ΔΩ2

.

Dephasing due to many in-
elastic transitions

For the static case we solve differential equation from Eq. (12.23), using
the initial state of the electron |𝜓⟩ = |−⟩ ⊗ ( 1√

2
|↑⟩ + |↓⟩), for which we

have

𝑊+ = 2𝑒−
1
2 𝑎

∗𝑡 Γ+
𝐴

sinh
(
𝐴∗𝑡
2

)
𝑊− = 𝑒−

1
2 𝑎𝑡

{
cosh

(
𝐴𝑡
2
)
+ (𝑎 − 2Γ+)

𝐴
sinh

(
𝐴𝑡
2
)}
, (12.31)

where 𝑎 = Γ+ + Γ− − 𝑖ΔΩ and 𝐴 =
√
𝑎2 + 4𝑖Γ+ΔΩ. Note that for Γ+ = 0,

we have |𝑊− | = 1, i.e. the dephasing is activated by a non-negligible
excitation rate.

We now compute ground state coherence in two relevant regimes of fast
and slow relaxation rate in comparison to ΔΩ, where in both cases we
will assume that Γ+ ≪ Γ−. In each of the regimes we will expand the
parameter 𝐴 in the corresponding small parameter.6 Firstly for Γ− ≫ ΔΩ,
the ground state coherence reads:

𝑊−(𝑡) ≈
Γ− − 𝑖ΔΩ

Γ+ + Γ− − 𝑖ΔΩ 𝑒
𝑖
ΔΩΓ+
Γ−

𝑡
𝑒
−ΔΩ2Γ+

Γ2−
𝑡
, (12.32)

which in the limit of Γ− ≫ ΔΩ, can be expressed as:

𝑊−(𝑡) ≈ 𝑒 𝑖𝜙0(𝑡) exp
(
−ΔΩ2

Γ2−
Γ+𝑡

)
, for Γ− ≫ ΔΩ (12.33)

where we have introduced the phase factor 𝜙0(𝑡). This shows that
spending too much time in the regime, in which the excitation rate is
non-negligible would lead to spin dephasing. The above can be applied to
the adiabatic transition, where in the simplest model we assume that the
excitation rate is only non-negligible for 𝑡 = 𝑡LZ = 2𝑡𝑐/𝑣 time around the
avoided crossing. However in such case ΔΩ(𝑡) ≈ −𝑣𝑡Δ𝐸𝑧/𝑡𝑐 becomes the
function of time. To compute the effective dephasing we overestimate the
excitation rate by setting Γ+(Ω) = Γ−(𝑡𝑐)𝑒−𝛽𝑡𝑐 , assume constant relaxation
rate Γ− = Γ−(𝑡𝑐), such that only ΔΩ(𝑡) is remaining function of time. In
such case dephasing during transition across the avoided crossing can
be estimated as:

|𝑊−(𝑡)| = exp

(
−𝑣

2Δ𝐸2
𝑧

𝑡2𝑐Γ−
𝑒−𝛽𝑡𝑐

∫ 𝑡𝑐/𝑣

−𝑡𝑐/𝑣
𝑡2d𝑡

)
= exp

(
−2Δ𝐸2

𝑧

3Γ−
𝑡𝑐

𝑣
𝑒−𝛽𝑡𝑐

)
,

(12.34)
from which the loss of coherence in the leading order can be written as:

𝛿𝑊− = 1 − |𝑊−(𝑡)| ≈
Δ𝐸2

𝑧

3Γ−
𝑡𝑐

𝑣
𝑒−𝛽𝑡𝑐 . (12.35)

We now show that the additional dephasing is absent in the opposite
case of slow relaxation Γ− ≪ ΔΩ. One can show that in leading order
the expression for coherence reads:

𝑊−(𝑡) ≈ 𝑒 𝑖𝜙0(𝑡) exp
(
−

[
1 + Γ2

−
ΔΩ2

]
Γ+𝑡

)
∝ 𝑒 𝑖𝜙0(𝑡)𝑒−Γ+𝑡 , for Γ− ≪ ΔΩ

(12.36)
which shows that in this case the loss of coherence is dominated by the
charge error.
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Figure 12.1: The instantaneous energy
spectra of total Hamiltonian from Eq. (12.1)
in two regimes of magnetic field used in
this chapter. The 𝐸𝑧 < 𝑡𝑐 (top) and 𝐸𝑧 > 𝑡𝑐
(bottom)

7: The absence of low-frequency noise
may correspond to some active control of
the qubit during shuttling, which works
analogously to spin echo. Alternatively
effective fluctuation of detuning noise can
be suppressed by spatial correlations of
the charge noise see Sec.. 7.1

12.4 Application to spin qubit shuttling

We now head towards the final results of the thesis, which concern the
loss of spin coherence during transfer of electron in spin superposition
between two realistic quantum dots in GaAs and Si-based devices.

Parameters used

To large extent we use here parameters from Tab. 11.1, which were
introduced in the analysis of spin-up state transfer. We compute the loss
of spin coherence 𝛿𝑊− with and without additional averaging over slow
noise due to nuclei and low-frequency contribution for 1/ 𝑓 charge noise.7
We concentrate here on sweep rates 𝑣 > 2𝜇eV/ns, as for slower sweeps
the phase error due to presence of nuclear spins, even in isotopically
purified silicon with 0.01 % 29Si is expected to be significant, ⟨𝜙2⟩ > 10−3,
see Eq. (12.22).

Small tunnel coupling

We start with the analysis of 𝑡𝑐 = 20𝜇eV. In Fig. 12.2 we plot the loss
of spin coherence in the ground orbital state, 𝛿𝑊−, as a function of
sweep rate for two different Zeeman splittings 𝐸𝑧 = 120, 2𝜇eV, which
correspond to Δ𝐸𝑧 = 0.12, 0.002𝜇eV.

In Fig. 12.2a, in which results obtained in absence of slow fluctuations
are plotted, we can see that for 𝑣 > 100 𝜇eV/ns, the loss of coherence
is limited by 𝑄LZ. For 𝑣 ≈ 100𝜇eV/ns the loss of coherence in Si (red
triangles and squares) is well approximated by the charge transfer error
caused by single transition from ground to excited state, i.e. 𝑄SEAL from
Eq. (8.22) drawn using red dashed line. In the same regime of sweeps
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b) With slow noise

Figure 12.2: Loss of spin coherence during DQD transition 𝛿𝑊− as a function of sweep rate 𝑣 for 𝑡𝑐 = 20𝜇eV, 𝑡ff = 0.1𝜇eV and two Zeeman
splittings of 𝐸𝑧 = 120𝜇eV (squares) and 𝐸𝑧 = 2𝜇eV (triangles). We plot results of adiabatic Master equation method (symbols and solid
line for guidance), described in the Appendix A: (a) without averaging over quasistatic fluctuations of 𝛿𝜖, 𝛿𝑡𝑐 , 𝛿𝐸𝑧 and (b) with averaging
over their 𝑁 = 100 realisations. The results are shown for two models of DQD system GaAs (green) and SiGe (red) from Tab. 6.1. We
plot analytical predictions corresponding to: spin relaxation at the avoided crossing in GaAs from Eq. (11.35) (green dashed-dotted line),
spin-flip interference from Eq. (11.16) (upper bound of gray region for constructive interference limit, and solid line for fully dephased
result), single excitation limit in Si from Eq. (8.22) (red dashed line) and the sum of dephasing errors ⟨𝛿𝜙2⟩ (blue dashed-dotted line):
dephasing during excitation from Eq. (12.27) in panels a) and b) and dephasing due to low-frequency detuning noise from Eq. (12.13) (only
in b). In b) we separately plot spin dephasing due to nuclear spins using dotted lines for Si (red) and GaAs (green). Finally in b) we show the
charge transfer error 1

2 (𝑄↑ +𝑄↓) using semi-transparent lines. We use the relaxation rates from Fig. 11.7 and parameters given in Tab. 11.1.



12.4 Application to spin qubit shuttling 145

8: i.e. probability of the electron staying
in the initial dot |𝐿⟩

9: Note that in the limit of small magnetic
fields the spin relaxation around avoided
crossing does not modify charge trans-
fer error 1

2 (𝑄↑ + 𝑄↓), since the electron
still ends up in the target dot but with its
spin state flipped. As a result the charge
transfer error (semi-transparent line in
Fig. 12.2b)) can go below the values of
𝛿𝑊− from Fig. 12.2a)

the loss of coherence in GaAs is larger due to stronger coupling to
environment, i.e. larger transition rates, and only a partial recovery of
ground state occupation. In this regime 𝛿𝑊 ≈ 1

2 (𝑄↑ +𝑄↓) is dominated
by charge error and the results look analogous to Fig. 8.8, where charge
transfer error for spin-down component 𝑄↓ was plotted.

For slower sweeps the results for two magnetic fields starts to differ.
In GaAs for 𝐸𝑧 = 120𝜇eV > 𝑡𝑐 (green squares) the loss of coherence
is dominated by the spin-flip interference, i.e. 𝛿𝑊− ≈ 1

2𝑄↑, where the
dephased result is plotted using gray line from Eq. (11.16). The additional
contribution from dephasing due to many inelastic transitions (Eq. (12.35))
can be observed. For weak magnetic field of 𝐸𝑧 = 2𝜇eV < 𝑡𝑐 (green
triangles), the spin relaxation dominates the error 𝛿𝑊− ≈ 1

2𝑄↑↓, which
in Fig. 12.2a can be seen by green dashed-dotted line corresponding to
𝛿𝑊− = 1

2𝑄↑↓ from Eq. (11.35). In Si (red) the two magnetic fields differ
significantly only at 𝑣 ≤ 10𝜇eV/ns. For large magnetic field (red squares),
the loss of coherence is caused by non-zero value of Δ𝐸𝑧 = 0.12𝜇eV
which leads to dephasing during excitation process from Eq. (12.27),
that we plot using blue dashed-dotted line. As a result 𝛿𝑊− ∝ 1/

√
𝑣

is visible for 𝑣 < 10𝜇eV/ns, where the red squares fall below the red
dashed line of 𝑄SEAL. For low magnetic field (red triangles) as a result
of small Δ𝐸𝑧 = 0.002𝜇eV the loss of coherence is effectively the same as
the charge transfer error 𝛿𝑊− ≈ 𝑄HEAL from Eq. (8.23), which means
that recovery of ground state occupation by charge relaxation process is
approximately coherent.

We now include the low-frequency fluctuations in the analysis. As it
can be seen in Fig. 12.2b, 𝛿𝑊− remains almost the same in Si devices.
The only difference is visible at slowest sweeps of 𝑣 ≈ 5𝜇eV/ns, and
for the large magnetic field (red squares). In this region, the loss of
coherence is additionally increased by the low-frequency detuning noise
(Eq. (12.13)) that produces 𝛿𝑊− ∝ 1/𝑣2 scaling. In Fig. 12.2b we plot the
sum of the two processes activated by Δ𝐸𝑧 = 0.1𝜇eV: dephasing due
to excitation-relaxation and due to low-frequency charge noise, using
dashed-dotted blue line. Note that the contribution from the nuclear
spins (red dotted line) is at least two orders of magnitude below these
contributions to dephasing. In contrast, the dephasing due to nuclear
spins in GaAs completely dominates the loss of coherence. We plot the
theoretical value related to 𝑇∗

2 time by the dotted green line, and prove
that the rapidly oscillating numerical result stays above that line for both
considered values of 𝐸𝑧 .

Finally, to highlight the relation between the spin dephasing and charge
transfer, in Fig. 12.2b) we additionally plot the charge transfer error
1
2 (𝑄↑ + 𝑄↓),8 using semi-transparent lines with symbols. As it can
be seen the incoherent charge transfer in GaAs is relatively easy to
achieve even at 𝑣 ≈ 10𝜇eV/ns at which the charge transfer error reads
1
2 (𝑄↑+𝑄↓) ≈ 10−4.9 In contrast in Si the charge transfer error in Si follows
𝛿𝑊− for lower values of the Zeeman splitting (red triangles in Fig. 12.2b)),
hence in this regime of parameters the coherent transfer is limited only
by the charge transfer error.
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10: Note that the factor of 1/2 is missing,
since

𝑄↑ ≈ 𝑄↓ ≈ 𝑄HEAL

.

Large tunnel coupling

We now move the larger tunnel coupling of 𝑡𝑐 = 60𝜇eV, which as we will
show in the discussion in 13.2 could enable the charge transfer across
𝑁 = 100 dot array, i.e. allow for 𝐿 = 10𝜇m charge transfer.

Loss of coherence

As before we start by considering the transfer in absence of low-frequency
noise and in Fig. 12.3a plot the loss of coherence 𝛿𝑊− as a function of
sweep rate 𝑣. For both devices, plotted using red (Si) and green (GaAs)
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Figure 12.3: Loss of spin coherence during DQD transition 𝛿𝑊− as a function of sweep rate 𝑣 for 𝑡𝑐 = 60𝜇eV, 𝑡ff = 0.1𝜇eV and two Zeeman
splittings of 𝐸𝑧 = 120𝜇eV (squares) and 𝐸𝑧 = 2𝜇eV (triangles). We plot the results of adiabatic Master equation method (symbols and
solid line for guidance) described in the Appendix A: (a) without averaging over quasistatic fluctuations of 𝛿𝜖, 𝛿𝑡𝑐 , 𝛿𝐸𝑧 and (b) with
averaging over their 𝑁 = 100 realisations. The results are shown for two models of DQD system GaAs (green) and SiGe (red) from Tab. 6.1.
We plot analytical predictions corresponding to: spin relaxation at the avoided crossing in GaAs (green dashed-dotted line) and Si (red
dashed-dotted line) from Eq. (11.35), spin-flip interference from Eq. (11.16) (upper bound of gray region for constructive interference limit,
and solid line for fully dephased result) and Single Excitation Limit in Si from Eq. (8.22) (red dashed line). In b) we additionally plot
sum of dephasing errors ⟨𝛿𝜙2⟩ (blue dashed-dotted line) caused by dephasing during excitation from Eq. (12.27) and dephasing due to
low-frequency detuning noise from Eq. (12.13). In b) we also separately plot spin dephasing due to nuclear spins using dotted lines for Si
(red) and GaAs (green). Finally in b) we show charge transfer error 1

2 (𝑄↑ +𝑄↓) using semi-transparent lines. We use relaxation rates from
Fig. 11.7 and parameters given in Tab. 11.1.

lines with symbols, the large magnetic field of 𝐸𝑧 = 120𝜇eV results in loss
of coherence caused by the spin-flip interference. In Si, the contributions
from this mechanism, given by𝑄↑ (gray line in Fig. 12.3a from Eq. (11.16)),
are larger than the charge excitation line 𝑄SEAL (red dashed line and
Eq. (8.22)), which means that the transfer is limited by the error in the
transfer of spin-up component, i.e. 𝛿𝑊− ≈ 1

2𝑄↑ and by the Landau-
Zener processes for large 𝑣. In GaAs, an additional small region of
relaxation aided transfer can bee seen around 𝑣 ≈ 500𝜇eV/ns, in which
𝛿𝑊− ≈ 𝑄HEAL from Eq. (8.23).10 For slower sweeps, 𝑣 < 100𝜇eV/ns, the
difference in coupling strengths to the environment means the spin-flip
oscillations are absent in GaAs and visible in Si. In the latter, the additional
contribution to 𝛿𝑊− due to dephasing during inelastic transitions can be
observed around 𝑣 ≈ 100 𝜇eV/ns.

In smaller magnetic fields of 𝐸𝑧 = 2𝜇eV< 𝑡𝑐 (triangles in Fig. 12.3a)) the
spin-flip interference is absent and the 𝛿𝑊− is dominated by the charge
transfer error for faster sweep rates, and by the spin relaxation at the
avoided crossing for the slowest ones. However the transition between
the two regimes is taking place at different 𝑣 for the two devices, i.e.
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11: See relaxation rates in Fig. (11.7)

12: such that the contribution of nuclear
spins effectively vanishes

𝑣 ≈ 100𝜇eV/ns for GaAs and 𝑣 ≈ 2𝜇eV/ns for SiGe. In Fig. 12.3b) we plot
the probability of spin relaxation 1

2𝑄↑,↓ by the dashed-dotted lines (green
for GaAs, red for SiGe). The two-orders of magnitude difference between
such contribution reflects the difference of corresponding relaxation rates
at the avoided crossing11 .

Finally we add the low-frequency fluctuations, and plot the sum of all
the contribution to 𝛿𝑊− in Fig. 12.3b. As before, the loss of coherence in
GaAs is determined by the interplay between charge transfer error due
to Landau-Zener physics and dephasing due to nuclear spin noise. Using
the Landau-Zener formula, we predict that the minimum of 𝛿𝑊− in GaAs
can be made as small as 10−4 only for 𝑣 ≈ 104 𝜇eV/ns and 𝑡𝑐 > 200𝜇eV.
Note that in Fig. 12.3b a similar value of 𝛿𝑊− for the Si device was
achieved at an order of magnitude slower sweep. Below this value the
loss of coherence in Si depends on the value of 𝐸𝑧 , as Δ𝐸𝑧 = 10−3𝐸𝑧 . In
the limit of large 𝐸𝑧 > 𝑡𝑐 (squares) the presence of slow noise on one
hand reduces amplitude of the oscillations of the spin-flip interference
(shaded region and gray line for dephased result), and on the other gives
𝛿𝑊− ∝ 1/𝑣2 behaviour at 𝑣 < 10𝜇eV/ns due to slow-fluctuations of
detuning (Eq. 12.13). Since small dephasing due to inelastic transitions
can be observed around 𝑣 = 100𝜇eV/ns, we plot the sum of those two
dephasing contributions, i.e. low-frequency charge noise and inelastic
transitions, using the blue dashed-dotted line.

For the case of low-magnetic field in Si (red triangles), the slow fluctua-
tions modify 𝛿𝑊− only at 𝑣 < 10𝜇eV/ns, where the loss of coherence
is caused by remaining nuclear spins (Eq. (12.22) and red dotted line).
Note that in principle in Si at low-magnetic fields one might expect
two local-minima of 𝛿𝑊−, where additionally to charge-transfer related
𝑣opt ≈ 103 𝜇eV/ns (see discussion below Eq. (13.1)), another minimum
𝑣𝜙 ≈ 10𝜇eV/ns can be observed as an effect of the interplay between
the charge relaxation mechanism (in the form of 𝑄HEAL) and the spin
dephasing 𝛿𝑊− ∝ 1/𝑣2. Note that the error at this 𝑣𝜙 can be decreased
by further isotopic purification12 , however at some point 𝛿𝑊−(𝑣𝜙) will
become dominated by the spin relaxation dephasing from Fig. 12.3a).

Finally in Fig. 12.3b we add the semi-transparent lines to illustrate the
corresponding charge transfer error 1

2 (𝑄↑ + 𝑄↓). Crucially, for the Si-
based device we can observe that the phase error 𝛿𝑊− is dominated by
the charge errors for sweep rates 𝑣 > 100𝜇eV/ns. For slower sweeps
𝛿𝑊− ∝ ⟨𝛿𝜑2⟩, the contribution from dephasing mechanisms analyzed in
this chapter in a typical range of parameters, prevents us form achieving
significantly lower values of 𝛿𝑊− than the one obtained at the charge
transfer minimum 𝑣opt ≈ 103 𝜇eV/ns (See Chapter 8 for discussion).
As a consequence, we can claim that the minimal achievable phase
error is very close to the minimaal achievable charge transfer error,r
𝛿𝑊−(𝑣opt) ≈ 𝑄(𝑣opt). We will use this result in Sec. 13.2 to estimate the
range of tunnel couplings needed for coherent transfer across 𝑁 = 100
dots.
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13.1 Summary

Possibility of moving the spin-qubit without loss of the spin-coherence
would enable coherent communication of distant quantum registers in
the future quantum computer based on semiconductor quantum dots.
The main objective of the thesis was to identify possible threads in
realising this task. We concentrated on the single electron transition
between two realistic semiconductor quantum dots. The main challenge
was associated with the presence of the environment of the electron,
which combines the sources of low- and high-frequency noise. Apart from
nuclear spins, which are expected to directly affect the spin coherence,
we have considered the effect of the environmental electric fields in form
of lattice vibrations (phonons) and the charge noise. Their effect on the
spin degree of freedom was mediated by the finite spin-orbit interaction,
that correlates spin states with the charge degree of freedom. We have
shown that in its presence the dynamical drive of the charge states can
modify the initial spin state and due to non-deterministic evolution
leads to spin dephasing. We found that most dephasing is activated by
the dot-dependant Zeeman splitting, however in the relevant regime of
relatively fast sweeps the error in coherent transfer has been dominated
by the charge transfer error.

System of interest

As mentioned above, we have focused on transitions between two tunnel-
coupled quantum dots. In a commonly used model, in which only ground
orbital states of the dots are used, the double quantum dot system is
treated as two-level system. In a typical experimental scenario, charge
transfer can be mapped onto the Landau-Zener problem of adiabatic
transfer across an avoided crossing, where the size of the crossing is given
by the tunnel coupling. From the L-Z solution we know that in the closed
system case, the sufficiently slow sweep of dots energy detuning should
keep the electron in the ground state, which is being moved between
the dots. As we have shown in this thesis, this picture is modified in
presence of an environment. If a thermal energy of the environment is
non-negligible in comparison to the tunnel coupling, the environment
can provide the energy needed for inelastic transition between the levels
of the system, and in this way populate the excited state that ends up in
the initial dot. In the language of qubit shuttling it introduces a charge
transfer error.

Theoretical tools

To model the above phenomenon in a realistic scenario, we have devoted
the first part of the thesis to introduction of theoretical tools needed



152 13 Summary and discussion

to describe interactions between an environment and a driven two-
level system (TLS), the double quantum dot system. In particular in
Chapter 2 we have introduced the basic description of undriven TLS, and
have shown the emergence of non-unitary evolution. In the subsequent
Chapter 3 we have related the transverse coupling to dissipative evolution,
associated with the energy exchange between the TLS and the bath. In
the process we have derived GKLS Master equation starting from Bloch-
Redfield treatment, and performing the Born-Markov approximation
in the limit of weak coupling and relatively short correlation time of
environment. Next in Chapter 4 we have then considered the pure
dephasing process, which is associated with the longitudinal coupling.
We have introduced there a classical noise model, using which we have
shown that dephasing is typically dominated by the slow fluctuations
of the environment. We have argued that in the limit of small error,
the separation of timescales between dissipative and dephasing effects
allows for their independent treatment. As a result, in the following parts
of the thesis the inelastic transition between the instantaneous states is
computed using the Master equation approach, while low-frequency
noise is included by additional averaging over classical quasistatic noise.
Finally. in Chapter 5 we have generalized the above-described treatments
of open system dynamics to the case of a driven TLS. We have modeled
the presence of the environment with an adiabatic Master equation and
classical noise approach. Most importantly, we have shown there that
due to rotation of the basis caused by the adiabatic drive, the character
of longitudinal and transverse noise is dynamically changed.

Modeling a realistic semiconductor environment

It is not obvious if strong coupling between the electron and environment
will hinder or help successful charge transfer. On one hand, stronger
coupling increases probability of excitation from ground to excited state.
On the other, at the same time it increases the probability of ground state
recovery by subsequent relaxation. The probability of charge transfer
results from competing processes of excitation and relaxation, each
depending in a distinct way on temperature, sweep rate, tunnel coupling
and a specific model of environmental noise. We have attempted to find
parameters reflecting realistic environments of semiconductor double
quantum dots. In Chapter 7, we have used the previously defined models
of DQD systems to compute the corresponding transition rates, which
later served as an input for numerical calculations. In particular, we have
shown that relaxation and excitation rates in GaAs are dominated by the
piezoelectric phonons, while their absence in non-polar Si-based device
resulted in order of magnitude smaller rates, caused by the charge noise.
We have argued there that detuning noise is expected to be orders of
magnitude stronger than noise in tunnel coupling, which means that
most inelastic transitions are expected to take place in the vicinity of the
avoided crossing.

Charge transfer

For an estimation of charge transfer error we have concentrated on
the lowest-lying energy states in the 4-level spin-dot system. Using the
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theory from the previous chapters, in Chapter 8 we have compared charge
transfer errors in Si-based and GaAs-based devices, which were effectively
treated as realistic examples of weakly- and strongly-coupled electron-
environment systems, respectively. As expected, for fast sweep rates the
transfer was limited by Landau-Zener physics, however at slower sweeps
the effects caused by coupling to the environment completely dominated
the error probability. In case of strongly coupled GaAs, monotonic
behaviour of charge transfer error with sweep rate (qualitatively similar
to that known from the L-Z solution) is expected to be preserved, since
for slower sweeps the strong coupling to environment drives the system
towards equilibrium occupation of the ground state, which increases
with the size of orbital gap.

The situation is very different in weakly coupled Si-based devices, for
which the similar relaxation aided transfer is observed only for the slowest
sweeps. For a relatively wide regime of intermediate sweep velocities,
we have found that the charge transfer is limited by at most a single
excitation from the ground to the excited state. At these intermediate
timescales the relaxation back to the lowest energy state, corresponding
to the electron finally getting transferred to the "right" dot, is too slow.
As the excitation process is proportional to time spent in the vicinity of
the avoided crossing, the resulting charge transfer error as a function of
sweep rate has a non-monotonic structure, with a local minimum defined
by the intersection of Landau-Zener curve and the excitation-induced
error, which scales as ∝ 1/𝑣.

Spin-orbit coupling

We have followed the analysis by adding the spin degree of freedom,
which couples to the driven TLS by the spin-orbit interaction. In Chapter
9 we have shown that dephasing and dissipation are mostly sensitive to
transverse noise in the orbital basis. We have devoted the whole Chapter
10 to discussion of the adiabatic drive of the charge states in presence of
spin degree of freedom, and non-zero spin-orbit coupling. In particular
we have defined there two effects of such coupling, Δ𝐸𝑧 which stems
from the difference between dot-dependent Zeeman splittings, and 𝑡ff,
which couples the two spin states and leads to tunneling with a spin-flip.
We have related Δ𝐸𝑧 to the value of dot-dependent g-factor, and as such
stated that the effects caused by finite Δ𝐸𝑧 are expected to be smaller,
and hence less dangerous, at lower magnetic fields. We have found that
a sufficiently large Δ𝐸𝑧 leads to a strong correlation of spin and charge
degree of freedom in a form of longitudinal Stern-Gerlach apparatus,
i.e. spatial separation of spin-up and spin-down states. Based on the
previous discussion of spatial correlations of the noise, we have found
that such an effect is expected to induce strong spin dephasing in presence
of detuning noise.

On the other hand, we have connected the 𝑡ff with intrinsic or synthetic
spin-orbit interactions, which are needed for an all-electrical control of
spin qubit. We have shown that its effect on the spin-down transfer is
negligibly small, however it can significantly limit adiabatic transition
of the spin-up component. We have found that in the regime of large
magnetic fields, it introduces two additional avoided crossings with
the excited spin-down state. The resulting interferometric pattern was
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highly sensitive to environmental fluctuations of Zeeman splitting (due
to nuclear spins) and phonon-induced relaxation (high-frequency noise).
We have used the second process to propose a physical realization of
Elizur-Veidman bomb testing experiment.

We have shown that for weaker magnetic fields, the highly sensitive to
noise interference pattern can be avoided, and the next limiting factor for
spin-up transfer is the spin relaxation caused by the mixing of the ground
spin-up state with the excited spin-down state around the avoided
crossing. This effect is essentially the same as the one used recently
to realise spin-photon coupling. As we have shown, due to different
relaxation rates this temporal spin-to-charge conversion is not expected
to modify transfer of spin-up component in Si-based devices, but becomes
relevant in GaAs.

Spin coherence

We have finally combined all of the above techniques and results to
analyze the probability of successful transfer of the electron in a coherent
spin superposition. As we have shown, the small error limit of this
quantity, defined as the absolute value of single off-diagonal element of
spin-dot density matrix 𝛿𝑊 , has three separable contributions. The first
two of them, the probability of spin-up and spin-down transfer, have
been analyzed above. Thus in the last Chapter 12 we have focused on the
remaining pure dephasing error, present due to averaging over stochastic
phase, associated with non-deterministic part of the spin evolution during
electron transfer. We have identified three most relevant contributions.

The first of them arises trivially from the presence of nuclear spins,
and for typically spatially uncorrelated Overhauser fields puts a lower
bound on the sweep rate, which comes from dephasing time 𝑇∗

2 being
an upper bound for transfer time. As a result we have found that the
𝛿𝑊 during electron transfer in GaAs results from the trade-off between
the Landau-Zener physics and nucleari-nduced dephasing. Specifically,
we have found that 𝛿𝑊 ≥ 10−2 at 𝑡𝑐 = 60𝜇eV. The second dephasing
mechanism was related to the temporal occupation of another orbital
state (i.e. the excited one) with Zeeman splitting differing from that of
the lowest-energy orbital state. As a result of random time spent in the
energy eigenstates, it introduces a stochastic phase which leads to spin
dephasing. Finally, the last contribution comes from the low-frequency
detuning noise and, as the previous mechanism, it is active in presence
of non-zero Δ𝐸𝑧 . It induces dephasing of spin qubit during time spent
around the avoided crossing, and for typical amplitudes of charge noise it
is expected to overshadow other purely dephasing errors. Furthermore, it
scales as 1/𝑣2, so the low-frequency charge noise contribution is expected
to dominate 𝛿𝑊 at lowest 𝑣.

Generally, the loss of spin coherence during the adiabatic spin qubit
shuttling is expected to have a single minimum, as a function of sweep
rate, in GaAs devices. In the Si-based devices, for sufficiently small Δ𝐸𝑧
and 𝑡ff (Fig. 12.3) we expect 𝛿𝑊 to have two local minima. For the smallest
𝑣, 𝛿𝑊 is limited by low-frequency charge noise and the error decreases
with increasing 𝑣, for slightly faster 𝑣 it is limited by partially recovered
ground state occupation (error increases with 𝑣), at some 𝑣 the relaxation
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becomes too slow in comparison and the transfer is limited by single
excitation only (decreases with 𝑣) and finally for the fastest sweeps the
coherence is limited by Landau-Zener physics (the error increases with
𝑣).

13.2 Discussion

Let us now put our findings in the context of the initial motivation
for the research in this thesis: the coherent electron shuttling across
distance of the order of 10𝜇m in a realistic semiconductor device. As
discussed above, in the GaAs case the coherent transfer is limited by the
interplay between the charge noise transfer error in form of Landau-Zener
excitations, and the spin dephasing due to presence of nuclear spins. The
situation is different in the Si-based devices device. Although similarly
to GaAs we have shown that for sufficiently slow sweeps the charge
transfer can be arbitrarily successful, it has been achieved using relatively
slow DQD passage, which would make long distance communication
in large Si-based quantum computer rather impractical. Apart from
that, we have argued that for a typical range of tunnel couplings and
dot-dependant g-factor differences, transfer that is slow enough for the
relaxation assisted charge transfer is associated with a significant loss of
spin coherence. Thus, we now concentrate on the regime of relatively fast
sweeps 𝑣 > 100𝜇eV/ns, in which the pure dephasing processes are no
longer limiting the loss of coherence. Instead, as we have shown in Fig. 12.3,
in Si-based systems the local minimum of 𝛿𝑊− is formed as a result
of interplay between the two processes responsible for charge transfer
error, the Landau-Zener non-adiabaticity, that increases with the sweep
rate 𝑣, and the noise-induced excitations that scales as 1/𝑣. Alternatively,
in the regime of lower tunnel couplings, the second contribution can
be subdominant in comparison to the error in the transfer of spin-up
component 𝑄↑ ∝ 1/𝑣 as it could be seen in Fig. 12.2.

The optimal sweep rate

We now concentrate on the scaling of such an optimal sweep rate, 𝑣opt,
with the magnitude of the tunnel coupling. This analysis is naturally
limited to Si-based devices, however we compute the charge transfer
error in GaAs at the same 𝑣opt for comparison. For sufficiently small
tunnel coupling with a spin flip, 𝑡ff, the optimal sweep rate can be found
from the equation:

𝑄LZ(𝑣opt) = 𝑄SEAL(𝑣opt). (13.1)

Taking into account Eq. (5.18) and Eq. (8.22) for the left and right side,
the optimal sweep rate is given by

𝑣opt =
𝜋𝑡2𝑐

2𝑊(𝑎) , (13.2)

where𝑊(𝑎) is the Lambert W function, which satisfies equation𝑊(𝑎) exp(𝑊[𝑎]) =
𝑎. In our case

𝑎 = 𝜋/4
√
𝛽𝑡3𝑐/Γ+(𝑡𝑐), (13.3)
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Figure 13.1: a) The optimal sweep rate 𝑣opt
and b) the charge transfer error computed
at the optimal sweep rate 𝑄(𝑣opt) as a
function of tunnel coupling. The lines are
computed from the Eq. (13.2) in the model
of Si device from Tab. 6.1 (red) at various
temperatures (solid, dashed and dashed-
dotted lines). For comparison we plot the
charge transfer error, evaluated at the same
sweep rate 𝑣opt in the GaAs DQD (green).
In (a) we additionally use the right y-axis
to show the corresponding transfer time,
assuming that the sweep range Δ𝜖 = 1
meV. Adapted from [2].

1: It is attributed to stronger coupling to
environment, which causes more transi-
tions around avoided crossing. As it can be
seen from Fig. 8.9 the region of 𝑣opt is too
fast for the effective recovery of ground
state occupation in GaAs

2: Error thresholds for fault-tolerance of
quantum computing architecture are be-
tween 10−4 and 10−2, and we choose here
the middle ground of 10−3

which in the limit of low-temperature allows to approximate optimal
sweep rate as 𝑣opt ≈ 𝜋𝑘B𝑇𝑡𝑐/2. In Fig. 13.1 we plot the numerically
obtained value of 𝑣opt and the corresponding charge transfer error as a
function of 𝑡𝑐 . In the figure we see that the charge transfer at these fast
sweeps is about an order of magnitude worse in the GaAs,1 compared to
Si.

Transfer over 10 𝜇m range

For a typical distance between the dots of 𝑑 ≈ 100nm, the number of
double quantum dot transition needed for coherent transfer is 𝑁 ≈ 100.
This means that to realize coherent communication at the level compatible
with achieving fault-tolerance with quantum error correction, i.e. phase
error smaller then ∼ 10−3,2 a sufficiently low error rate at each DQD
transition has to be achieved. If we assume that error rates in consecutive
transitions are uncorrelated, the total phase error, as long as it is < 1, can
be approximated as

𝛿𝑊 =

100∑
𝑖=1

𝛿𝑊𝑖 ≤ 10−3. (13.4)

From the above we see that the average error per single DQD transition
cannot by larger then 𝛿𝑊 ∼ 10−5, which based on results for 𝑇 = 100mK
in Fig. 13.1 is expected if every dot pair along the chain has 𝑡𝑐 > 60𝜇eV,
and sufficiently low magnetic field is used, so that the additional pure
dephasing contributions are negligible compared to charge transfer
errors.
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Secondly we consider the case in which the error is dominated by a
single weak link. This would effectively mean that the overall error is
dominated by a single transition, i.e. 𝛿𝑊𝑘 = 10−3, which according to
Fig. 13.1 requires that the weakest coupled pair of dots should still have
𝑡𝑐 > 30𝜇eV such that probability of losing the electron is sufficiently
small.

Other limitations

We finally comment of the other possible limitations during electron
transfer along the chain of𝑁 = 100 dots. In the thesis we have considered
a rather optimistic case of pre-tuned dots, which was reflected in rela-
tively narrow detuning sweep from 𝜖(𝑡𝑖) = −500𝜇eV to 𝜖(𝑡 𝑓 ) = 500𝜇eV.
However, in presence of large - but realistic - electrostatic disorder one
can expect up to Δ𝜖 ∼ 10meV to ensure transition through avoided cross-
ing at unknown detuning [3]. Additionally, the uncertainty in the exact
location of the avoided crossing will prevent us from using sophisticated
time-dependent detuning sweep profiles (with large sweep rate away
from the anticrossing, and small rate close to the anticrossing. Taking this
into account, in a truly realistic situation involving many dots with ∼ meV
scale initial detunings due to electrostatic disorder, we should expect
an increase of the time of single interdot transition by about an order of
magnitude, if we want to keep the charge transfer errors at the previously
discussed level. This would imply about two-orders of magnitude larger
phase error due to to nuclear spins, which even in isotopically purified
Si would become a significant source of dephasing, i.e. 𝛿𝑊 ≈ 10−3 at
𝑣 < 100𝜇eV/ns. Another possible limitation is the presence of the valley
degree of freedom in the Si devices, which can be treated as an additional
internal degree of freedom of transferred electron. In the case of relatively
small valley splitting, or different composition of the valley states in two
dots, the interdot transfer can lead to non-zero occupation of the excited
valley state which is expected to introduce additional spin-dephasing
(see discussion below).

13.3 Outlook

In this thesis we have concentrated on the interdot transfer of an electron
carrying quantum information encoded in its spin state, and the influence
of interactions with the environment on both the fidelity of charge
transfer, and the spin coherence of transferred electron. Below we discuss
selected connections between the results presented above and other works,
and mention a few possible extensions of the theoretical investigations
contained in this thesis.

In the first two examples an important role is played by the valley degree
of freedom, which we have only briefly mentioned in Sec. 6.1. The short
introduction to valley physics can be found in our paper [3], but also
in the topical reviews [20, 30]. Below we only highlight close relation
between the effect that including another two-level degree of freedom
of the electron in Si (valley states) will have on spin coherence, and the
results presented in this thesis.
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Figure 13.2: Comparison between two
modes of the spin qubit shuttling in Si
device: (a) the Bucket Bridgade and (b)
the Conveyor Belt. In this thesis we have
concentrated on the single interdot transi-
tion, which is a building block of the BB
mode. In the CB method (right) the elec-
tron occupies the potential that is being
moved along a 1D channel. In the figure we
see the instantaneous energy spectrum of
the two lowest lying orbital states and the
valley states relative to the energy of the
ground orbital state. By blue and red col-
ors we denote ground orbital state corre-
sponding to spin-up (red) and spin-down
(blue). Dashed lines correspond to the ex-
cited valley states. The orbital splitting
was denoted by 𝐸orb, the valley splitting
by 𝐸VS and the tunnel coupling is given
by 𝑡𝑐 = 2𝑡𝑐,𝑘 . The figure has been adapted
from [3]

3: See [90] for alternative discussion of
the spin inelastic transitions in the moving
quantum dot in Si and GaAs devices

Conveyor Belt transfer

A method of coherent spin qubit shuttling that is alternative to multiple
transitions between pre-defined quantum dots (the Bucket Brigade mode
of shuttling), uses a single quantum dot that is being moved along a
one-dimensional channel. As we discussed in [3], where a blueprint for
such a Conveyor Belt transfer in Si/SiGe is provided, this method is
expected to require much less fine-tuning of experimental equipment,
and thus allow for easier scalability. The comparison between the Bucket
Brigade and Conveyor Belt transfer modes is given in Fig. 13.2. As we
will show below, with effectively adiabatic evolution of the charge degree
of freedom, the potential loss of spin coherence and spin relaxation in the
Conveyer Belt is related to the presence of the valley degree of freedom
in Si.

Charge transfer

Firstly in [3], using numerical simulations of the disorder potential for the
experimentally relevant parameters, we certified that shape of the moving
quantum dot is weakly modified by its motion. The resulting orbital
splitting of 𝐸orb ≈ 1meV is large in comparison to thermal energy, which
significantly limits the possibility of noise-induced orbital excitation, that
are analogous to the ones considered in Chapter 8 in the context of charge
transfer. As it can be seen from Fig. 7.1, large energy gap between ground
and excited orbital states leads to for fast phonon-induced relaxation to
the ground orbital level, i.e. Γ− ≈ 10 ps−1. This means that the electron
effectively remains in the ground orbital state during the shuttling.

Next we showed that the motion of the electron turns stationary disorder
into a time-dependent classical noise, which in principle can excite
the electron into a higher orbital or spin state, if the amplitude of the
fluctuations at the frequency corresponding to a gap are in resonance
with the corresponding splitting. However for relevant velocity of 𝑣 ≈ 10
m/s, the finite size of electron wavefunction acts as a low-pass filter,
which suppresses the excitation rate3 . As a result the evolution of the
orbital degrees of freedom can be treated as effectively adiabatic.
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Valley degree of freedom

However, the role of orbital degrees of freedom from the thesis is played
here by the valley degree of freedom, i.e. the non-adiabatic evolution
in the valley degree of freedom leads to spin dephasing. The relevant
spin-valley system can be described in terms of another four-level system
which is formally analogous to an electron in a double quantum dot.
Since both the valley splitting and the valley composition of eigenstates
are sensitive to typically uncontrolled microscopic details of the interface,
the valley eigenstates at any point in space (time) |𝑣±(𝑡)⟩, are expected
to have different g-factor [200]. This activates spin dephasing channel
analogous to DQD system with 𝑔-factors being distinct for the two
dots, and in particular this means that spending random time in an
excited valley state leads to spin dephasing. Since the electric dipole
matrix element between the valley states is typically small, the resulting
inefficient valley relaxation suggest that occupation of higher energy
state should be generally avoided along the channel.

As the first dephasing channel we identified transitions over many atom-
istic steps∗ that can be mapped onto multiple Landau-Zener transitions.
Their presence can create interference patterns analogous to the ones
for transition of spin-up state 𝑄↑ in DQD from Chapter 11. In further
analogy with those results, random fluctuations of parameters, including
expected fluctuations in electron velocity, are preventing usage of the
effects of the interference, and lead to a finite occupation of the excited
valley state. The typical occupation of excited valley state after two-step
passage is shown in Fig. 13.3.
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Figure 13.3: The occupation of excited val-
ley state after the electron passage over
two atomistic steps as a function of the
effective electron velocity 𝜂. The interfer-
ence pattern, visible for sufficiently large
distance between the steps 𝑑 ≫ 𝐿dot, is
the effect of double L-Z transition and is
analogous to spin-flip interference during
interdot transition from Chapter 11. Due to
typical difference in g-factors between the
valley states temporal occupation of the
excited valley state leads to spin dephas-
ing, which is also analogous to a process
of dephasing due to random time spent in
the excited state during interdot transition
from Sec. 12.3. Adapted from [3].

The second source of spin transfer error was associated with the transition
through a spin-valley hot-spot, which takes place if the Zeeman splitting
matches the local valley splitting, i.e. at some time 𝐸𝑧(𝑡) = 𝐸vs(𝑡). This
effect is in full mathematical analogy to the flip-flop avoided crossing
in the DQD case, and also can be avoided if sufficiently small magnetic
field 𝐸𝑧 < min(𝐸VS(𝑡)) is used. In this case, the adiabatic transition
through typically small avoided-crossing between |𝑣−(𝑡), ↑⟩ and |𝑣+(𝑡), ↓⟩
adiabatic states, leads to a spin-flip which can then be possibly followed
by a relaxation to the lowest lying spin-down state, and in this way

∗ Such atomistic steps occur naturally at Si/SiGe interface due to the fact that the crystal
growth requires the presence of a miscut of the substrate, i.e. the surface of the growing
crystal is not exactly at 90 degree angle to the growth direction.
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Figure 13.4: The instantaneous energy
spectrum of the spin-valley Hamiltonian
in the vicinity of the spin-valley hot spot,
i.e. 𝐸𝑧 = 𝐸vs with respect to lowest ly-
ing valley state |𝑔𝑣 , ↓⟩. In full analogy to
a passage through the spin-flip avoided
crossing during interdot transition (See
Fig. 11.3, the finite coupling between the
|𝑣+ , ↓⟩ and |𝑣− , ↑⟩ states can lead to un-
wanted adiabatic transition trough their
avoided crossing. As a result both spin-
relaxation to the lowest lying energy and
uncontrolled interference can occur (see
Chapter 11). Adapted from [3]

destroy quantum information encoded in the spin superposition. This
phenomenon is schematically showed in Fig. 13.4

Predicted error

We finally share the main result of [3], and in Fig. 13.5 we plot the predicted
loss of spin coherence after transfer over 10𝜇m distance. The ddephasing

Figure 13.5: The main result of [3], which
predicts the loss of spin coherence during
10𝜇m conveyor belt transfer as a function
of electron velocity. As it can be seen we
predict a relatively wide range of velocity
around 𝑣 = 10m/s which would allow
to keep the coherence error 𝛿𝐶 < 10−3.
We highlight that in the alternative the
similar distance could be covered by 𝑁 ≈
100 interdot transitions using modelled
in this thesis BB mode. Hence obtained
error should be compared against 𝛿𝐶 ≈
100𝛿𝑊−, where 𝛿𝑊− is the average error
of coherent transition per DQD transfer.
Adapted from [3].

channels escribed above were denoted using blue and yellow lines in order
of description. The red line corresponds to dephasing during completely
adiabatic evolution, analogous to the processes described in Sec. (12.2).
The contribution from the nuclear spins is reduced due to motional
narrowing process, which for the DQD case could be observed in the
reduced fluctuations of average Zeeman splitting 𝛿𝐸𝑧 from Eq. (9.16). The
second contribution to adiabatic dephasing is from low-frequency charge
noise and similarly to Eq. (12.13) is mediated by spatially dependent
g-factor, which is a continuous version of the dot-dependent Zeeman
splitting, or equivalently non-zero Δ𝐸𝑧 .
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Interdot transfer in presence of valley degree of freedom

Let us now discuss how the presence of valley degree of freedom can
be incorporated in the theory developed in this thesis. Together with
spin and charge degrees of freedom the addition of the valley states
would give rise to eight instantaneous states of the composite system.
However, for the coherent interdot transition of the spin superposition,
only two of them are initially populated. The typical situation is depicted
in Fig. 13.6 where the two spin superposition states are marked using
blue (spin-down) and red (spin-up) color. For the regime from Fig. 13.6a)
of relatively large valley splitting (or small magnetic field), 𝐸VS > 𝐸𝑧 , the
low-energy transfer is effectively the same as the one in the thesis, with
possible modification of the value of the tunnel coupling (see discussion
below).

In the opposite case depicted in Fig. 13.6b), i.e. 𝐸VS > 𝐸𝑧 , the modification
of the adiabatic evolution of the spin-down state (blue) can be still
effectively analyzed using the two-level model from Chapter 8. However,
for the excited spin state, the additional crossings between the states
with different valley composition occur, which together with the spin-
flip crossings lead to a rich interference structure analogous to the
spin-flip interference from Chapter 11. The size of each orbit-valley
avoided crossing is determined by the "valley-orbit interaction", which
analogously to synthetic spin-orbit interaction from Chapter 9 is caused
by a different orientation and the magnitude of the valley field in two
quantum dots. We highlight, however, that the orientation of the valley
fields in two dots can be almost orthogonal, which might be associated
with the presence of an atomistic step in-between the dots, and lead to a
creation of relatively large avoided crossing between excited and ground
valley states, and effectively suppress the intravalley tunnel coupling
compared to the the bare coupling 𝑡𝑐 . In such a case the interdot transfer
would lead to a significant valley excitation, and hence spin dephasing
(see the discussion above). Additionally, different composition of the
valley states in the two dots would activate inelastic transitions between
valley states, and as a result lead to even more valley mixing. From

Figure 13.6: Instantanous spectrum of the Hamiltonian, corresponding to the transition of the spin qubit in presence of the valley degree
of freedom. By the blue (red) solid lines we denote the ground orbital states corresponding to spin-down (spin-up). By dashed line the
corresponding excited states. a) The case of large valley splitting 𝐸VS < 𝐸𝑧 in which the transition can be effectively described using methods
from the thesis. b) The case of small valley splitting splitting 𝐸VS > 𝐸𝑧 , in which the spin-up state experiences additional avoided crossings,
which can additionally affect coherence of transferred spin qubit.
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the above, we highlight that no improvement of spin coherence of the
transferred electron should be expected if the valley states are added
to the analysis. Hence, the results of the thesis can be treated as a good
estimation of the lower bound of the spin coherence error.

Characterisation of environmental noise

We finally comment on the possibility of using the transfer-induced
dephasing to characterize the spatio-temporal correlations of the charge
noise. In principle this idea can be used in both BB and CB modes of
the electron transfer, but here for simplicity we show its principle using
the discrete case of repeating transitions between two dots. We also
concentrate on the noise in dots’ detuning 𝛿𝜖(𝑡) only. We use here an
approach form Sec. (5.4) and write the longitudinal dephasing noise in
the spin basis as:

𝜉𝜙(𝑡) = 𝑑𝜙(𝑡)𝛿𝜖(𝑡), (13.5)

where we have used the longitudinal dipole moments given by

𝑑𝜙(𝑡) = ⟨↑̃(𝑡)|𝜎̂𝑧 |↓̃(𝑡)⟩, (13.6)

expressed in terms of 𝜎̂𝑧 = |𝐿⟩⟨𝐿| − |𝑅⟩⟨𝑅 | and |↓̃(𝑡)⟩ |↑̃(𝑡)⟩ as the in-
stantaneous eigenstates of spin qubit. As we have shown in the case of
adiabatic evolution, they can correspond to dressed states from Eq. (9.20).
We now follow Eq. (4.20)) and compute the contribution to dephasing
in the second order in the fluctuations, i.e. 𝑊 ′(𝑡) = 1 − 1

2 ⟨𝛿𝜙2⟩, where
𝛿𝜙 =

∫ 𝑇

0 𝜉𝜙(𝑡) and ⟨. . .⟩ denotes classical averaging, such that

⟨𝛿𝜙2⟩ =
∫ 𝑇

0
d𝑡1

∫ 𝑇

0
d𝑡2

(〈
𝛿𝜖(𝑡1)𝛿𝜖(𝑡2)

〉
𝑑𝜙(𝑡1)𝑑𝜙(𝑡2)

)
. (13.7)

The above expression shows that the rotation of the basis during driven
evolution acts as an effective filter of detuning noise. In the language of
our previous works on characterising environmental noise using qubits
undergoing pure dephasing [4–7], the longitudinal dipole moment 𝑑𝜙(𝑡)
acts as a filter function, which for more sophisticated detuning sweeps
could be used for the spectroscopy of environmental fluctuations encoded
in the spectral density 𝑆𝜖(𝜔) =

∫ ∞
−∞ d𝜔⟨𝛿𝜖(𝑡)𝛿𝜖(0)⟩𝑒−𝑖𝜔𝑡 . This can be

conveniently seen in the Fourier picture

⟨𝛿𝜙2⟩ =
∫ ∞

−∞

d𝑡
2𝜋
𝑆𝜖(𝜔)|𝐷𝑡(𝜔)|2 , (13.8)

where we have defined the windowed Fourier transform of the longitu-
dinal dipole moment as:

𝐷𝑡(𝜔) =
∫ 𝑇

0
𝑑𝜙(𝑡)𝑒−𝑖𝜔𝑡d𝑡. (13.9)

Crucially, if 𝑑spin
𝜙 (𝑡) can be engineered to be frequency selective, it can be

use to characterize 𝑆𝜖(𝜔).

As we showed around Eq. (12.13), a single interdot passage effectively
induces a non-zero 𝑑spin

𝜙 (𝑡) around the avoided crossing. Thus, perform-
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ing multiple passage, for instance in the form of LZSM interference
experiment [97], will result in a periodic 𝑑spin

𝜙 (𝑡). The low-frequency
part, which otherwise dominates the dephasing, can be filtered out by
applying a single spin-flip operation (a spin echo) in the middle of the
evolution, such that 𝑑spin

𝜙 (𝑇/2 − 𝑡) = −𝑑spin
𝜙 (𝑇/2 + 𝑡). This means that

the effective filter 𝑑spin
𝜙 (𝑡) has zero average, and based on Eq. (13.7) the

quasistatic contribution to 𝛿𝜖 vanishes. As a result, the dephasing error
will be related to a spectral density of detuning noise at frequencies
commensurate with the frequency of the drive.

The above method can be extended to characterise also spatial correlations
of the noise in the arrays of many quantum dots. In such a case the
movement of the electron between the dots in an array would result in
more sophisticated filter functions, and additionally relate the dephasing
to a correlations between the detunings of distinct pairs of dots.
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A Averaged Master equation
method

In this section we discuss the approach used in the thesis to simultane-
ously treat low- and high- frequency noise for the driven and undriven
systems.

A.1 Method description

The numerical method of averaged Master equation, that is being used in
the thesis is now summarized in a diagram plotted in Fig. A.1. As it can

Figure A.1: The scheme of averaged Adia-
batic master equation, used in this thesis
for computing the reduced density matrix
of the density matrix corresponding to
spin and charge degrees of freedom. For
each realization of the quasistatic fluctua-
tions of detuning 𝛿𝜖, tunnel coupling 𝛿𝑡𝑐
and the Zeeman splitting 𝛿𝐸𝑧 we numer-
ically solve the system of coupled differ-
ential equations obtained using Adiabatic
master equation methods. The final den-
sity matrix is obtained by averaging over
N realisations of the quasistatic noise.

be seen in each loop we first draw new realisation of quasitatic random
variables, which together with deterministic but possibly time-dependant
parameters enters the Master equation or adiabatic Master equation for
driven systems. The resulting equations of motion for each element of the
density matrix of a four-level system are solved using numerical methods,
which for our case was done using Runge-Kutta 4th order method. This
procedure is repeated for 𝑁 realisations of quasistatic random variables,
and the final result, i.e. the elements of the density matrix for spin-charge
system are averaged over them. Due to complicated structure related
to the adiabatic basis, we now describe the procedure in details for the
adiabatic drive of four-level system of interest, i.e. the spin in a double
dot. Its application to the undriven case, and driven case of the two-level
system can be deduced from below.
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1: where

𝜗𝑠 (𝑡 , 𝛿x) = acot
(
𝜖(𝑡) + 𝛿𝜖
𝑡𝑐 + 𝛿𝑡𝑐

)

Driven system

Low-frequency noise

We first deal with the low-frequency noise and compute the effective
rms of the detuning, tunnel coupling and Zeeman spliting fluctuations,
using method of effective quasistatic noise from Eq. (4.49). For each of
the above, we draw the first realisation from the independent Gaussian
distributions with respective RMS 𝜎̃𝜖 , 𝜎̃𝑡𝑐 , 𝜎̃𝐸𝑧 and zero average. Together
they form a random "vector"

𝛿x = (𝛿𝜖, 𝛿𝑡𝑐 , 𝛿𝐸𝑧) (A.1)

As described in Chapter 10, we next consider diagonal spin-orbit coupling
and go to the adiabatic frame, with respect to the Hamiltonian

𝐻̂diag(𝑡 , 𝛿𝜖, 𝛿𝑡𝑐 , 𝛿𝐸𝑧) =
𝜖(𝑡) + 𝛿𝜖 + 1

2Δ𝐸𝑧𝑠𝑧

2
𝜎̂𝑧+

𝑡𝑐 + 𝛿𝑡𝑐
2

𝜎̂𝑥+
𝐸𝑧 + 𝛿𝐸𝑧

2
𝑠𝑧 ,

(A.2)
which means we find the operator 𝑆̂(𝑡 , 𝛿x), which diagonalize the above.
This can be done analytically for any 𝛿x as it was done in Sec. 5.2. With
the help of the operator 𝑆̂(𝑡 , 𝛿x) we move to the adiabatic picture, i.e.

Ĥ0(𝑡 , 𝛿x) = 𝑆̂†(𝑡 , 𝛿x)𝐻̂diag(𝑡 , 𝛿x)𝑆̂(𝑡 , 𝛿x) = Ω(𝑡 ,𝛿x)
2 𝜍̂𝑧 − ΔΩ(𝑡 ,𝛿x)

4 𝜍̂𝑧𝑠𝑧 ,
(A.3)

where the Hamiltonian in the adiabatic picture is now defined in terms
of spin-averaged orbital splitting :

Ω(𝑡 , 𝛿x) ≈
√
(𝜖 + 𝛿𝜖)2 + (𝑡𝑐 + 𝛿𝑡𝑐)2 , (A.4)

and the difference in orbital splittings for each spin components

ΔΩ(𝑡 , 𝛿x) =
√
(𝜖(𝑡) + 𝛿𝜖 + Δ𝐸𝑧

2 )2 + (𝑡𝑐 + 𝛿𝑡𝑐)2

−
√
(𝜖(𝑡) + 𝛿𝜖 − Δ𝐸𝑧

2 )2 + (𝑡𝑐 + 𝛿𝑡𝑐)2 , (A.5)

both evaluated for a particular realization of 𝛿x. Now we add non-
diagonal coupling between the spin and the charge degree of free-
dom [𝑉̂𝑠𝑜]non-diag from Eq. (10.4) and move to the adiabatic picture (See
Eq. (10.22)), such that the unitary part of the AME reads:

¤̂𝜚𝑛(𝑡) = −𝑖
[
Ĥ(𝑡 , 𝛿x), 𝜚𝑛(𝑡)

]
, (A.6)

where 𝜚𝑛 can be understood as the density matrix for the nth realization
of 𝛿x. Its unitary evolution is generated by the Hamiltonian

Ĥ(𝑡 , 𝛿x) = Ĥ0(𝑡 , 𝛿x) + V̂so(𝑡 , 𝛿x) + 1
2
¤̂𝜗(𝑡 , 𝛿x)𝜍̂𝑦 , (A.7)

where ¤̂𝜗(𝑡 , 𝛿x) = ∑
𝑠=↑,↓ ¤𝜗𝑠(𝑡 , 𝛿x) |𝑠⟩⟨𝑠 |,1 and the spin-coupling operator

was given by V̂so(𝑡 , 𝛿x) = 𝑆̂†(𝑡 , 𝛿x)[𝑉̂so]non-diag𝑆̂(𝑡 , 𝛿x), which is given by
Eq. (10.22) but with realisation-dependent 𝜗𝑠(𝑡 , 𝛿x).
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High-frequency noise

We now deal with high-frequency noise related to transverse coupling
between the charge degree of freedom and the environment, i.e.:

𝑉̂oe =
1
2
(
𝜎̂𝑧𝑉̂𝑧 + 𝜎̂𝑥𝑉̂𝑥

)
. (A.8)

We assume that the 𝛿x is too small to modify the spectral density of
the environment, but will possibly modify the orbital angle 𝜗𝑠(𝑡 , 𝛿x).
We start by computing relaxation rates as a function of the energy gap
for each relaxation mechanism Γ−,𝑖(Ω[𝑡]) for 𝑖 = 𝑥, 𝑧. From Eq. (3.7) we
associate the relaxation rate for the s spin component with the spectral
density of the transverse coupling, i.e.

Γ−,𝑖(Ω𝑠[𝑡], 𝛿x) = 1
4
|𝑑⊥,𝑖 ,𝑠(𝑡 , x)|2𝑆𝑖(Ω𝑠[𝑡]), (A.9)

where 𝑆𝑖(Ω𝑠[𝑡]) =
∫

d𝑡 Tr{𝑉̂′
𝑖
(𝑡)𝑉̂′

𝑖
(0)𝜌̂𝑒}𝑒−𝑖Ω𝑠 𝑡 with 𝜌̂𝑒 as a density

matrix of the environment, and 𝑉̂′
𝑖
(𝑡) is the environmental operator in

the interaction picture with respect to environmental Hamiltonian 𝐻̂𝑒 .
To compute the transverse dipole moment for each spin component, we
use the instantaneous states of the Hamiltonian Ĥ0(𝑡 , 𝛿x) |±(𝑡), 𝑠⟩ from
Eq. (A.3) i.e.

|𝑑⊥,𝑖 ,𝑠(𝑡 , 𝛿x)|2 = ⟨+(𝑡), 𝑠 | 𝜎̂𝑖 |−(𝑡), 𝑠⟩ + h.c., (A.10)

which for considered Landau-Zener drive of the orbital states give
|𝑑⊥,𝑥,𝑠 |2 = cos2 𝜗𝑠 = (𝜖 + 𝜎𝑠

Δ𝐸𝑧
2 )2/Ω2

𝑠 and |𝑑⊥,𝑧,𝑠 |2 = 𝑡2𝑐/Ω2
𝑠 = sin2 𝜗𝑠 for

each spin component 𝑠 =↑, ↓. Finally we relate the relaxation rates with the
excitation rates using the Boltzman FactorΓ+,𝑖(Ω𝑠[𝑡]) = Γ−,𝑖(Ω𝑠[𝑡])𝑒−𝛽Ω𝑠 (𝑡)

and with their help construct the Linblad operators for each spin compo-
nent 𝑠 =↑, ↓:

𝐿̂𝑠,±(𝑡 , 𝛿x) =
√
Γ±,𝑖(Ω𝑠[𝑡], 𝛿x)𝜍̂± , (A.11)

where Ω𝑠(𝑡) = Ω(𝑡) + 1
2𝜎𝑠ΔΩ(𝑡) with 𝜎↑ = 1 and 𝜎↓ = −1. The resulting

parameters are substituted to the adiabatic Master equation in the Linblad
form:

¤̂𝜚𝑛(𝑡) = −𝑖[Ĥ(𝑡), 𝜚𝑛(𝑡)] −
∑
𝑘=𝑠,±

(
𝐿̂𝑘(𝑡)𝜚𝑛(𝑡)𝐿̂†𝑘(𝑡) −

1
2
{𝐿̂†

𝑘
(𝑡)𝐿̂𝑘(𝑡), 𝜚𝑛(𝑡)}

)
,

(A.12)
where for brevity we neglected dependance on 𝛿x, i.e. in the above
Ĥ(𝑡) ≡ Ĥ(𝑡 , 𝛿x) and 𝐿̂𝑘(𝑡) ≡ 𝐿̂𝑘(𝑡 , 𝛿x). The above differential equation
for the operators can generate at least 10 coupled differential equa-
tions for the possibly complex elements of four-by-four density matrix
⟨𝑑, 𝑠 | 𝜚𝑛(𝑡) |𝑑′, 𝑠′⟩, the time evolution of which can be solved numerically.
We use here Runge-Kutta method of the 4th order with sufficiently small
step size, which in the units of time correspond to 𝛿𝑡 = 10−4ns.

We finally average each element of density matrix over 𝑁 realizations of
𝛿x such that for instance the spin coherence in the ground state is given
by:

𝑊−(𝑡) =
1
𝑁

∑
𝑛

⟨−, ↑| 𝜚𝑛(𝑡) |−, ↓⟩ . (A.13)



170 A Averaged Master equation method

A.2 Physical justification and limitations of the
model

The presented above numerical approach to some extend treats low-
and high-frequency noise as independent, using classical quasistatic
model for the former and quantum Master equation approach for the
latter. Additionally in the analytical analysis we related the dephasing to
longitudinal coupling and dissipation with the transverse coupling and
dealt with their effects on two-level systems separately. We now discuss
physics of such separate treatment and discuss its limitations.

Statistical independence

In many physical situations the longitudinal and transverse noise, are
caused by a different weakly coupled physical system, which makes the
above assumption natural. Even if this is not the case, we showed that
both contributions depends on distinct frequencies of environmental
noise. The effect of transverse noise depends on the fluctuations with
frequency close to the gap Ω, while longitudinal noise depends on
the environmental frequencies below the inverse of experimental time
𝜋/𝑡. As a result as long as relation Ω𝑡 ≥ 𝜋 holds, both effects are well
separated in frequency space and hence can be regarded as independent.
For instance for the qubit Larmor frequency of 10GHz (Energy gap of
∼ 40𝜇eV) this condition is fulfilled for any experiment that lasts for at
least 𝑡 > 10ns.

In principle both transverse and longitudinal contributions are expected
to come from the sum of macroscopic number of the fluctuators, with
various correlation times (see 1/f noise modeling in Sec. 12). In such
case the slowly varying fluctuators would contribute only to dephasing,
while only the ones with characteristic frequency in resonance with the
gap, can exchange the energy with the qubit. In such a model statistical
independence between fast and slow fluctuators depends on the mutual
coupling between them. For small enough coupling it can be neglected on
the timescales of the experiment. Additionally in the typical experiments
the possibility to initialize in the qubit ground state requires to keep
the thermal energy of environment below the gap 𝛽Ω ⩾ 1. This means
high-frequency (transverse) part of environment has non-trivial Boltzman
factor 𝑒−𝛽Ω ≤ 1, while the low-frequency (longitudinal) part is typically
classical, i.e. 𝑒−𝑖𝛽𝜔qs ≈ 1 as it related to the frequencies (energies) below
the 𝜔qs = 𝜋/𝑡.

Small error regime

Motivated by recent progress in quantum information process we con-
centrated on relatively small error regime in which the expression for the
transverse and longitudinal coupling can be treated in the leading order
in the coupling (See Chapter 3 and Chapter 4). For the transverse noise
of the short correlation time weak coupling is enough to justify Master
equation approach. Secondly as shown in Sec. Chapter 4, the dephasing
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errors due to dissipative and non-dissipative terms are additive in the
leading order, i.e.

𝛿𝑊 = 𝛿𝑊𝜙 + 𝛿𝑊⊥ , (A.14)

where contribution from pure dephasing term 𝑉̂𝜙 is denoted as 𝛿𝑊𝜙

and given by Eq. (4.13), while contribution from the dissipative evolution
denoted as 𝛿𝑊⊥ was derived in Eq. (3.22). The weak coupling limit
additionally justifies Gaussian approximation of the classical noise.

Based on the arguments above we conclude that separate treatment of
low- and high-frequency noise should be suitable for near-term devices
operating close to the estimated threshold, needed for operating error
correction codes Δ ≤ 10−2.

We expect the approximation to be invalid, when the transition rates
becomes significantly modified by the shift of energy gap due to longi-
tudinal noise. This can happen either due to strong coupling between
qubit and environment ΔΩ ∼ Ω or in presence of not flat enough spectral
density of the environment, where in both cases Γ′ ∝ 𝑆(Ω + 𝜉) ≠ 𝑆(Ω).
Also strong environment-qubit coupling would put in question validity of
secular approximation leading to a Linblad form of master equation from
Eq. (5.70), which eventually would introduce additional Ω-dependant
phases in the equations of motion and correlate effects of low- and
high-frequency environment.

A.3 Numerical tests

We now use the method of averaged adiabatic Master equation described in
Sec. A.1 and verify it against direct averaging over the classical Ornstein-
Uhlenbeck process from Sec. 4.4 for various correlation times, and for
the cases of undriven and driven TLS and also compute the resulting
loss of spin coherence during interdot transition.

Undriven case

For the undriven case of TLS we use a single O-U process, which has been
introduced in Sec. 4.4. We use the relative angle between the quantization
axis of the qubit and the direction along which the noise fluctuates
𝛼ou, which can be used to switch between transverse 𝛼ou = 𝜋/2 and
longitudinal coupling 𝛼ou = 0 . The Hamiltonian thus reads:

𝐻̂ =
Ω

2
𝜎̂𝑧 +

𝜉ou(𝑡)
2

(
cos 𝛼ou𝜎̂𝑧 + sin 𝛼ou𝜎̂𝑥

)
. (A.15)

where the correlation function of ⟨𝜉ou(𝑡)𝜉ou(0)⟩ = 𝜎2𝑒−|𝑡 |/𝜏𝑐 is parame-
terized by the noise power 𝜎2 and the correlation time 𝜏𝑐 .

We now compute transition rates Γ± and amplitude of effective dephasing
noise 𝜎̃. Due to classical nature of the noise the relaxation and excitation
rates are equal and given by:

Γ− = Γ+ =
1
2
𝜎2 sin2 𝛼ou𝜏𝑐
1 + (Ω𝜏𝑐)2

. (A.16)
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Next, the amplitude of dephasing noise can be computed as:

𝜎̃2(𝑡) = cos2 𝛼ou

∫ 𝜋/𝑡

−𝜋/𝑡

𝑆ou(𝜔)
2𝜋

= cos2 𝛼ou
2
𝜋
𝜎2
𝜙 arctan(𝜋𝜏𝑐/𝑡). (A.17)

Due to lack of divergence at low-frequencies we neglect here effect of
finite data acquisition time 𝑇𝑎 (see Sec. 4.4 for the case of 1/f where it is
relevant).

Numerical results

To test the evolution generated by the noise we initialize the qubit in the
weighted superposition state for azimuth angle 𝜃 = 𝜋/3:

|𝜓(0)⟩ =
√

3
2

|↑⟩ + 1
2
|↓⟩ , (A.18)

for which initial polarization 𝑍(0) = 1/2 and coherence 𝑊(0) =
√

3/2.
Due to infinite temperature 𝑍𝛽 = 0 and hence according to fast-slow
approximation the time-dependence of the observables reads:

𝑍(𝑡) = 1
2

exp
(
−𝜎2 sin2 𝛼ou𝜏𝑐𝑡

1 + (Ω𝜏𝑐)2

)
,

𝑊(𝑡) =
√

3
2
𝑍(𝑡) exp

{
−(𝜎 cos 𝛼ou𝑡)2

𝜋
arctan(𝜋𝜏𝑐/𝑡)

}
=𝑊0𝑒

−𝜒(𝑡) ,

(A.19)

where decoherence factor reads:

𝜒(𝑡) = 1
2
𝜎2𝑡

(
𝑡 cos2 𝛼ou

2 arctan(𝜋𝜏𝑐/𝑡)
𝜋

+ sin2 𝛼ou
𝜏𝑐

1 + (Ω𝜏𝑐)2

)
(A.20)

Below in Fig. A.2 we compare analytical predictions (lines) against
numerical simulations of qubit evolution averaged over 𝑁 = 10000
realizations of O-U process (points). We fix evolution time as Ω𝑡 𝑓 = 10
and use two methods to obtain noise amplitude. In Fig. A.2a) we fix
the noise power, i.e. 𝜎2 = (0.1Ω)2 and in the Fig. A.2b) we fix the
spectrum at 𝜔 = 0, i.e. 𝑆ou(0) = 2, or equivalently 𝜎2𝜏𝑐 = 1. In general the
analytical predictions based on the independent treatment of transverse
and longitudinal noise component (symbols) agree with the numerical
simulations. As expected in the limit of slow noise, i.e. Ω𝜏𝑐 ≫ 1 the
influence of the noise, independent of the tilt angle and noise power the
𝑍(𝑡 𝑓 ) ≈ 𝑍(0) (dashed lines and crosses). For fixed noise power 𝜎 = const
in Fig. A.2a) decreasing correlation time (i.e making the noise faster)
decreases spectral density at the gap and hence the modification to 𝑍(𝑡)
is visible only around Ω𝜏𝑐 ≈ 1. In the same figure in the regime of slow
noise Ω𝜏𝑐 ≫ 1 the dephasing becomes stronger as the noise is more
longitudinal and effectively vanishes for purely transverse noise (blue
solid line and dots). In fact slow decay of coherence can be observed for the
numerical data (blue points), which is associated with the renormalization
of the energy gap due to slow transverse noise. This effect cannot be
encapsulated by the current model, but it is relatively small for relevant
here weak coupling (small 𝜎)
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Figure A.2: Dephasing and dissipation of the stationary two-level system. We compare the analytical result based on the independent
treatment of low- and high-frequency noise from Eq. (A.19) (solid lines) and numerical simulation of the evolution averaged over realization
of the O-U process (symbols) with a) 𝜎 = 0.1Ω and b) 𝜎 =

√
1/𝜏𝑐 . With each color we denote different orientation of the noise field (See

Eq. (A.15), i.e. 𝛼 = 0 (green) means longitudinal and 𝛼 = 𝜋/2 (blue) full transverse noise. We plot simultaneously coherence𝑊(𝑡) (solid
lines and dots) and polarization 𝑍(𝑡) (dashed line and crosses) of the two-level system. We average over 𝑁 = 10000 realizations of the noise.

In the opposite case of fixed relaxation rate Fig. A.2a) the dephasing in the
fast noise limit Ω𝜏𝑐 ≪ 1 is mostly caused by the disssipative evolution,
which can be seen by the simultaneous change in 𝑍(𝑡) and𝑊(𝑡). With
fixed relaxation rate, the limit of slow noise Ω𝜏𝑐 ≫ 1 means the power
of decreases as 𝜏𝑐 is larger and hence in the right hand side of the plot
both dephasing and dissipation are weak.

Driven two-level system

For a test of driven two-level system we refer to Fig. 8.4 and discus-
sion around it, where we concentrated on the charge transfer without
considering spin degree of freedom. In the figure we clearly see the
correspondence between the results of the adiabatic master equation for
driven two-level system (solid lines) and the results obtained by directly
averaging classical realizations of the noise process, which here was
associated with 1/f noise constructed from multiple O-U processes.

Driven four-level system

We finally compare the prediction of the averaged Adiabatic master
approach against direct averaging over two independent O-U noise
process, representing classical noise in tunnel coupling 𝛿𝑡𝑐 and detuning
𝛿𝜖, such that for each realization:

𝐻̂ou(𝑡) =
𝜖(𝑡) + 𝛿𝜖(𝑡)

2
𝜎̂𝑧 +

𝑡𝑐 + 𝛿𝑡𝑐(𝑡)
2

𝜎̂𝑥 +
𝐸𝑧

2
𝜎̂𝑧 + 𝑉̂𝑠𝑜(𝑡). (A.21)

We compute the evolution using the RK4 method using 𝑁 = 100 real-
isations of the O-U processes with 𝜎𝜖 = 5𝜇eV2 and 𝜎𝑡𝑐 = 0.5𝜇eV and
compare against method of averaged Master equation with the relaxation
rates computed using spectral density of the O-U noise. The results are
plotted in Fig. A.3, where the spin coherence in the ground orbital state
is plotted as a function of sweep rate, which is analogous figure to the
one presented in Chapter 12. In the figure we can observe the general
agreement between the averaged Master equation method (lines) and
the averaging over noise processes (symbols). Note however that in order
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Figure A.3: Loss of spin coherence dur-
ing adiabatic transition computed by av-
eraging the evolution over realizations
of Ornstein-Uhlembeck process (symbols)
and the averaged adiabatic Master equa-
tion method in infinite temperature (lines).
We use 𝑁 = 100 realisations of the tun-
nel coupling and detuning noise of the
respective powers 𝜎2

𝜖 = 52 𝜇eV2 and 𝜎2
𝑡𝑐

=

0.52 𝜇eV2. 𝑡𝑐 = 40𝜇eV, 𝑡ff = 0.1𝜇 eV
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to compare the two we had to assume effectively infinite temperature,
such that the excitation rate was equal to relaxation rate. For this reason
the physical analysis of the result is difficult. We highlight however that
for assumed here fixed noise amplitude 𝜎2

𝜖 = 52𝜇eV the relaxation (and
excitation) rate at the avoided crossing decreases as the correlation time
increase. This is visible, as the smallest phase error is provided by the
blue line corresponding to longest correlation time. Apart from small
region around 𝑣 ≈ 100𝜇eV/ns the 𝛿𝑊− ∝ 𝑣 points towards phase error
caused by high frequency noise and possibly charge transfer error. Note
that due to classical nature of the noise, the relaxation aided transfer is
impossible in this case.
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